JP2011011483A - Mold clamping device of molding machine - Google Patents

Mold clamping device of molding machine Download PDF

Info

Publication number
JP2011011483A
JP2011011483A JP2009158446A JP2009158446A JP2011011483A JP 2011011483 A JP2011011483 A JP 2011011483A JP 2009158446 A JP2009158446 A JP 2009158446A JP 2009158446 A JP2009158446 A JP 2009158446A JP 2011011483 A JP2011011483 A JP 2011011483A
Authority
JP
Japan
Prior art keywords
heat insulating
mold
fixed
platen
insulating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009158446A
Other languages
Japanese (ja)
Other versions
JP2011011483A5 (en
JP5592086B2 (en
Inventor
Yasuhiro Kitamura
裕宏 北村
Yutaka Hamabe
豊 濱辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Plustech Co Ltd
Original Assignee
Sodick Plustech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Plustech Co Ltd filed Critical Sodick Plustech Co Ltd
Priority to JP2009158446A priority Critical patent/JP5592086B2/en
Publication of JP2011011483A publication Critical patent/JP2011011483A/en
Publication of JP2011011483A5 publication Critical patent/JP2011011483A5/ja
Application granted granted Critical
Publication of JP5592086B2 publication Critical patent/JP5592086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2602Mould construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C2033/023Thermal insulation of moulds or mould parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that parallelism between a fixed side and a movable half of a mold in impaired due to the compression of a heat insulating plate by a clamping force since the mold is tightly fixed by a mold fitting member during the fitting of the mold following procedures to mount the fixed side part and the movable half of a mold on a fixed platen and a supporting platen connected by a tie bar and a movable platen moving between the fixed platen and the supporting platen respectively, through each heat insulating plate fitted directly to both fixed and movable platens.SOLUTION: This mold clamping device of the molding machine has heat insulating spacers which are formed of materials of high Young's modulli, and has a larger thickness than the thickness of the heat insulating plate. In addition, the heat insulating spacers are inserted into a plurality of through-holes for the heat insulating spacers which penetrate the heat insulating plate in its thickness direction, and the through-holes for the heat insulating spacers are formed in a region which the mold on the surface of the heat insulating plate faces, and each formed at a line symmetric position about the straight line in the up-and-down direction and the right and left direction, and passes through the center point of the region.

Description

本発明は、射出成形機の型締装置において、金型装置からプラテンに伝わる熱を抑えるために、それらの間に断熱板が備えられても、固定側金型と可動側金型の間の平行度を高精度に維持することができる型締装置に関する。   In the mold clamping device of the injection molding machine, in order to suppress the heat transmitted from the mold device to the platen, even if a heat insulating plate is provided between them, the fixed mold and the movable side mold are provided. The present invention relates to a mold clamping device capable of maintaining parallelism with high accuracy.

一般に、射出成形機は、少なくとも射出装置と型締装置とを備えて、その射出装置で樹脂材料を加熱しながら可塑化して溶融し、その溶融樹脂を高圧で射出して型締装置に搭載された金型装置内のキャビティに充填し、そのキャビティ内の溶融樹脂を冷却し固化させて成形品を得るものである。   In general, an injection molding machine includes at least an injection device and a mold clamping device, and plasticizes and melts the resin material while heating with the injection device, and the molten resin is injected at a high pressure and mounted on the mold clamping device. The mold is filled into a cavity, and the molten resin in the cavity is cooled and solidified to obtain a molded product.

その射出成形機の型締装置は、タイバで連結された固定プラテンとバックプラテン、それらの間で移動する可動プラテン、そして、その可動プラテンを進退させてその固定プラテンに対して押圧する駆動装置を機台上に備える。   The mold clamping device of the injection molding machine includes a fixed platen and a back platen connected by a tie bar, a movable platen that moves between them, and a drive device that moves the movable platen back and forth and presses it against the fixed platen. Prepare on the machine base.

その固定プラテンには、金型装置の固定側(以下、固定側金型という)が搭載され、その可動プラテンには、金型装置の可動側(以下、可動側金型という)が搭載される。その金型装置の取り付けは、固定側金型に備える固定側取り付け板および可動側金型に備える可動側取り付け板を、金型取り付け部材、すなわちクランプ部材または直接ボルトでプラテンに固定することで行われる。そして、駆動装置は、固定側金型に対して、可動プラテンとともに可動側金型を進退させて型開閉を行い、押圧して型締めを行う。   The fixed platen is mounted with a fixed side of the mold apparatus (hereinafter referred to as a fixed side mold), and the movable platen is mounted with a movable side of the mold apparatus (hereinafter referred to as a movable side mold). . The mold apparatus is attached by fixing the fixed side mounting plate provided in the fixed side mold and the movable side mounting plate provided in the movable side mold to the platen with a mold mounting member, that is, a clamp member or a direct bolt. Is called. Then, the driving device opens and closes the movable side mold together with the movable platen to open and close the mold with respect to the fixed side mold, and presses and clamps the mold.

プラテンに搭載された金型装置は、多くの場合、所定の温度に温度調節される。例えば、レンズ等の精密な成形品を成形する際には、百数十度程度の比較的高温に温度調節されることが多い。そのため、金型装置の内部には、その外部に設置した金型温度調節器で温度調節された水や油のような熱媒体を循環させる温調配管が備えられている。なお、さらに高温の温度調節が必要な場合には、ヒーターを利用する場合もある。   In many cases, the mold apparatus mounted on the platen is adjusted to a predetermined temperature. For example, when molding a precision molded product such as a lens, the temperature is often adjusted to a relatively high temperature of about a few hundred degrees. Therefore, a temperature control pipe for circulating a heat medium such as water or oil whose temperature is adjusted by a mold temperature controller installed outside the mold apparatus is provided inside the mold apparatus. Note that a heater may be used when higher temperature control is required.

そのため、特許文献1のように金型装置とプラテンの間には、金型装置の熱がプラテンに伝わらないように断熱板が挟まれる。その断熱板は、金型装置に備える固定側および可動側取り付け板がプラテンに面する部分を少なくとも覆うように形成されて、温度調節された金型装置からプラテンに熱が逃げるのを抑える。それによって、金型装置が速やかに所定温度まで昇温し、金型装置の温度調整が安定し、そして、不要な熱エネルギ損失もなく省エネとなる。また、その断熱板は、金型装置から伝わる熱でプラテンが熱膨張し歪むのを抑え、さらには射出成形機全体の歪みをも防止する。さらには、プラテンの金型取り付け面の損傷や錆も防止する。   Therefore, as in Patent Document 1, a heat insulating plate is sandwiched between the mold apparatus and the platen so that the heat of the mold apparatus is not transmitted to the platen. The heat insulating plate is formed so that the fixed side and the movable side mounting plate provided in the mold apparatus cover at least a portion facing the platen, and suppresses heat from escaping from the temperature-controlled mold apparatus to the platen. As a result, the mold apparatus quickly rises to a predetermined temperature, the temperature adjustment of the mold apparatus is stabilized, and energy is saved without unnecessary heat energy loss. In addition, the heat insulating plate prevents the platen from being thermally expanded and distorted by the heat transmitted from the mold apparatus, and further prevents the entire injection molding machine from being distorted. Furthermore, it prevents damage and rust on the platen mold mounting surface.

そのような断熱板は、従来、ガラス繊維などを主基材としたものにバインダを加えて作成されたものであって、加工精度が低く、その両面の平行度が低いため、レンズなどの精密成形では、十分に高い精度の成形が行えない恐れがあった。そこで、特許文献2では、強度や耐久性や断熱性が高い材質であって、表面精度を高くすることができるという観点から、セラミックスから成る断熱層を固定および可動プラテンの金型取り付け面に一体に形成させた成形機を開示している。それで、断熱層の加工精度を高くし、それら取り付け面の間の平行度を向上させて、高い型締精度で精密な成形品を成形する。特許文献2以外にも、全体をセラミックスで形成した断熱板をプラテンに固定するようにしたものもある。   Such a heat insulating plate is conventionally made by adding a binder to a glass fiber or the like as a main base material, and has low processing accuracy and low parallelism on both sides, so that precision such as a lens is used. In molding, there is a fear that molding with sufficiently high accuracy cannot be performed. Therefore, in Patent Document 2, a heat insulating layer made of ceramics is integrated with a mold mounting surface of a fixed and movable platen from the viewpoint that it is a material having high strength, durability, and heat insulation, and can improve surface accuracy. Discloses a molding machine. Therefore, the processing accuracy of the heat insulating layer is increased, the parallelism between the mounting surfaces is improved, and a precise molded product is molded with high clamping accuracy. In addition to Patent Document 2, there is also one in which a heat insulating plate formed entirely of ceramics is fixed to a platen.

実開平03−108414号公報Japanese Utility Model Publication No. 03-108414 特開2006−142687号公報JP 2006-142687 A

しかしながら、本願出願人は、まだ改良の余地があると考える。既述したように精密な成形では、型締装置のプラテンに金型装置を取り付けた際に、固定側金型と可動側金型の間の平行度に高い精度が求められる。例えば、球面レンズの成形では、金型装置のキャビティ内の成形品をその金型装置を開いて取り出す際に、固定側金型と可動側金型の間の平行度が低い状態で型開させた場合には、その開始直後において、球面レンズ表面とキャビティ面の一部が離型し、それ以外がくっついた状態を経てから完全に離型されることになる。型開直後の成形品は、固化しているとはいえ、ある程度の熱を持った弾性体である。そのため、球面レンズ表面の最初に離型する部分が、引っ張られるようにして離型されて、その部分が微細ではあるが変形してしまう場合があった。そのように成形された球面レンズでは、上下の断面と左右の断面とが同じ形状にならず、非点収差すなわち光が1点で交わらないで分散している現象が起こると言われている。   However, the applicant of the present application still considers room for improvement. As described above, in precise molding, when the mold apparatus is attached to the platen of the mold clamping apparatus, high accuracy is required for the parallelism between the fixed mold and the movable mold. For example, in the molding of a spherical lens, when a molded product in a cavity of a mold apparatus is opened and taken out, the mold is opened with a low degree of parallelism between the fixed mold and the movable mold. In this case, immediately after the start, a part of the spherical lens surface and a part of the cavity surface are released from the mold, and after the other is adhered, the mold is completely released. Although the molded product immediately after the mold opening is solidified, it is an elastic body having a certain amount of heat. Therefore, the part to be released first on the surface of the spherical lens is released by being pulled, and the part may be deformed although it is fine. In the spherical lens thus molded, it is said that the upper and lower cross-sections and the left and right cross-sections do not have the same shape, and astigmatism, that is, a phenomenon in which light is dispersed without intersecting at one point.

断熱板を間に挟んだ形でプラテンに金型装置を取り付けた際に、固定側金型と可動側金型の間の平行度を低下させる原因には、既述した理由の他に、金型装置の複数箇所を金型取り付け部材でプラテンに固定することによって起こる断熱板の不均一な圧縮がある。固定側金型および可動側金型は、それぞれ固定側および可動側取り付け板を備えて、それら取り付け板の周縁の複数箇所を金型取り付け部材によって、プラテン側に締め付けるようにして固定プラテンや可動プラテンにそれぞれ固定される。それで、断熱板は、金型取り付け部材で締め付けられる部分がプラテン側に向かって圧縮されるのである。例えば、作業者が、固定側および可動側取り付け板の周縁部を、それぞれ型締装置の操作側および半操作側に対して上下2カ所の合計4カ所ずつを金型取り付け部材で固定したとする。すると、その4カ所に面した断熱板の部分が、それぞれの金型取り付け部材の締め付け具合によって、異なる量だけ圧縮される。例えば、従来のガラス繊維などを主基材とする断熱板では、その厚み方向に最大で30μm程度圧縮されてしまう場合もあった。そのため、固定側金型と可動側金型の間の平行度は、作業者の金型取り付け部材の締め付け具合で変動してしまうことになる。   In addition to the reasons described above, the reason why the parallelism between the fixed side mold and the movable side mold is reduced when the mold apparatus is attached to the platen with the heat insulating plate sandwiched therebetween is not limited to the reason described above. There is non-uniform compression of the thermal insulation plate that occurs by fixing multiple locations of the mold apparatus to the platen with a mold mounting member. The fixed-side mold and the movable-side mold each have a fixed-side and a movable-side mounting plate, and the fixed platen and the movable platen are arranged so that a plurality of peripheral portions of the mounting plate are tightened to the platen side by a mold-attaching member. Fixed to each. Therefore, the portion of the heat insulating plate that is tightened by the mold attachment member is compressed toward the platen side. For example, it is assumed that the worker fixes the peripheral portions of the fixed side and movable side mounting plates in a total of four places, two on the upper and lower sides with respect to the operation side and the half operation side of the mold clamping device, respectively. . Then, the portions of the heat insulating plate facing the four places are compressed by different amounts depending on the tightening condition of the respective mold mounting members. For example, a conventional heat insulating plate mainly made of glass fiber or the like may be compressed by about 30 μm at maximum in the thickness direction. Therefore, the parallelism between the fixed side mold and the movable side mold varies depending on the tightening degree of the mold mounting member of the operator.

そのため、作業としては、金型装置をプラテンに取り付けたあとに、固定側金型と可動側金型の間の平行度を補正する必要があり、手間の掛かる作業が増えてしまう。また、その平行度の補正方法は、金型取り付け部材による金型装置の締め付け力を調整して行われる。場合によっては、金型取り付け部材の締め付けのゆるみの原因となって、成形を繰り返す間に平行度を悪くする。   For this reason, it is necessary to correct the parallelism between the fixed side mold and the movable side mold after the mold apparatus is attached to the platen, which increases the time-consuming work. The parallelism correction method is performed by adjusting the clamping force of the mold apparatus by the mold mounting member. In some cases, the mold attachment member is loosened and the parallelism is deteriorated during repeated molding.

それならば、断熱板の材質を強度の高いセラミックスにすれば、金型装置をプラテンに取り付けた際の断熱板の厚み寸法に対する圧縮量を小さくでき、固定側と可動側の金型の平行度を高い精度で維持することができる。しかし、セラミックスからなる断熱板は、ガラス繊維などを主基材とする断熱板に比べて価格が高く、また、ガラス繊維などを主基材とする断熱板の熱伝導率が0.3(W/(m・k))程度であるのに対して、セラミックスの中でも熱伝導率が低いジルコニアであっても3(W/(m・k))程度と断熱性能に関して劣る部分もある。   If the material of the heat insulating plate is made of high-strength ceramics, the amount of compression relative to the thickness of the heat insulating plate when the mold apparatus is attached to the platen can be reduced, and the parallelism between the fixed side and movable side molds can be reduced. It can be maintained with high accuracy. However, a heat insulating plate made of ceramics is more expensive than a heat insulating plate made mainly of glass fibers, and the heat conductivity of the heat insulating plate made mainly of glass fibers is 0.3 (W / (M · k)), on the other hand, even among zirconia, which has a low thermal conductivity among ceramics, there is a portion inferior in heat insulation performance of about 3 (W / (m · k)).

そこで、本発明は、上記の問題を解決するためのものであり、型締装置のプラテンと金型装置の間に断熱板を挟む形でその金型装置をその型締装置に取り付ける際に、固定側金型と可動側金型の間の平行度を高い精度で維持しながら、高い断熱性能と低い価格を実現する断熱板を備える射出成形機の型締装置を提案するものである。   Therefore, the present invention is for solving the above problems, and when the mold apparatus is attached to the mold clamping apparatus in a form in which a heat insulating plate is sandwiched between the platen of the mold clamping apparatus and the mold apparatus, The present invention proposes a mold clamping device for an injection molding machine including a heat insulating plate that achieves high heat insulating performance and low price while maintaining parallelism between a fixed mold and a movable mold with high accuracy.

本発明の成形機の型締装置は、上記課題を解決するために、タイバによって連結された固定プラテンおよび支持プラテンと、それらのプラテン間で移動する可動プラテンとを含み、その固定プラテンに取り付けられた断熱板のその上から固定側金型が取り付けられ、その可動プラテンに取り付けられた断熱板のその上から可動側金型が取り付けられ、その金型の取り付けの際に、その固定側金型とその可動側金型が金型取り付け部材によって締め付けられるようにして固定される成形機の型締装置において、ヤング率の大きい材質で形成されるとともに前記断熱板の厚み寸法よりも大きい厚み寸法に形成された断熱スペーサが、その断熱板をその厚み方向に貫通する複数の断熱スペーサ用の貫通孔に挿嵌され、その断熱スペーサ用の貫通孔が、その断熱板の板面上の前記金型が面する領域内であって、その領域の中心点を通る上下方向と左右方向の直線に対して線対称の位置にそれぞれ形成される。   In order to solve the above problems, a mold clamping device of the present invention includes a fixed platen and a support platen connected by a tie bar, and a movable platen that moves between the platens, and is attached to the fixed platen. The fixed mold is attached from above the insulated plate, the movable mold is installed from above the insulated plate attached to the movable platen, and the fixed mold is attached when the mold is installed. And a mold for clamping the movable side of the mold so that the movable mold is clamped by a mold mounting member, the mold is made of a material having a large Young's modulus and has a thickness dimension larger than the thickness dimension of the heat insulating plate. The formed heat insulating spacer is inserted into a plurality of heat insulating spacer through holes penetrating the heat insulating plate in the thickness direction, and the heat insulating spacer through holes are inserted. A region where the mold on the plate surface of the insulating plate facing is formed at a position axisymmetric with respect to the vertical direction and the lateral direction line passing through the center point of the region.

また、本発明の前記断熱スペーサの材質が、セラミックスであると良い。   The material of the heat insulating spacer of the present invention is preferably ceramic.

また、本発明の前記断熱スペーサの材質が、セラミックスのうちのジルコニアであると良い。   The material of the heat insulating spacer of the present invention is preferably zirconia among ceramics.

また、本発明の前記断熱スペーサが、円盤形状または円筒形状であって、その軸心に引っ掛け孔となる貫通孔を有すると良い。   Further, the heat insulating spacer of the present invention may be a disc shape or a cylindrical shape, and may have a through hole serving as a hook hole at the axis.

本発明の成形機の型締装置によれば、プラテンに取り付けられた断熱板のその上から金型装置を取り付ける際に、ヤング率の大きい材質で形成され、その断熱板より厚み寸法の大きい断熱スペーサを、その断熱板の所定位置に貫通するように備えて、その断熱板自体には金型装置を当接させないで、圧縮量の小さい断熱スペーサにだけ金型装置を当接させるようにすることで、固定側金型と可動側金型の間の平行度を高精度に維持できる。その断熱スペーサによって、金型装置に当接するその断熱スペーサの当接面の面積を小さくすることや、その金型装置に当接させる断熱スペーサの個数を減らすことで、その金型装置からプラテンへの熱伝導を小さくし、断熱効果を高めることができる。そして、その断熱スペーサは、その材質が高価なものであっても、金型装置の断熱板側に面した面の、その一部と当接される大きさであれば良いので、その全部と当接されるような、つまりは断熱板全体を製作するよりはるかに安価に製作できる。   According to the mold clamping device of the molding machine of the present invention, when the mold apparatus is attached from above the heat insulating plate attached to the platen, the heat insulating material is formed of a material having a large Young's modulus and has a thickness dimension larger than that of the heat insulating plate. A spacer is provided so as to penetrate through a predetermined position of the heat insulating plate, and the mold device is not brought into contact with the heat insulating plate itself, but is brought into contact only with the heat insulating spacer having a small compression amount. Thus, the parallelism between the fixed mold and the movable mold can be maintained with high accuracy. By reducing the area of the contact surface of the heat insulating spacer that contacts the mold device by the heat insulating spacer, or by reducing the number of heat insulating spacers that contact the mold device, the mold device can move from the plate device to the platen. The heat conduction can be reduced and the heat insulation effect can be enhanced. And even if the heat insulating spacer is an expensive material, it is sufficient that the heat insulating spacer has a size that comes into contact with a part of the surface facing the heat insulating plate side of the mold apparatus. It can be made much cheaper than making the entire adiabatic, such as abutting.

また、本発明の成形機の型締装置によれば、上記の断熱スペーサの材質を高強度のセラミックスにすることで、断熱スペーサ自体の圧縮量を小さくして、型締装置に取り付けられた固定側金型と可動側金型の間の平行度が高い精度で維持できる。   In addition, according to the mold clamping device of the molding machine of the present invention, the amount of compression of the heat insulating spacer itself is reduced by using high-strength ceramics as the material of the heat insulating spacer, and the fixing device attached to the mold clamping device. Parallelism between the side mold and the movable mold can be maintained with high accuracy.

また、本発明の成形機の型締装置によれば、上記の断熱スペーサの材質をセラミックスの中でも熱伝導率が低いジルコニアにすることで、金型装置を取り付ける際の締め付け力や型締装置の型締力が大きくて、どうしても金型装置と当接する断熱スペーサの当接面を大きくしなければならない場合に、断熱性能を損なうことなくその面積を大きくできる。   Further, according to the mold clamping device of the molding machine of the present invention, the material of the heat insulating spacer is made of zirconia having a low thermal conductivity among ceramics, so that the clamping force when mounting the mold device and the mold clamping device can be reduced. When the clamping force is large and the contact surface of the heat insulating spacer that contacts the mold device must be increased, the area can be increased without impairing the heat insulating performance.

また、本発明の成形機の型締装置によれば、上記断熱スペーサを円盤形状または円筒形状とすることで、その加工を容易にし、また、その軸心に貫通孔を形成することで、プラテンに断熱板を取り付けた状態でも軸心部の貫通孔に棒などを突き刺すなどして引っ掛けることでその断熱スペーサの取り外しを容易にすることができる。   Further, according to the mold clamping device of the molding machine of the present invention, the heat insulating spacer is formed into a disk shape or a cylindrical shape, so that the processing is facilitated, and the through hole is formed in the shaft center, whereby the platen Even when the heat insulating plate is attached to the shaft, it is possible to easily remove the heat insulating spacer by hooking a rod or the like into the through hole of the shaft center portion.

本発明の成形機の型締装置を概略的に示し、操作側から観た立面図である。It is the elevation which looked at the mold clamping device of the molding machine of this invention schematically and was seen from the operation side. 図1の固定プラテンと可動プラテンの部分を拡大した一部断面図を含む立面図である。FIG. 2 is an elevational view including a partial cross-sectional view in which portions of a fixed platen and a movable platen in FIG. 1 are enlarged. 図2の固定プラテンのA−A矢視図である(点線は、固定側金型を断熱板上に取り付けた様子を示す。)。It is an AA arrow line view of the fixed platen of FIG. 2 (a dotted line shows a mode that the fixed side metal mold | die was attached on the heat insulation board). 図2の可動プラテンのB−B矢視図である(点線は、可動側金型を断熱板上に取り付けた様子を示す。)。It is a BB arrow line view of the movable platen of FIG. 2 (a dotted line shows a mode that the movable side metal mold | die was attached on the heat insulation board). 図(a)が図3の固定側の断熱スペーサ近辺のC−C断面図を示し(括弧の符合は、可動側に置き換えた場合を示す)、図(b)が図(a)のD−D矢視図を示す。3A is a cross-sectional view taken along the line C-C in the vicinity of the heat insulating spacer on the fixed side in FIG. 3 (the parenthesis indicates the case where it is replaced with the movable side), and FIG. A view on arrow D is shown. 本発明の断熱スペーサの別の実施態様であって、図(a)が、図3の固定側の断熱スペーサ近傍のC−C断面図を示し(括弧の符合は、可動側に置き換えた場合を示す)、図(b)が図(a)のE−E矢視図を示す。FIG. 3A is another embodiment of the heat insulating spacer of the present invention, and FIG. 3A shows a CC cross-sectional view in the vicinity of the heat insulating spacer on the fixed side of FIG. (B) and (b) show the EE arrow view of (a).

本発明の射出成形機の型締装置は、図1ないし図6で示される。図1は、本発明の実施形態における射出成形機の型締装置を概略的に示した操作側から観た立面図である。図2は、図1の固定プラテンと可動プラテンの部分を拡大した一部断面図を含む立面図である。図3は、図2の固定プラテンのA−A矢視図である(点線は、固定側金型を断熱板上に取り付けた様子を示す。)。図4は、図2の可動プラテンのB−B矢視図である(点線は、可動側金型を断熱板上に取り付けた様子を示す。)。図5は、図(a)が図3の固定側の断熱スペーサ近辺のC−C断面図を示し(括弧の符合は、可動側に置き換えた場合を示す)、図(b)が図(a)のD−D矢視図を示す。図6は、本発明の断熱スペーサの別の実施態様であって、図(a)が、図3の固定側の断熱スペーサ近辺のC−C断面図を示し(括弧の符合は、可動側に置き換えた場合を示す)、図(b)が図(a)のE−E矢視図を示す。なお、図1ないし図6において、型締装置の操作側や反操作側の方向を左右方向とし、各図の型締装置の上側や下側の方向を上下方向と言う。   A mold clamping device of an injection molding machine of the present invention is shown in FIGS. FIG. 1 is an elevational view of an injection molding machine according to an embodiment of the present invention as viewed from the operation side, schematically showing a mold clamping device. FIG. 2 is an elevational view including a partial cross-sectional view in which portions of the fixed platen and the movable platen in FIG. 1 are enlarged. FIG. 3 is an AA arrow view of the fixed platen of FIG. 2 (the dotted line shows a state where the fixed mold is attached on the heat insulating plate). FIG. 4 is a BB arrow view of the movable platen of FIG. 2 (dotted lines indicate a state in which the movable mold is attached on the heat insulating plate). 5A is a cross-sectional view taken along the line CC in the vicinity of the heat insulating spacer on the fixed side in FIG. 3 (the parenthesis indicates a case where the bracket is replaced with the movable side), and FIG. ) Shows a DD arrow view. FIG. 6 is another embodiment of the heat insulating spacer of the present invention, and FIG. 6 (a) is a cross-sectional view taken along the line CC in the vicinity of the heat insulating spacer on the fixed side in FIG. (The case where it replaces is shown), FIG.5 (b) shows the EE arrow line view of a figure (a). 1 to 6, the direction of the operation side or the counter-operation side of the mold clamping device is referred to as the left-right direction, and the direction of the upper side or the lower side of the mold clamping device in each drawing is referred to as the up-down direction.

型締装置1は、タイバ10によって連結された固定プラテン11とバックプラテン12と、それらのプラテン間で移動する可動プラテン13、そして、可動プラテン13を固定プラテン11に対して進退させて押圧する駆動装置14を機台2の上に備える。固定プラテン11には、金型装置20の固定側金型20aが取り付けられ、可動プラテン13には、金型装置20の可動側金型20bが取り付けられる。金型装置20の取り付けは、複数個の金型取り付け部材16によって固定プラテン11側または可動プラテン13側に締め付けて固定するようにされる。駆動装置14は、可動プラテン13を可動側金型20bとともに進退させて型開閉し、押圧して型締めする装置であり、例えば油圧駆動あるいは電動油圧駆動の直圧式型締装置やトグル式型締装置などがある。成形材料を可塑化して射出する射出装置3(その全体図は省略)は、型締装置1の固定プラテン11側に配置される。   The mold clamping device 1 includes a fixed platen 11 and a back platen 12 connected by a tie bar 10, a movable platen 13 that moves between the platens, and a drive that moves the movable platen 13 forward and backward relative to the fixed platen 11 and presses it. The device 14 is provided on the machine base 2. The fixed platen 11 is attached with a fixed mold 20 a of the mold apparatus 20, and the movable platen 13 is attached with a movable mold 20 b of the mold apparatus 20. The mold apparatus 20 is attached by being fastened to the fixed platen 11 side or the movable platen 13 side by a plurality of mold attachment members 16. The drive device 14 is a device that opens and closes the movable platen 13 together with the movable mold 20b, opens and closes the mold, and presses and clamps the mold. For example, a hydraulic or electric hydraulic drive direct pressure mold clamping apparatus or a toggle mold clamping is used. There are devices. An injection device 3 (whose overall view is omitted) for plasticizing and injecting a molding material is disposed on the fixed platen 11 side of the mold clamping device 1.

上記の固定プラテン11と可動プラテン13は、向かい合うそれらの金型取り付け面11a、13aが高精度な平行度を維持するように設置される。例えば、固定プラテン11に対して進退する可動プラテン13は、その可動プラテンの四隅に備えるリニアブッシュ18にタイバ10を通すタイプや、図示省略されるが、機台上に備えるリニアガイドにその可動プラテンの下端を載せるタイプがある。それによって、進退する可動プラテン13の真直性を高めて、固定プラテン11と可動プラテン13の間の平行度を維持するようにしている。   The fixed platen 11 and the movable platen 13 are installed so that their mold mounting surfaces 11a and 13a facing each other maintain a highly accurate parallelism. For example, the movable platen 13 that advances and retreats with respect to the fixed platen 11 is a type in which the tie bar 10 is passed through linear bushes 18 provided at the four corners of the movable platen, or a linear guide provided on the machine base. There is a type to put the lower end of. Accordingly, the straightness of the movable platen 13 that advances and retreats is improved, and the parallelism between the fixed platen 11 and the movable platen 13 is maintained.

さらには、図示省略されるが、3つのプラテンがその上下の中心位置で支持部材によって機台上に支持され、固定プラテンと支持プラテンが機台に固定され、可動プラテンがタイバに懸架されることなく機台上のリニアガイドに案内され、そして、それら3つのプラテンがその下端面の中心位置で型開閉方向と直交する横断方向への位置ずれを規制する基準部材と嵌合されるようにしたタイプがある。それによって、それら3つのプラテン及びその周囲の温度が変化しても、それらプラテン自体で生じる熱伸びがそれらの中心位置を基準に上下左右に対称に伸びて、固定プラテンと可動プラテンの間の中心位置と平行度を鉛直方向にも横断方向にも狂わせないようにするものもある。   Furthermore, although not shown in the figure, the three platens are supported on the machine base by the support members at the upper and lower center positions, the fixed platen and the support platen are fixed to the machine base, and the movable platen is suspended on the tie bar. The guide plate is guided by the linear guide on the machine base, and the three platens are fitted with a reference member that regulates the displacement in the transverse direction perpendicular to the mold opening / closing direction at the center position of the lower end surface. There are types. As a result, even if the temperature of the three platens and the surroundings changes, the thermal elongation generated in the platens themselves extends symmetrically up and down and left and right with respect to the center position, and the center between the fixed platen and the movable platen. Some do not upset the position and parallelism both vertically and transversely.

なお、固定プラテン11には、その中心位置に金型装置20のロケートリング21をはめ込むとともに、射出装置3の射出ノズル3aを通すための孔11bが形成されている。また、可動プラテン13には、その中心位置あるいは所定位置に突き出し装置(図示省略)のエジェクタロッド17を通す孔13bが形成されている。そして、固定プラテン11と可動プラテン13には、後述する断熱板30を固定するためのねじ32aや、後述する金型取り付け部材などの締め付けボルト16cのためのねじ穴を備えている。   The fixed platen 11 is formed with a hole 11b through which the locating ring 21 of the mold apparatus 20 is fitted and the injection nozzle 3a of the injection apparatus 3 is inserted at the center position thereof. In addition, the movable platen 13 is formed with a hole 13b through which an ejector rod 17 of a protruding device (not shown) is passed at the center position or a predetermined position. The fixed platen 11 and the movable platen 13 are provided with screws 32a for fixing a heat insulating plate 30 to be described later and screw holes for tightening bolts 16c such as a mold mounting member to be described later.

固定側金型20aと可動側金型20bは、そのような固定プラテン11と可動プラテン13に、それぞれ断熱板30を介して取り付けられる。その金型装置20には、金型装置20自体の温度を設定温度に維持するための温度調節用の配管(図示省略)を備えている。その配管には、外部の温度調節器から延びる配管(図示省略)が接続され、温度調節された水や油などの熱媒体を循環させるようになっている。22aは、固定側金型20aの固定プラテン11側に備える固定側取り付け板である。22bは、可動側金型20bの可動プラテン13側に備える可動側取り付け板である。もちろん、固定側金型20aと可動側金型20bは、プラテン側の面23a、23bやパーティング面の平行度が高い精度で形成されている。   The fixed side mold 20a and the movable side mold 20b are attached to the fixed platen 11 and the movable platen 13 through the heat insulating plates 30, respectively. The mold apparatus 20 includes a temperature adjustment pipe (not shown) for maintaining the temperature of the mold apparatus 20 itself at a set temperature. A piping (not shown) extending from an external temperature controller is connected to the piping, and a heat medium such as water or oil whose temperature is adjusted is circulated. 22a is a fixed-side mounting plate provided on the fixed platen 11 side of the fixed-side mold 20a. Reference numeral 22b denotes a movable side mounting plate provided on the movable platen 13 side of the movable side mold 20b. Of course, the fixed mold 20a and the movable mold 20b are formed with high accuracy in parallelism of the platen-side surfaces 23a and 23b and the parting surfaces.

固定側金型20aおよび可動側金型20bは、固定側取り付け板22aおよび可動側取り付け板22bの周縁部の複数箇所を締め付けるように、複数の金型取り付け部材16を使用して取り付けられる。その金型取り付け部材16には、例えば、マツバ材16aとカマシ材16bと締め付けボルト16cからなる装置がある。マツバ材16aは、板状または2本の平行した角棒からなるもので、その真ん中に締め付けボルト16cを通す孔または空間を有する。カマシ材16bは、その厚み寸法が固定側取り付け板22aおよび可動側取り付け板22bの厚み寸法と同じ寸法に形成された部材である。それで、その装置は、マツバ材16aの一端が固定側取り付け板22aまたは可動側取り付け板22bを押さえ、他端がカマシ材16bを押さえた状態で、プラテン11、13に対してマツバ材16aを締め付けボルト16cで締め付けることで金型装置20を固定する。   The fixed side mold 20a and the movable side mold 20b are attached by using a plurality of mold attachment members 16 so as to tighten a plurality of locations on the peripheral portions of the fixed side attachment plate 22a and the movable side attachment plate 22b. The mold mounting member 16 includes, for example, a device composed of a pine bark 16a, a plaster member 16b, and a fastening bolt 16c. The Matsuba material 16a is formed of a plate or two parallel square bars, and has a hole or space through which the fastening bolt 16c is passed in the middle. The plaster material 16b is a member having a thickness dimension that is the same as the thickness dimension of the fixed side mounting plate 22a and the movable side mounting plate 22b. Therefore, the device tightens the matba material 16a against the platens 11 and 13 with one end of the matba material 16a pressing the fixed side mounting plate 22a or the movable side mounting plate 22b and the other end pressing the plaster material 16b. The mold apparatus 20 is fixed by tightening with the bolt 16c.

ここからは、本発明の特有の構成が説明される。本発明では、成形機の型締装置1において、後述する断熱スペーサ40を備える断熱板30を固定プラテン11および可動プラテン13に取り付けて、その断熱板30の上から金型装置20が取り付けられる。断熱板30には、断熱スペーサ40が挿嵌される断熱スペーサ用の貫通孔31と、断熱板30自身をプラテン11、13に固定するねじ32aを通すための断熱板取り付け用の貫通孔32と、金型取り付け部材16の締め付けボルト16cを通すための金型取り付け部材用の貫通孔33とを、それぞれ所定位置に所定個数が形成される。それに加えて、固定側に取り付けられる断熱板30aには、その中心位置に固定側金型20aのロケートリング21をはめ込むとともに、射出装置3の射出ノズル3aを通すためのロケートリング用の貫通孔34が形成される。また、可動側に取り付けられる断熱板30bには、その中心位置または所定位置に突き出し装置(図示省略)のエジェクタロッド17を通すエジェクタロッド用の貫通孔35が形成されている。   From here, the specific configuration of the present invention will be described. In the present invention, in the mold clamping device 1 of the molding machine, a heat insulating plate 30 including a heat insulating spacer 40 described later is attached to the fixed platen 11 and the movable platen 13, and the mold device 20 is attached from above the heat insulating plate 30. The heat insulating plate 30 includes a heat insulating spacer through hole 31 into which the heat insulating spacer 40 is inserted, and a heat insulating plate mounting through hole 32 for passing the screw 32a for fixing the heat insulating plate 30 to the platens 11 and 13. A predetermined number of through holes 33 for mold attachment members for passing the fastening bolts 16c of the mold attachment member 16 are formed at predetermined positions. In addition, the locating ring 21 of the fixed mold 20a is fitted at the center of the heat insulating plate 30a attached to the fixed side, and the locating ring through-hole 34 for passing the injection nozzle 3a of the injection device 3 is inserted. Is formed. Further, the heat insulating plate 30b attached to the movable side is formed with a through hole 35 for an ejector rod through which the ejector rod 17 of a protruding device (not shown) passes at the center position or a predetermined position.

断熱板30は、その上側と下側と操作側と反操作側のそれぞれ1カ所をねじ止めされて固定プラテン11と可動プラテン13に取り付けられている。その断熱板30には、金型装置20が面する領域36内に複数の断熱スペーサ用の貫通孔31が形成されて、その孔31に断熱スペーサ40が貫通するように挿嵌される。図5のように、断熱スペーサ40は、その厚み寸法dが断熱板30(固定側が30a、可動側が30b)の厚み寸法dより大きく(d>d)形成されていて、プラテン11、13に当接するまで挿嵌されても断熱板30の金型装置20側の表面から突き出している。その断熱スペーサの厚み寸法dは、断熱板の厚み寸法dに対して0.1(mm)ないし0.5(mm)大きいと良い。そして、金型装置20が、その金型装置の固定側および可動側取り付け板22a、22bに対して、操作側の上側と下側および反操作側の上側と下側を、金型取り付け部材16で締め付けられて断熱板30の上から固定プラテン11と可動プラテン13に取り付けられる。その際、その断熱スペーサ40が金型取り付け部材16の締め付け力によって圧縮される圧縮量Δdは、金型装置を取り付ける前において、その断熱スペーサ40が断熱板30から突き出している量(=d−d)に比べて小さい(Δd<(d−d))。そして、その圧縮量Δdは、数μm程度にされると良い。そのため、その断熱スペーサ40は、ヤング率の大きい材質で形成される。 The heat insulating plate 30 is attached to the fixed platen 11 and the movable platen 13 by screwing one place on each of the upper side, the lower side, the operation side, and the counter-operation side. A plurality of through holes 31 for heat insulating spacers are formed in the heat insulating plate 30 in a region 36 facing the mold apparatus 20, and the heat insulating spacers 40 are inserted and inserted into the holes 31. As shown in FIG. 5, the heat insulating spacer 40 has a thickness dimension d s larger than the thickness dimension d d of the heat insulating plate 30 (the fixed side is 30a and the movable side is 30b) (d s > d d ), and the platen 11 , 13 protrudes from the surface of the heat insulating plate 30 on the mold device 20 side until it is fitted. The thickness dimension d s of the heat insulating spacer is preferably 0.1 (mm) to 0.5 (mm) larger than the thickness dimension d d of the heat insulating plate. Then, the mold apparatus 20 is configured such that the upper and lower sides on the operation side and the upper and lower sides on the opposite side of the mold side are fixed to the fixed side and movable side attachment plates 22a and 22b of the mold apparatus. And is attached to the fixed platen 11 and the movable platen 13 from above the heat insulating plate 30. At that time, the compression amount [Delta] d s of the insulating spacer 40 is compressed by the clamping force of the mold mounting member 16, the amount before mounting the mold apparatus, in which the insulating spacer 40 is protruded from the insulating plate 30 (= d s -d d) smaller than that of the (Δd s <(d s -d d)). Then, the compression amount [Delta] d s is may be in the order of several [mu] m. Therefore, the heat insulating spacer 40 is made of a material having a large Young's modulus.

それによって金型装置20は、断熱板30の上から固定側と可動側のプラテン11、13に取り付けても、その断熱スペーサ40にのみ当接されて、断熱板30自体に当接されない。断熱スペーサ40は、ガラス繊維などを主基材とする断熱板に比べてその圧縮量Δdが小さくされて、金型装置20の取り付け時に生じる固定側金型20aと可動側金型20bの間の平行度の狂いを防止して、その平行度を精度良く維持できる。 As a result, even if the mold apparatus 20 is attached to the fixed and movable platens 11 and 13 from above the heat insulating plate 30, it is brought into contact only with the heat insulating spacer 40 and not with the heat insulating plate 30 itself. Insulating spacer 40, the glass fibers and the like by the compressed amount [Delta] d s in comparison with the heat insulating plate as a main base material is small, while the fixed mold 20a and a movable mold 20b which occurs during the mounting of the mold apparatus 20 It is possible to prevent the deviation of the parallelism and maintain the parallelism with high accuracy.

また、ヤング率の大きい材質で形成される断熱スペーサ30は、固定側金型20aに当接するすべての断熱スペーサ40の当接面41の合計した面積、または、可動側金型20bに当接するすべての断熱スペーサ40の当接面41の合計した面積を、それら金型装置20の断熱板側の面の面積に比べて小さくできる。したがって、例えば、従来のように固定側金型20aのロケートリング21を除く固定プラテン11側の面23a全体(その面積S)を、熱伝導率の小さいガラス繊維などを主基材とした断熱板で当接するようにして断熱したときの断熱効果と比較して、その固定プラテン11側の面23aの所定箇所だけを、従来に比べ熱伝導率の大きい材質でできた複数の断熱スペーサ40のみで当接するようにして断熱したときの断熱効果は、その金型20aに当接する断熱スペーサ30の当接面41(1個当たりのその当接面の面積S)の合計した面積Sを小さくすることで同等以上に調整することが可能となる。また、断熱スペーサ40の材質が高価な場合でも、金型装置20の断熱板30に面する面をすべて覆う必要がないので、価格を低く抑えることができる。 Further, the heat insulating spacer 30 formed of a material having a large Young's modulus is the total area of the contact surfaces 41 of all the heat insulating spacers 40 that contact the fixed-side mold 20a, or all that contacts the movable-side mold 20b. The total area of the contact surfaces 41 of the heat insulating spacers 40 can be made smaller than the area of the surface of the mold apparatus 20 on the heat insulating plate side. Therefore, for example, the entire surface 23a (the area S d ) on the fixed platen 11 side excluding the locating ring 21 of the fixed mold 20a as in the prior art is insulated with glass fiber having a low thermal conductivity as a main base material. Compared with the heat insulation effect when heat insulation is performed by abutting with a plate, only a plurality of heat insulating spacers 40 made of a material having a higher thermal conductivity than conventional ones are provided only on a predetermined portion of the surface 23a on the fixed platen 11 side. The heat insulation effect when the heat insulation is performed by making contact with each other is obtained by adding the total area S a of the contact surfaces 41 of the heat insulation spacers 30 that contact the mold 20a (the area S s of the contact surface per one). By making it smaller, it becomes possible to adjust to the same or higher. Even if the material of the heat insulating spacer 40 is expensive, it is not necessary to cover the entire surface of the mold apparatus 20 facing the heat insulating plate 30, so that the price can be kept low.

また、断熱スペーサ40が金型装置20に当接する位置は、断熱板30の金型装置20が面する領域36内にあけられた断熱スペーサ用の貫通孔31に挿嵌されることで決定される。その貫通孔31の位置は、その断熱板30の板面上の金型装置20が面する領域36内であって、その板面上の中心点37を通る上下方向と左右方向の直線に対して線対称の位置にそれぞれ形成される。これは、金型の取り付け時や型締時において、金型装置20が受ける圧力が上側と下側で均等、そして、右側(操作側)と左側(反操作側)で均等にするためである。また、その位置は、少なくとも金型装置20が金型取り付け部材16によって締め付けられる位置あるいはその近傍の位置にあると良い。これは、断熱スペーサ40と金型取り付け部材16の位置によって、断熱スペーサ40の当接位置を頂点として、金型が湾曲するようなことを防止するためである。また、その位置は、金型装置20内のその軸心方向に延びる樹脂流路に対して、その延長線上の位置にあっても良い。   Further, the position where the heat insulating spacer 40 abuts on the mold device 20 is determined by being inserted into the through hole 31 for the heat insulating spacer formed in the region 36 of the heat insulating plate 30 facing the mold device 20. The The position of the through hole 31 is in a region 36 facing the mold apparatus 20 on the plate surface of the heat insulating plate 30, and with respect to the vertical and horizontal lines passing through the center point 37 on the plate surface. Are formed at line-symmetric positions. This is because the pressure applied to the mold apparatus 20 is equal on the upper side and the lower side when the mold is attached or clamped, and is equalized on the right side (operation side) and the left side (counter operation side). . The position is preferably at least a position where the mold apparatus 20 is fastened by the mold mounting member 16 or a position in the vicinity thereof. This is to prevent the mold from being bent with the contact position of the heat insulating spacer 40 as the apex depending on the positions of the heat insulating spacer 40 and the mold mounting member 16. Further, the position may be at a position on the extension line with respect to the resin flow path extending in the axial direction in the mold apparatus 20.

また、断熱スペーサ40用の貫通孔31が、前もって断熱スペーサ40の個数より多く形成されて、断熱スペーサ40を抜き差しして、その位置を変更できるようにしても良い。断熱スペーサ40の抜き差しには、図6のように断熱スペーサ40の軸心に引っ掛け孔42を形成すると良い。なお、断熱板30は、金型取り付け部材16を使用でき、各種貫通孔を形成でき、金型装置20からの輻射熱を断熱できればいかなる材質でも構わない。例えば、断熱板30には、従来のガラス繊維などを主基材とする断熱板が使われても良い。   Further, the number of through holes 31 for the heat insulating spacer 40 may be formed in advance more than the number of the heat insulating spacers 40 so that the position of the heat insulating spacer 40 can be changed by inserting and removing it. In order to insert and remove the heat insulating spacer 40, a hook hole 42 is preferably formed in the axial center of the heat insulating spacer 40 as shown in FIG. The heat insulating plate 30 may be made of any material as long as the mold mounting member 16 can be used, various through holes can be formed, and the radiant heat from the mold apparatus 20 can be insulated. For example, the heat insulating plate 30 may be a conventional heat insulating plate mainly made of glass fiber or the like.

以下、金型装置20の固定側金型20aを例に、さらに詳しく説明される。固定側金型20aに備える固定側取り付け板22aは、固定側断熱板30a側の面23aが1辺L=L=170(mm)であって、その面23aの中心にロケートリング21を備える。固定側の断熱板30aには、ロケートリング21をはめ込むための内径寸法R=42(mm)の貫通孔34があいている。従来は、そのロケートリング21部分を除いた固定側取り付け板22aの固定側断熱板30a側の面23aが、その断熱板30aに当接されていた。その当接した面積Sは、
=L・L−π・(R/2)=約27515(mm
とされる。ちなみに、従来の断熱板には、熱伝導率λ=約0.3(W/(m・k))のガラス繊維などを主基材するものであって、厚み寸法d=10(mm)を想定する。
Hereinafter, the fixed side mold 20a of the mold apparatus 20 will be described in more detail as an example. The fixed-side mounting plate 22a provided in the fixed-side mold 20a has a surface 23a on the fixed-side heat insulating plate 30a side having one side L x = L y = 170 (mm), and the locating ring 21 is provided at the center of the surface 23a. Prepare. A through hole 34 having an inner diameter R r = 42 (mm) for fitting the locating ring 21 is formed in the heat insulating plate 30a on the fixed side. Conventionally, the surface 23a on the fixed side heat insulating plate 30a side of the fixed side mounting plate 22a excluding the portion of the locating ring 21 is in contact with the heat insulating plate 30a. The contact area S d is
S d = L x · L y -π · (R r / 2) 2 = about 27515 (mm 2)
It is said. Incidentally, the conventional heat insulating plate is mainly made of glass fiber having a thermal conductivity λ d = about 0.3 (W / (m · k)), and has a thickness dimension d d = 10 (mm ) Is assumed.

本発明では、従来の断熱板にかえて、断熱板の本体に断熱スペーサ40を挿嵌させた断熱板30を用いる。断熱板30は、上記従来のガラス繊維などを主基材とするもので、厚み寸法d=10mmとする。その断熱板30の本体は、金型装置20と当接しないが、断熱スペーサ40を所定箇所に設置し、金型装置20からの輻射熱を防止するために必要である。なお、断熱板30本体の材質については、ガラス繊維などを主基材とするものに限定されない。 In the present invention, a heat insulating plate 30 in which a heat insulating spacer 40 is inserted into the main body of the heat insulating plate is used instead of the conventional heat insulating plate. The heat insulating plate 30 uses the above-described conventional glass fiber or the like as a main base material, and has a thickness dimension d d = 10 mm. The main body of the heat insulating plate 30 does not come into contact with the mold apparatus 20, but is necessary to install the heat insulating spacer 40 at a predetermined location and prevent radiant heat from the mold apparatus 20. In addition, about the material of the heat insulation board 30 main body, it is not limited to what uses glass fiber etc. as a main base material.

実際に固定側金型20aに当接される断熱スペーサ40は、セラミックスのうちの熱伝導率λ=約3(W/(m・k))であるジルコニアからなり、厚み寸法d=10.1(mm)の円盤形状または円筒形状のものがn=8個用意される。そのジルコニアは、ヤング率(E=206(GPa))が高く、また、セラミックスの中でも熱伝導率が低い材質である。しかし、ジルコニアの熱伝導率λは、従来の断熱板の熱伝導率λに比べて約10倍ある。そのため、従来の断熱板の断熱効果をジルコニアからなる断熱スペーサ40で実現するためには、本実施例では従来の断熱板と断熱スペーサ40の厚み寸法の差が0.1(mm)程度違うだけなので、断熱スペーサ40が固定側金型20aと当接する面積の合計面積Sを、従来の断熱板が固定側金型20aと当接する面積Sの約10分の1にすれば良い。そのため、すべての断熱スペーサ40が固定側金型20aと当接する面積の合計面積Sが、
=S・(d/d)・(λ/λ)=約2779(mm
とされる。したがって、本実施例では、固定側の断熱スペーサ40がn=8個の場合、その断熱スペーサ40の1個あたりの固定側金型20aと当接する面41の面積Sが、
=S/n=約347(mm
とされる。ここで、本実施例の断熱スペーサ40は、円盤形状または円筒形状に形成されるので、その外径寸法Rは、
=2・{√(347/π)}=約20(mm)
とされる。そして、断熱板30aに形成される断熱スペーサ用の貫通孔31の内径寸法は、外形寸法Rの断熱スペーサ40が挿入され嵌め込まれるとともに抜き取ることもできる寸法に形成されると良い。
The heat insulating spacer 40 actually in contact with the fixed mold 20a is made of zirconia having a thermal conductivity λ s = about 3 (W / (m · k)) of ceramics, and has a thickness dimension d s = 10. N = 8 discs or cylinders of 1 (mm) are prepared. The zirconia is a material having a high Young's modulus (E s = 206 (GPa)) and a low thermal conductivity among ceramics. However, the thermal conductivity λ s of zirconia is about 10 times that of the conventional thermal insulation plate λ d . Therefore, in order to realize the heat insulating effect of the conventional heat insulating plate with the heat insulating spacer 40 made of zirconia, in this embodiment, the difference in the thickness dimension between the conventional heat insulating plate and the heat insulating spacer 40 is different by about 0.1 (mm). so, insulating spacer 40 is a total area S a of the area in contact with the fixed mold 20a, conventional insulation plate may be about one tenth of the fixed die 20a abutting area S d. Therefore, the total area S a of the area of all insulating spacer 40 abuts the stationary mold half 20a is,
S a = S d · (d s / d d ) · (λ d / λ s ) = about 2779 (mm 2 )
It is said. Therefore, in this embodiment, when the number of the fixed-side heat insulating spacers 40 is n = 8, the area S s of the surface 41 in contact with the fixed-side mold 20a per one of the heat insulating spacers 40 is
S s = S a / n = about 347 (mm 2 )
It is said. Here, since the heat insulating spacer 40 of the present embodiment is formed in a disk shape or a cylindrical shape, the outer diameter R s thereof is
R s = 2 · {√ (347 / π)} = about 20 (mm)
It is said. The inner diameter of the through hole 31 for the heat insulating spacer formed in the heat insulating plate 30a is preferably formed such that the heat insulating spacer 40 having the outer dimension R s can be inserted and fitted and extracted.

上記では、まず熱伝導率をもとにして断熱スペーサ40の各寸法を計算で求めた。つぎに、その断熱スペーサ40が、金型取り付け部材16による締め付け力を負荷されてどれだけ圧縮されるかを確認し、各寸法が妥当であるか確認する。なお、円盤形状の断熱スペーサ40は、その厚み寸法d=10.1(mm)、その外径R=20(mm)として、その1個あたりの固定側金型20aに当接する面の面積Sは、
=π・(R/2)=314(mm
とする。そして、固定側には、n=8個の断熱スペーサ40が使用される。
In the above, first, each dimension of the heat insulating spacer 40 was obtained by calculation based on the thermal conductivity. Next, it is confirmed how much the heat insulating spacer 40 is compressed by being loaded with the clamping force of the mold mounting member 16 and whether each dimension is appropriate. In addition, the disk-shaped heat insulating spacer 40 has a thickness dimension d s = 10.1 (mm) and an outer diameter R s = 20 (mm). The area S s is
S s = π · (R s / 2) 2 = 314 (mm 2 )
And And n = 8 heat insulating spacers 40 are used on the fixed side.

固定側金型20aは、その金型の固定プラテン11側に備える固定側取り付け板22aの周縁部を複数個の金型取り付け部材16で断熱板30aの上から固定プラテンに対して締め付けるようにして型締装置1に取り付けられる。実施例では、その固定側取り付け板22aを、型締装置1の操作側および半操作側に対して上下2個の合計m=4個の金型取り付け部材16で締め付けることで断熱板30aの上から取り付けられる。1個の金型取り付け部材16は、締め付けボルト16cとして、M10のボルトが1本使用されるとする。そのボルト16cは、2.4系列、外径R=10(mm)、基本トルク(締め付けトルク)T=59(N・m)である。トルク係数k=0.2とすると、ボルト1本当たりのボルト軸力Nは、
N=T/(R・k)=29.5(kN)
となる。そして、m=4個の金型取り付け部材16を使用するので、4本のボルト軸力を合計したボルト軸力Nは、
=m・N=118(kN)
となる。
したがって、1個当たりの断熱スペーサが受ける締め付け力Pは、
=N/(n・S)=約47(MPa)
となる。本実施例の断熱スペーサ40は、セラミックスの中のジルコニアで形成されているので、前述のとおりそのヤング率E=206GPaである。それより、断熱スペーサの歪み率εは、
ε=P/E=約0.00023
となる。
したがって、断熱スペーサの厚み寸法に対する圧縮量Δdは、
Δd=ε・d=2.3(μm)
となる。ちなみに、圧縮量Δd=5(μm)にするには、締め付けボルト16cの1本当たりの締め付けトルクT=129(N・m)のとき、つまりは基本トルクの略2倍のときとなる。
The fixed-side mold 20a is configured such that the peripheral edge portion of the fixed-side mounting plate 22a provided on the fixed platen 11 side of the mold is fastened to the fixed platen from the top of the heat insulating plate 30a with a plurality of mold mounting members 16. It is attached to the mold clamping device 1. In the embodiment, the fixed-side mounting plate 22a is clamped with a total of m = 4 mold mounting members 16 on the upper and lower sides of the operation side and the half-operation side of the mold clamping device 1 so that the upper side of the heat insulating plate 30a. It is attached from. One mold mounting member 16 is assumed to use one M10 bolt as the fastening bolt 16c. The bolt 16c has a 2.4 series, an outer diameter R = 10 (mm), and a basic torque (tightening torque) T = 59 (N · m). When the torque coefficient k = 0.2, the bolt axial force N per bolt is
N = T / (R · k) = 29.5 (kN)
It becomes. Then, because it uses m = 4 pieces of the mold mounting member 16, a bolt axial force N a which is the sum of the bolt axial force of four is
N a = m · N = 118 (kN)
It becomes.
Accordingly, the tightening force P c received by each heat insulating spacer is:
P c = N a / (n · S s ) = about 47 (MPa)
It becomes. Since the heat insulating spacer 40 of this embodiment is formed of zirconia in ceramics, its Young's modulus E s = 206 GPa as described above. From that, the strain rate ε s of the heat insulating spacer is
ε s = P c / E s = about 0.00023
It becomes.
Therefore, the compression amount [Delta] d s to the thickness dimension of the insulating spacer,
Δd s = ε s · d s = 2.3 (μm)
It becomes. Incidentally, the compression amount Δd s = 5 (μm) is when the tightening torque T = 129 (N · m) per tightening bolt 16c, that is, approximately twice the basic torque.

断熱スペーサ40は、金型取り付け部材16による締め付け力以外にも、型締装置による型締力を負荷される。本実施例では、成形する成形品やその金型装置20の大きさなどから、型締装置1の最大型締力P=98(kN)とした。最大型締力Pが負荷された際に、1本当たりの断熱スペーサ40が受ける圧力Pは、
=P/(n・S)=39(MPa)
となる。
その際の断熱スペーサの歪み率εは、
ε=P/E=約0.00019
となる。
したがって、断熱スペーサの厚み寸法に対する圧縮量Δdは、
Δd=ε・d=1.9(μm)
となる。最大型締力Pを負荷しても断熱スペーサ40の圧縮量は、小さいものとなる。
The heat insulating spacer 40 is loaded with a clamping force by a clamping device in addition to the clamping force by the mold mounting member 16. In this embodiment, the maximum clamping force P p of the mold clamping device 1 is set to 98 (kN) based on the molded product to be molded and the size of the mold device 20 thereof. When the maximum mold clamping force P p is applied, the pressure P s received by one heat insulating spacer 40 is
P s = P p / (n · S s ) = 39 (MPa)
It becomes.
The strain rate ε s of the heat insulating spacer at that time is
ε s = P s / E s = about 0.00019
It becomes.
Therefore, the compression amount [Delta] d s to the thickness dimension of the insulating spacer,
Δd s = ε s · d s = 1.9 (μm)
It becomes. Even when the maximum mold clamping force P p is applied, the compression amount of the heat insulating spacer 40 is small.

ここまで固定側金型20aおよび固定側の断熱板30aを例に説明してきたが可動側金型20bおよび可動側の断熱板30bに関しても同じである。可動側金型20bの場合には、エジェクタロッド17が通る貫通孔35の部分が、可動側金型20bと断熱板30bの当接されない箇所となる。通常は、固定側と可動側ともに同じ個数、同じ形状、そして、同じ寸法の断熱スペーサ40を同じ位置に使用しても構わない。しかし、それに限定されるものでなく、固定側と可動側で、断熱スペーサ40の形状、寸法、個数を違えても良いし、金型に当接する位置を違えても良い。また、固定側と可動側の両側に断熱スペーサ40を備える断熱板30を取り付けるように説明してきたが、固定側または可動側のどちらか一方でも構わない。なお、実施例では、円盤形状または円筒形状の断熱スペーサ40で説明したが、その形状は必要に応じた形状に形成されれば良い。   So far, the fixed-side mold 20a and the fixed-side heat insulating plate 30a have been described as examples, but the same applies to the movable-side mold 20b and the movable-side heat insulating plate 30b. In the case of the movable side mold 20b, the portion of the through hole 35 through which the ejector rod 17 passes is a place where the movable side mold 20b and the heat insulating plate 30b are not in contact with each other. Usually, the same number, the same shape, and the same size of the heat insulating spacers 40 on the fixed side and the movable side may be used at the same position. However, the present invention is not limited to this, and the shape, size, and number of the heat insulating spacers 40 may be different between the fixed side and the movable side, and the positions that contact the mold may be different. Moreover, although it demonstrated so that the heat insulation board 30 provided with the heat insulation spacer 40 could be attached to both the fixed side and the movable side, either one of the fixed side or the movable side may be used. In the embodiment, the disk-shaped or cylindrical heat insulating spacer 40 has been described. However, the shape may be formed as necessary.

上記のように金型装置20が断熱スペーサ40を備えた断熱板30の上から、金型取り付け部材16を使ってプラテン11、13に固定されても、断熱スペーサ40の圧縮量Δdは、数μmに押さえられる。そのため、従来のように、金型装置20を取り付ける際に、断熱板30が圧縮されて、固定側金型20aと可動側金型20bの間の平行度が狂うのを抑えて、その平行度を高精度に維持することができる。そのうえ、断熱効果は、従来の断熱板による効果と同等であり、加温された金型装置20から伝わる熱がプラテン11、13に伝導するのを十分に抑えて、プラテン11、13などの型締装置1の歪みを抑えることができる。 From the top of the heat insulating plate 30 the mold apparatus 20 is provided with a heat insulating spacer 40, as described above, be secured to the platen 11 and 13 with the mold mounting member 16, the compression amount [Delta] d s of the heat insulating spacer 40, Pressed to several μm. Therefore, as in the prior art, when the mold apparatus 20 is attached, the heat insulating plate 30 is compressed, and the parallelism between the fixed mold 20a and the movable mold 20b is prevented from being distorted. Can be maintained with high accuracy. In addition, the heat insulating effect is equivalent to the effect of the conventional heat insulating plate, and the heat transmitted from the heated mold apparatus 20 is sufficiently suppressed to be transmitted to the platens 11 and 13, so that the molds such as the platens 11 and 13 are used. The distortion of the fastening device 1 can be suppressed.

1 型締装置
11 固定プラテン
13 可動プラテン
16 金型取り付け部材
20a 固定側金型
20b 可動側金型
22a 固定側取り付け板
22b 可動側取り付け板
30 断熱板
30a 固定側の断熱板
30b 可動側の断熱板
31 断熱板の断熱スペーサ用の貫通孔
33 断熱板の金型取り付け部材用の貫通孔
34 固定側の断熱板のロケートリング用の貫通孔
35 可動側の断熱板のエジェクタロッド用の貫通孔
36 断熱板の金型装置が面する領域
40 断熱スペーサ
41 断熱スペーサの金型装置に当接する面
42 断熱スペーサの引っ掛け孔
断熱スペーサの外形寸法
断熱スペーサの厚み寸法
断熱板の厚み寸法
DESCRIPTION OF SYMBOLS 1 Clamping apparatus 11 Fixed platen 13 Movable platen 16 Mold attachment member 20a Fixed side mold 20b Movable side mold 22a Fixed side mounting plate 22b Movable side mounting plate 30 Heat insulating plate 30a Fixed side heat insulating plate 30b Movable side heat insulating plate 31 Through hole for heat insulating spacer of heat insulating plate 33 Through hole for die mounting member of heat insulating plate Through hole 35 for locate ring of fixed heat insulating plate Through hole 36 for ejector rod of movable heat insulating plate Region 40 of the plate facing the mold apparatus Heat insulating spacer 41 Surface of the heat insulating spacer contacting the mold apparatus 42 Hook hole R of the heat insulating spacer s External dimension d of the heat insulating spacer d s Thickness dimension of the heat insulating spacer d dd thickness dimension of the heat insulating plate

Claims (4)

タイバによって連結された固定プラテンおよび支持プラテンと、それらのプラテン間で移動する可動プラテンとを含み、その固定プラテンに取り付けられた断熱板のその上から固定側金型が取り付けられ、その可動プラテンに取り付けられた断熱板のその上から可動側金型が取り付けられ、その金型の取り付けの際に、その固定側金型とその可動側金型が金型取り付け部材によって締め付けられるようにして固定される成形機の型締装置において、
ヤング率の大きい材質で形成されるとともに前記断熱板の厚み寸法よりも大きい厚み寸法に形成された断熱スペーサが、その断熱板をその厚み方向に貫通する複数の断熱スペーサ用の貫通孔に挿嵌され、
その断熱スペーサ用の貫通孔が、その断熱板の板面上の前記金型が面する領域内であって、その領域の中心点を通る上下方向と左右方向の直線に対して線対称の位置にそれぞれ形成されることを特徴とする成形機の型締装置。
A fixed platen and a support platen connected by a tie bar, and a movable platen that moves between the platens, and a fixed mold is attached to the movable platen from above the heat insulating plate attached to the fixed platen. A movable mold is attached from above the attached heat insulating plate, and when the mold is attached, the fixed mold and the movable mold are fixed so that they are clamped by a mold attachment member. In the mold clamping device of the molding machine
A heat insulating spacer formed of a material having a large Young's modulus and having a thickness larger than the thickness of the heat insulating plate is inserted into through holes for a plurality of heat insulating spacers that penetrate the heat insulating plate in the thickness direction. And
The through-hole for the heat insulating spacer is in a region on the plate surface of the heat insulating plate facing the mold, and is symmetrical with respect to the vertical and horizontal straight lines passing through the center point of the region. A mold clamping device for a molding machine, wherein the mold clamping device is formed respectively.
前記断熱スペーサの材質が、セラミックスであることを特徴とする請求項1記載の成形機の型締装置。   2. The mold clamping apparatus for a molding machine according to claim 1, wherein a material of the heat insulating spacer is ceramic. 前記断熱スペーサの材質が、セラミックスのうちのジルコニアであることを特徴とする請求項2記載の成形機の型締装置。   The mold clamping device for a molding machine according to claim 2, wherein the material of the heat insulating spacer is zirconia of ceramics. 前記断熱スペーサが、円盤形状または円筒形状であって、その軸心に引っ掛け孔となる貫通孔を有することを特徴とする請求項1ないし請求項3記載の成形機の型締装置。   4. The mold clamping apparatus for a molding machine according to claim 1, wherein the heat insulating spacer has a disk shape or a cylindrical shape, and has a through hole serving as a hook hole at an axis thereof.
JP2009158446A 2009-07-03 2009-07-03 Molding device clamping machine Active JP5592086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158446A JP5592086B2 (en) 2009-07-03 2009-07-03 Molding device clamping machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158446A JP5592086B2 (en) 2009-07-03 2009-07-03 Molding device clamping machine

Publications (3)

Publication Number Publication Date
JP2011011483A true JP2011011483A (en) 2011-01-20
JP2011011483A5 JP2011011483A5 (en) 2012-07-26
JP5592086B2 JP5592086B2 (en) 2014-09-17

Family

ID=43590812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158446A Active JP5592086B2 (en) 2009-07-03 2009-07-03 Molding device clamping machine

Country Status (1)

Country Link
JP (1) JP5592086B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982789A1 (en) * 2011-11-22 2013-05-24 Sidel Participations Thermal insulation device for heat resistance mold intended for molding hot parts of installation, has studs formed of insulating material of high resistance to compression and for spacing two parts apart so as to place space between parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086539U (en) * 1983-11-22 1985-06-14 日新工機株式会社 Heat-resistant and compression-resistant insulation material
JPH01297221A (en) * 1988-05-26 1989-11-30 Kyocera Corp Resin molding equipment
JPH07164538A (en) * 1993-12-16 1995-06-27 Ricoh Co Ltd Plastic molding device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086539U (en) * 1983-11-22 1985-06-14 日新工機株式会社 Heat-resistant and compression-resistant insulation material
JPH01297221A (en) * 1988-05-26 1989-11-30 Kyocera Corp Resin molding equipment
JPH07164538A (en) * 1993-12-16 1995-06-27 Ricoh Co Ltd Plastic molding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982789A1 (en) * 2011-11-22 2013-05-24 Sidel Participations Thermal insulation device for heat resistance mold intended for molding hot parts of installation, has studs formed of insulating material of high resistance to compression and for spacing two parts apart so as to place space between parts

Also Published As

Publication number Publication date
JP5592086B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP4169354B2 (en) Molding device for injection molding machine
US10315346B2 (en) Injection molding machine
JP4169353B2 (en) Molding device for injection molding machine
JP2010089295A (en) Horizontal mold clamping device for injection molding machine
JP5276953B2 (en) Clamping device and injection molding machine
JP5240874B2 (en) Clamping device
JP4750195B2 (en) Injection molding machine with nozzle touch mechanism
JP6033818B2 (en) Movable plate of injection molding equipment
US8747095B2 (en) Mold clamping mechanism for injection molding machine
JP5592086B2 (en) Molding device clamping machine
JP3222432B2 (en) Mold clamping device of molding machine
JP5075729B2 (en) Molding device for injection molding machine
JP4714705B2 (en) Molding device for injection molding machine
JP5215445B2 (en) Injection molding machine with adapter plate with temperature control piping
JP2017001295A (en) Mold opening and closing mechanism, and injection molding machine
JP2012116100A (en) Mold mounting tool for resin molding equipment, injection molding equipment having the mold mounting tool arranged therein and mold mounting method of the injection molding equipment
JP5056246B2 (en) Injection molding equipment
JP7440687B2 (en) mold clamping device
JP2003191301A (en) Die clamping device
JP2007301883A (en) Mold clamping device of injection molding machine
JPH0577246A (en) Molding die utilizing constitutional material for thermal efficiency
JPH0142813B2 (en)
JP2000301569A (en) Supporting structure of fixed platen
JP6345508B2 (en) Movable platen, opening / closing device and molding device
JP2003266477A (en) Device for supporting stationary mold of molding machine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140731

R150 Certificate of patent or registration of utility model

Ref document number: 5592086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250