JPH01297221A - Resin molding equipment - Google Patents

Resin molding equipment

Info

Publication number
JPH01297221A
JPH01297221A JP12935688A JP12935688A JPH01297221A JP H01297221 A JPH01297221 A JP H01297221A JP 12935688 A JP12935688 A JP 12935688A JP 12935688 A JP12935688 A JP 12935688A JP H01297221 A JPH01297221 A JP H01297221A
Authority
JP
Japan
Prior art keywords
heat insulating
supporting member
mold
ceramic
insulating spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12935688A
Other languages
Japanese (ja)
Other versions
JP2711259B2 (en
Inventor
Toshiichi Watake
輪竹 敏一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Yamada Manufacturing Co Ltd
Original Assignee
Kyocera Corp
Yamada Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Yamada Seisakusho KK filed Critical Kyocera Corp
Priority to JP63129356A priority Critical patent/JP2711259B2/en
Publication of JPH01297221A publication Critical patent/JPH01297221A/en
Application granted granted Critical
Publication of JP2711259B2 publication Critical patent/JP2711259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To contrive to prevent a mold from warping and to enhance its heating efficiency by a method wherein heat insulating spacers made of ceramic having specified thermal conductivity are equipped between a mold and supporting bases. CONSTITUTION:A resin molding equipment consists of metal supporting bases 1, onto each of which a metal supporting member 3 is seated through a plurality of ceramic heat insulating spacers 2 in order to seat a mold 5 on said supporting member 3. A heater 4 is equipped in each supporting member 3. Further, the supporting member 3 and the supporting base 1 are fixed to each other with bolts 6. Furthermore, the supporting member 3 and the heat insulating spacers 2 are fixed to each other with bolts 7. The heat insulating spacer 2 is made of ceramic, the thermal conductivity of which is 0.03cal.cm/cm<2>.sec. deg.C or less, such as forsterite, zirconia or the like and has high heat insulating effect by itself. Further, since the contact surfaces of the ceramic heat insulating spacer 2 and of the metal supporting base 1 and of the spacer 2 and of the supporting member 3 are not in fully contact with each other and has an air layer in a slight gas made between them, the heat conductivity through the surface of the spacer becomes very small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、樹脂を加熱硬化して成形する装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for heat-curing and molding resin.

〔従来の技術〕[Conventional technology]

第2図に示す樹脂成形装置は、金属製の支持基体l上に
複数の断熱スペーサ2を介して金属製の支持部材3を載
置し、ボルト6.7で支持部材3と支持基体1、断熱ス
ペーサ2を固着し、支持部材3上に成形型5を載置して
いた。また、支持部材3内にはヒータ4を備え、該ヒー
タ4に通電して支持部材3、成形型5を高温にし、成形
型5内に注入した樹脂を加熱硬化させ、上下から注入圧
以上の、例えば150Kg/cm”程度の圧力を加えて
成形を行うようになっていた。
In the resin molding apparatus shown in FIG. 2, a metal support member 3 is placed on a metal support base l via a plurality of heat insulating spacers 2, and the support member 3 is connected to the support base 1 by bolts 6.7. The heat insulating spacer 2 was fixed, and the mold 5 was placed on the support member 3. Furthermore, a heater 4 is provided inside the support member 3, and the heater 4 is energized to raise the support member 3 and the mold 5 to a high temperature, heat harden the resin injected into the mold 5, and apply pressure higher than the injection pressure from above and below. For example, molding was performed by applying a pressure of about 150 kg/cm''.

このとき支持部材3の熱が支持基体1側へ伝わりやすい
と、加熱効率が悪(なるだけでなく、支持基体1の温度
分布および温度上昇による熱膨張によって支柱8と支持
基体1の摺動が不可能となるため、上記のように断熱ス
ペーサ2を具備するかまたは、支持基体1を強制水冷す
るようにしていた。上記断熱方式の場合、断熱スペーサ
2は、熱伝導率が0.001 cal  −cm/ c
m”  −5ec  ・’C程度と低いシリコン樹脂か
らなるものを用いていた。
At this time, if the heat of the support member 3 is easily transmitted to the support base 1 side, not only will the heating efficiency be poor (but also the sliding movement between the support base 8 and the support base 1 will be reduced due to the temperature distribution of the support base 1 and thermal expansion due to temperature rise Since this is impossible, either the heat insulating spacer 2 is provided as described above, or the support base 1 is forcedly cooled with water.In the case of the above heat insulating method, the heat insulating spacer 2 has a thermal conductivity of 0.001 cal. -cm/c
A material made of silicone resin having a low value of m''-5ec·'C was used.

〔従来技術の課題〕[Issues with conventional technology]

ところが、上記の如き断熱方式の樹脂成形装置では、断
熱スペーサ2がシリコン樹脂からなっていたため、耐圧
性が悪く、1〜3ケ月程度の使用で変形して、支持部材
3を水平に保てなくなり、新品と交換しなければならず
、非常に手間のかかるものであり、極端な場合には成形
型5のソリ発生に至る場合も生じていた。
However, in the above-mentioned heat-insulating type resin molding equipment, the heat-insulating spacer 2 is made of silicone resin, so it has poor pressure resistance and deforms after being used for about 1 to 3 months, making it impossible to keep the supporting member 3 horizontal. , the mold 5 has to be replaced with a new one, which is extremely time-consuming and, in extreme cases, may even cause the mold 5 to warp.

また、シリコン樹脂から成る断熱スペーサ2自体は非常
に熱伝導率の低いものであるか、支持部材3または支持
基体1と断熱スペーサ2との接触面が完全に密着するた
め、接触面における表面熱伝導率が高く、そのため全体
としての断熱効果は優れたものではなかった。その結果
、支持部材3の加熱効率が悪いという問題点があった。
In addition, the heat insulating spacer 2 itself made of silicone resin has a very low thermal conductivity, or the contact surface between the support member 3 or the support base 1 and the heat insulating spacer 2 is in complete contact with each other, so the surface heat at the contact surface increases. The conductivity was high, and therefore the overall insulation effect was not excellent. As a result, there was a problem that the heating efficiency of the support member 3 was poor.

一方、強制水冷方式では断熱スペーサ2は金属製で良い
が、支持部材3に埋設したヒータ4を大型とする必要が
あり、消費電力が大きく、冷却水循環等のためランニン
グコストが高いなど、前記断熱方式に比べて不利なもの
であった。
On the other hand, in the forced water cooling method, the heat insulating spacer 2 may be made of metal, but the heater 4 buried in the support member 3 needs to be large, the power consumption is large, and the running cost is high due to cooling water circulation, etc. It was disadvantageous compared to other methods.

〔課題を解決するための手段〕[Means to solve the problem]

上記に鑑みて本発明は、樹脂成形装置の成形型と支持基
体の間に熱伝導率が0.03cal  ・cm/ cm
il・sec  ・℃以下のセラミックスから成る断熱
スペーサを具備するようにしたものである。
In view of the above, the present invention provides a structure in which the thermal conductivity between the mold and the supporting base of the resin molding device is 0.03 cal cm/cm.
A heat insulating spacer made of ceramic having a temperature of il·sec·°C or less is provided.

〔実施例〕〔Example〕

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図に示す樹脂成形装置は金属製の支持基体1上にセ
ラミックスから成る複数の断熱スペーサ2を介して金属
製の支持部材3を載置し、さらに成形型5を載置してな
るものである。前記支持部材3内にはヒータ4を備え、
またボルト6.7によって支持部材3と支持基体1.断
熱スペーサ2を固着している。
The resin molding apparatus shown in FIG. 1 is constructed by placing a metal support member 3 on a metal support base 1 via a plurality of heat insulating spacers 2 made of ceramic, and further placing a mold 5 thereon. It is. A heater 4 is provided in the support member 3,
Also, the support member 3 and the support base 1 are connected by bolts 6.7. The heat insulating spacer 2 is fixed.

上記断熱スペーサ2は、フォルステライト、ジルコニア
、ステアタイト、ムライト、ジルコン、チタニアなどの
熱伝導率が0.03cal  −cm/ cm2・se
c  ・℃以下のセラミックスからなり、断熱スペーサ
2自体の断熱効果は高いものである。
The heat insulating spacer 2 is made of forsterite, zirconia, steatite, mullite, zircon, titania, etc., and has a thermal conductivity of 0.03 cal-cm/cm2·se.
The heat insulating spacer 2 itself is made of ceramic having a temperature of less than c.degree. C. and has a high heat insulating effect.

また、セラミックスから成る断熱スペーサ2と、金属か
らなる支持基体1、支持部材3との接触面は完全に密着
せず、わずかな隙間ができて空気層が存在するため、表
面熱伝導率は非常に小さくなる。従って、断熱スペーサ
2自体の断熱効果と合わせて、全体としての断熱効果は
非常に高いものとなる。
In addition, the contact surfaces between the heat insulating spacer 2 made of ceramic and the support base 1 and support member 3 made of metal do not come into perfect contact with each other, leaving a slight gap and an air layer, so the surface thermal conductivity is extremely low. becomes smaller. Therefore, in addition to the heat insulating effect of the heat insulating spacer 2 itself, the heat insulating effect as a whole is extremely high.

さらに断熱スペーサ2をセラミックスから形成しである
ことにより、強度が大きく変形しにくいため、長期間交
換せずに使用することができる。
Furthermore, since the heat insulating spacer 2 is made of ceramic, it has high strength and is resistant to deformation, so it can be used for a long period of time without being replaced.

次に第1表に示す、さまざまな材質を用いて、直径40
1、厚さ30mmの円柱形状をした断熱スペーサ2を試
作し、この断熱スペーサ2を40個用いて、600mm
 X 400mm X 50mmの鋼材からなる支持部
材3を支持基体1上に保存し、使用試験を行った。まず
、同一条件の下でヒータ4に通電し、成形型5が300
℃となるまでの時間を測定し、次に1ケ月使用後の断熱
スペーサ2の変形状態を調べた。結果は第1表の通りで
ある。
Next, using various materials shown in Table 1,
1. Prototype a cylindrical heat insulating spacer 2 with a thickness of 30 mm, and use 40 of these heat insulating spacers 2 to create a space of 600 mm.
A support member 3 made of steel and measuring 400 mm x 50 mm was stored on the support base 1 and used in a test. First, under the same conditions, the heater 4 is energized, and the mold 5 is
The time taken to reach the temperature was measured, and then the deformation state of the heat insulating spacer 2 after one month of use was examined. The results are shown in Table 1.

第  1  表 〔以下余白〕 第1表より、断熱スペーサ2として隘6のシリコン樹脂
を用いた場合は、成形型5が300℃となるまでの加熱
時間が3時間と長く、1ケ月後には変形が大きいため新
品と交換しなければならなかった。これは、前記したよ
うにシリコン樹脂と金属との接触面における表面熱伝導
率が高く、全体としての断熱効果が小さいため、加熱効
率が悪いことを示している。
Table 1 [Margins below] From Table 1, when the silicone resin shown in Figure 6 is used as the heat insulating spacer 2, the heating time for the mold 5 to reach 300°C is as long as 3 hours, and it deforms after one month. Because it was so big, I had to replace it with a new one. This indicates that, as described above, the surface thermal conductivity at the contact surface between the silicone resin and the metal is high, and the overall heat insulation effect is small, resulting in poor heating efficiency.

また、第1表中、I’h4.5のアルミナ、窒化珪素を
用いた場合は、セラミックと金属との接触面における表
面熱伝導率を小さくできるが、断熱スペーサ2自体の熱
伝導率が0.03cal  −cm/ cm”  ・s
eC・℃以上と高く、全体としての断熱効果が小さいた
め、支持基体1の昇温か大きく、移動が困難となってし
まい試験を中止した。
Furthermore, in Table 1, when alumina or silicon nitride with an I'h of 4.5 is used, the surface thermal conductivity at the contact surface between the ceramic and the metal can be reduced, but the thermal conductivity of the heat insulating spacer 2 itself is 0. .03cal-cm/cm”・s
Since the temperature was as high as eC.degree. C. or higher and the overall heat insulating effect was small, the temperature of the support base 1 increased significantly, making it difficult to move, and the test was discontinued.

これらに対し、本発明実施例に係る隘1〜3のフォルス
テライト、ジルコニア、ステアタイトを用いればセラミ
ックスと金属との接触面における表面熱伝導率が小さい
だけでなく、断熱スペーサ2自体の熱伝導率が低いこと
もあって、全体としての断熱効果を大きくできる結果、
成形型5を300℃とするまでの時間が1〜1.2時間
と短く、また1ケ月後も特に変形は見られず、優れた結
果を示した。
On the other hand, if forsterite, zirconia, and steatite according to Examples 1 to 3 of the present invention are used, not only the surface thermal conductivity at the contact surface between the ceramic and the metal is small, but also the thermal conductivity of the heat insulating spacer 2 itself is reduced. As a result of the low rate, the overall insulation effect can be increased.
The time it took to heat the mold 5 to 300°C was as short as 1 to 1.2 hours, and no particular deformation was observed even after one month, showing excellent results.

この断熱スペーサ2として用いるセラミックスは、上記
実験例のものも含め、第2表に示すものを用いればよい
。これらの熱伝導率が0.03cal  ・cm/ C
m!  ・sec  ・℃より小さいセラミックスを用
いて断熱スペーサ2を形成すれば、優れた断熱効果を奏
することができるが、耐圧性の点からより圧縮強度の大
きいジルコニア、フォルステライトを用いれば特に優れ
ていた。
The ceramics used as the heat insulating spacer 2 may be those shown in Table 2, including those in the above experimental examples. The thermal conductivity of these is 0.03 cal cm/C
m! If the heat insulating spacer 2 is formed using ceramics smaller than ・sec ・°C, an excellent heat insulating effect can be achieved, but from the viewpoint of pressure resistance, using zirconia or forsterite, which has a higher compressive strength, is particularly excellent. .

第2表 上記断熱スペーサ2の形状は、円柱状、円筒状、角柱状
などさまざまなものとすることができ、ボルト7を挿通
するための孔を形成したものでもよい。実際に用いる場
合は、被支持部材3の大きさや使用温度に応じて形状や
使用する個数を自由に変更できる。さらに、断熱スペー
サ2の厚さを大きくすると、断熱効果は大きくなるが、
支持安定性が悪くなり、全体的に大きなスペースを必要
とすることから、前記実験例程度の大きさとしたものが
良かった。
Table 2 The heat insulating spacer 2 may have various shapes such as columnar, cylindrical, and prismatic, and may have a hole for inserting the bolt 7 therethrough. When actually used, the shape and number of pieces to be used can be freely changed depending on the size of the supported member 3 and the operating temperature. Furthermore, increasing the thickness of the heat insulating spacer 2 increases the heat insulating effect;
Since the support stability deteriorates and a large space is required as a whole, it would have been better to have a size similar to that of the experimental example.

また、断熱スペーサ2の支持基体1、支持部材3との接
触面は中心線平均粗さ(Ra)O15〜0.6μmとし
であるが、もっと粗い面としたり、表面に微細な凹凸を
形成すれば、前記した接触面の隙間を大きくでき、より
断熱効果を高めることができる。
In addition, the contact surface of the heat insulating spacer 2 with the support base 1 and the support member 3 has a center line average roughness (Ra) of 15 to 0.6 μm, but it is possible to make the surface rougher or to form fine irregularities on the surface. For example, the gap between the contact surfaces described above can be increased, and the heat insulation effect can be further enhanced.

以上の実施例では、支持基体1、支持部材3が金属から
なるもののみを示したが、セラミックなど他の材質から
なるものであっても同様に優れた断熱効果を示した。
In the above embodiments, only the supporting base 1 and the supporting member 3 made of metal were shown, but even if they were made of other materials such as ceramic, the same excellent heat insulating effect was exhibited.

〔発明の効果〕〔Effect of the invention〕

畝上のように本発明によれば、樹脂成形装置の成形型と
支持基体の間に熱伝導率が0.03cal  −cm/
 cm”  ・sec  ・℃より小さいセラミックス
からなる断熱スペーサを具備したことによって、断熱ス
ペーサと支持基体、支持部材間の表面熱伝導率も小さく
なるため、全体としての断熱効果を大きくできる結果、
成形型のソリを防止し、加熱効率を良くすることができ
るだけでなく、長期間使用しても断熱スペーサが変形せ
ず、交換の必要がないなどの特長を有する樹脂成形装置
を提供できる。
According to the present invention, the thermal conductivity between the mold and the support base of the resin molding apparatus is 0.03 cal -cm/
By providing a heat insulating spacer made of ceramic smaller than cm" ・sec ・°C, the surface thermal conductivity between the heat insulating spacer, the supporting base, and the supporting member is also reduced, and as a result, the overall heat insulating effect can be increased.
It is possible to provide a resin molding device that not only can prevent warpage of the mold and improve heating efficiency, but also has features such that the heat insulating spacer does not deform even after long-term use and does not require replacement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例に係る樹脂成形装置を示す断面図
、第2図は従来の樹脂成形装置を示す断面図である。 1:支持基体 2:断熱スペーサ 3:支持部材 4:ヒータ 5:成形型
FIG. 1 is a sectional view showing a resin molding apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional resin molding apparatus. 1: Support base 2: Heat insulating spacer 3: Support member 4: Heater 5: Molding mold

Claims (1)

【特許請求の範囲】[Claims] 支持基体と成形型との間に、熱伝導率が0.03cal
・cm/cm^2−sec・℃以下のセラミックスから
なる断熱スペーサを介在させたことを特徴とする樹脂成
形装置。
The thermal conductivity between the supporting base and the mold is 0.03 cal.
- A resin molding device characterized by interposing a heat insulating spacer made of ceramics with a temperature of cm/cm^2-sec/°C or less.
JP63129356A 1988-05-26 1988-05-26 Resin molding equipment Expired - Lifetime JP2711259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129356A JP2711259B2 (en) 1988-05-26 1988-05-26 Resin molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129356A JP2711259B2 (en) 1988-05-26 1988-05-26 Resin molding equipment

Publications (2)

Publication Number Publication Date
JPH01297221A true JPH01297221A (en) 1989-11-30
JP2711259B2 JP2711259B2 (en) 1998-02-10

Family

ID=15007574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129356A Expired - Lifetime JP2711259B2 (en) 1988-05-26 1988-05-26 Resin molding equipment

Country Status (1)

Country Link
JP (1) JP2711259B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748679A1 (en) * 1995-06-16 1996-12-18 Hans-Jürgen Luckow Method and apparatus for injection moulding
JP2011011483A (en) * 2009-07-03 2011-01-20 Sodick Plastech Co Ltd Mold clamping device of molding machine
CN103042666A (en) * 2011-10-17 2013-04-17 发那科株式会社 Injection molding machine with combination plate of temperature adjustment pipe
CN103847079A (en) * 2012-11-29 2014-06-11 住友重机械工业株式会社 Injection molding machine
KR20180044933A (en) 2015-08-28 2018-05-03 토와 가부시기가이샤 Resin molding apparatus and method for manufacturing resin molded article
KR20200093429A (en) 2019-01-28 2020-08-05 토와 가부시기가이샤 Resin molding device, and method for producing resin-molded product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812715A (en) * 1981-07-16 1983-01-24 Matsushita Electric Ind Co Ltd Mold for resin molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812715A (en) * 1981-07-16 1983-01-24 Matsushita Electric Ind Co Ltd Mold for resin molding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748679A1 (en) * 1995-06-16 1996-12-18 Hans-Jürgen Luckow Method and apparatus for injection moulding
JP2011011483A (en) * 2009-07-03 2011-01-20 Sodick Plastech Co Ltd Mold clamping device of molding machine
CN103042666A (en) * 2011-10-17 2013-04-17 发那科株式会社 Injection molding machine with combination plate of temperature adjustment pipe
CN103847079A (en) * 2012-11-29 2014-06-11 住友重机械工业株式会社 Injection molding machine
KR20180044933A (en) 2015-08-28 2018-05-03 토와 가부시기가이샤 Resin molding apparatus and method for manufacturing resin molded article
US20190001536A1 (en) * 2015-08-28 2019-01-03 Towa Corporation Resin-molding device and method for producing resin-molded product
US10814532B2 (en) 2015-08-28 2020-10-27 Towa Corporation Resin-molding device and method for producing resin-molded product
KR20200093429A (en) 2019-01-28 2020-08-05 토와 가부시기가이샤 Resin molding device, and method for producing resin-molded product

Also Published As

Publication number Publication date
JP2711259B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
CN103370778B (en) There is the substrate support that heater and fast temperature change
TW201529491A (en) Method for molding sheet glass, and mold
CN101809717A (en) Temperature control modules for showerhead electrode assemblies for plasma processing apparatuses
EP1075015A3 (en) A method and apparatus for thermal control of a semiconductor substrate
JPH024193A (en) Heat insulation of high-temperature furnace
JPH01297221A (en) Resin molding equipment
WO1994001529A1 (en) Ceramic heating/cooling device
JP2001012856A (en) Heat treating apparatus
JP2003324048A (en) Wafer heating device
KR101985472B1 (en) Supporting member, heating plate supporting device including the same, and heating device
US20060193366A1 (en) Heating element structure with efficient heat generation and mechanical stability
US10987831B2 (en) Dies for forming a part and associated systems and methods
JP2007309540A (en) Heating plate, combined heating plate and heating furnace comprising the same
US3792960A (en) Hearth for a furnace for the thermal treatment of products supported by a gas cushion
JP2002184557A (en) Heater for semiconductor manufacturing and inspecting device
US3112389A (en) Unit brazing fixture
JP5381879B2 (en) Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same
CN104199166A (en) Optical experiment platform capable of achieving active and uniform heat conduction and preparation method thereof
CN219363870U (en) Graphite tray for silicon epitaxial growth
JP3268423B2 (en) Multi-layer ceramic sintered body manufacturing equipment
JPH0971820A (en) Induction heater for annular ring
JPH04236093A (en) Heating furnace
JP2008204679A (en) Substrate heating device
JPH0242721A (en) Dry etching apparatus
JPS6428944A (en) Cooling structure of integrated circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11