JPH01296628A - Equipment and method for manufacturing semiconductor device - Google Patents

Equipment and method for manufacturing semiconductor device

Info

Publication number
JPH01296628A
JPH01296628A JP12583988A JP12583988A JPH01296628A JP H01296628 A JPH01296628 A JP H01296628A JP 12583988 A JP12583988 A JP 12583988A JP 12583988 A JP12583988 A JP 12583988A JP H01296628 A JPH01296628 A JP H01296628A
Authority
JP
Japan
Prior art keywords
furnace
heat
temperature
heat treatment
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12583988A
Other languages
Japanese (ja)
Inventor
Iesada Hirai
平井 家定
Akito Hara
明人 原
Tetsuo Fukuda
哲生 福田
Toru Miyayasu
宮保 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12583988A priority Critical patent/JPH01296628A/en
Publication of JPH01296628A publication Critical patent/JPH01296628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable the long time high temperature heat treatment as well as the short time rapid heating and quenching processing to be performed by a method wherein the title manufacturing equipment is provided with a furnace in large heating capacity for the long time high temperature processing as well as another furnace in small heating capacity for the short time rapid heating and quenching processing. CONSTITUTION:The title manufacturing equipment is provided with the first furnace 11 in large heating capacity for long time high temperature processing as well as the second furnace 12 in small heating capacity for short time rapid heating and quenching processing. Thus, a material 13 to be heat-treated can be cooling down- processed in descending temperature by shifting said material 13 to the second furnace 12 kept at the same temperature as that in the first furnace 11 through the intermediary of the first shifting means 14 to control the cooling temperature in the second furnace 12 after performing the stable high temperature heat treatment of said material 13 in the first furnace 11. Through these procedures, the long time stable heat treatment can be performed enabling the cooling speed of said material 13 to be controlled as well as the heat treatment in the descending temperature to be performed without depending upon the proper heating capacities of the heat treatment devices.

Description

【発明の詳細な説明】 〔概要〕 半導体製造装置、特に半導体ウェハの熱処理に係る熱処
理装置に関し、 長時間、安定な熱処理をすることができ、かつ該熱処理
装置固有の熱容量に依存されることなく、被熱処理物の
冷却速度を制御して、その降温熱処理をすることを目的
とし、 熱容量の異なる第1の炉と第2の炉とが隣接し、かつ、 前記第1の炉と第2の炉との間において、被熱処理物を
移動する移動手段と、輻射熱を遮断する開閉手段とを具
備し、 前記第1の炉が長時間、高温処理をする熱容量の大きな
炉であり、 前記第2の炉が短時間急熱急冷処理をする熱容量の小さ
な炉であることを含み構成し、炉本体、抵抗加熱体、熱
処理室、シャッター及び移動ステージを設けた第1の炉
と、 炉本体、赤外ランプ加熱体、熱処理室、シャッター、及
び前記第1の炉に、被熱処理物を出し入れする第1の移
動手段を設けた第2の炉とを具備し、かつ 前記第2の炉に設けられる第2の移動手段を介して第1
の炉と、第2の炉とを分離及び接続することを含み構成
する。
[Detailed Description of the Invention] [Summary] The present invention relates to semiconductor manufacturing equipment, particularly a heat treatment equipment for heat treatment of semiconductor wafers, which can perform stable heat treatment for a long period of time and is not dependent on the heat capacity specific to the heat treatment equipment. , the purpose of which is to control the cooling rate of the object to be heat-treated and perform temperature-lowering heat treatment on the object, and a first furnace and a second furnace having different heat capacities are adjacent to each other, and the first furnace and the second furnace are adjacent to each other and have different heat capacities. The first furnace is equipped with a moving means for moving the object to be heat treated and an opening/closing means for blocking radiant heat between the furnace and the second furnace, and the first furnace is a furnace with a large heat capacity capable of performing high-temperature treatment for a long time; A first furnace is comprised of a furnace with a small heat capacity that performs rapid heating and cooling treatment for a short time, and is equipped with a furnace body, a resistance heating element, a heat treatment chamber, a shutter, and a moving stage; The second furnace is provided with an outer lamp heating body, a heat treatment chamber, a shutter, and a first moving means for taking the heat treatment object into and out of the first furnace, and is provided in the second furnace. the first via the second moving means;
The furnace includes separating and connecting the second furnace and the second furnace.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造装置及びその製造方法に関
するものであり、更に詳しく言えば、半導体ウェハの熱
処理に係る熱処理装置とその降温処理方法に関するもの
である。
The present invention relates to a semiconductor device manufacturing apparatus and a manufacturing method thereof, and more specifically, to a heat treatment apparatus and a temperature lowering treatment method for heat treatment of semiconductor wafers.

昨今、半導体ウェハの熱処理9例えばシリコンインゴッ
トの引上げ成長時の際、酸素の混入量やその分布により
その上・下の位置によって特性が異なる熱履歴を受ける
ことがあり、これを消去するため、長時間、高温処理す
る加熱処理とその酸素析出量を制御して、半導体ウェハ
の冷却速度を制御できる降温処理とを可能とする製造装
置の要求がある。
Recently, during heat treatment of semiconductor wafers 9, for example, during pulling growth of silicon ingots, the heat history may have different characteristics depending on the position above and below it depending on the amount of oxygen mixed in and its distribution. There is a need for a manufacturing apparatus that can perform heat treatment that involves high temperature treatment for a long time, and temperature-lowering treatment that can control the cooling rate of semiconductor wafers by controlling the amount of oxygen precipitated.

〔従来の技術] 第7図は従来例の半導体製造装置及び半導体装置の製造
方法に係る説明図である。
[Prior Art] FIG. 7 is an explanatory diagram of a conventional semiconductor manufacturing apparatus and a semiconductor device manufacturing method.

同図(a)は熱処理装置を示す模式図である。Figure (a) is a schematic diagram showing a heat treatment apparatus.

図において、■は耐火性材料により形成される炉本体、
laは熱処理室、2a、2bは抵抗発熱体等の加熱体、
3は輻射熱を遮断するシャッター。
In the figure, ■ is a furnace body made of refractory material;
la is a heat treatment chamber, 2a and 2b are heating elements such as resistance heating elements,
3 is a shutter that blocks radiant heat.

4は半導体ウェハ等の被熱処理物、5は被熱処理物を保
持して、移動の方向Aに移動可能な移動ステージである
Reference numeral 4 denotes an object to be heat-treated, such as a semiconductor wafer, and 5 is a moving stage that can move in the movement direction A while holding the object to be heat-treated.

なお、炉本体1の熱容量が大きいため長時間高温により
被熱処理物の安定した熱処理をすることができる。
In addition, since the heat capacity of the furnace body 1 is large, the object to be heat-treated can be stably heat-treated at high temperature for a long time.

同図(a)は熱処理装置の熱特性図を示している。FIG. 3(a) shows a thermal characteristic diagram of the heat treatment apparatus.

図において、縦軸は炉内温度θ〔℃〕、横軸は運転時間
T(hr)であり、tlは熱処理室1aを例えば設定温
度1000 (’〔2〕に立ち上げるのに要する炉本体
1の熱容量に比例する立ち上がり時間である。なお、実
線に示す特性曲線が、炉内温度対運転時間(θ−T熱特
性)特性である。
In the figure, the vertical axis is the furnace temperature θ [°C], the horizontal axis is the operating time T (hr), and tl is the furnace body 1 required to raise the heat treatment chamber 1a to a set temperature of 1000 ('[2]). It is the rise time that is proportional to the heat capacity.The characteristic curve shown by the solid line is the furnace temperature versus operating time (θ-T thermal characteristic) characteristic.

また、t3は被熱処理物の熱処理条件により変化する定
常加熱時間、t、は加熱体2a、2bをOFFして、自
然放置した場合の炉の放置時間である。なお、斜線で示
したCは被熱処理物4に必要とされる冷却制御範囲であ
り、例えば、半導体ウェハの熱履歴を消去するため、該
ウェハ酸素析出量に依存する冷却速度の制御を必要とす
る範囲である。これは、例えばシリコンインゴット製作
過程における該インゴット中の酸素の混入と、その酸素
分布の差によりインゴットの上・下において半導体ウェ
ハの特性が変わる熱履歴現象を消去したり、シリコン結
晶中の格子内酸素を析出して、′ ゲッタリング効果を
制御するための降温処理を必要とする範囲である。なお
、冷却温度θc −1000(’〔2〕 〜600  
(”〔2〕と冷却時間tc(hr)とを可変して降温処
理することにより、酸素析出量を制御することができる
In addition, t3 is a steady heating time which varies depending on the heat treatment conditions of the object to be heat treated, and t is a standing time of the furnace when the heating elements 2a and 2b are turned off and the furnace is left to stand. Note that C indicated by diagonal lines is the cooling control range required for the object to be heat treated 4. For example, in order to erase the thermal history of a semiconductor wafer, it is necessary to control the cooling rate depending on the amount of oxygen precipitated on the wafer. This is the range of This can, for example, eliminate the thermal history phenomenon in which the characteristics of a semiconductor wafer change between the upper and lower parts of the ingot due to the mixing of oxygen into the ingot during the manufacturing process of the silicon ingot and the difference in the oxygen distribution. This is a range that requires temperature-lowering treatment to precipitate oxygen and control the gettering effect. Note that the cooling temperature θc −1000 ('[2] ~600
The amount of oxygen precipitated can be controlled by performing temperature-lowering treatment by varying the cooling time tc (hr) and the cooling time tc (hr).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで従来例の熱処理装置によれば、被熱処理物4の
熱処理条件によって、所定時間熱処理をし、その後、加
熱体2a、2b等を0FFL炉を放置している。
By the way, according to the conventional heat treatment apparatus, heat treatment is performed for a predetermined period of time depending on the heat treatment conditions of the object to be heat treated 4, and then the heating elements 2a, 2b, etc. are left in the 0FFL furnace.

このため、長時間安定な熱処理をすることができるが、
下記のような問題点がある。
Therefore, stable heat treatment can be performed for a long time, but
There are the following problems.

■熱処理装置の処理効率を上げるために、被熱処理物4
を第7図(b)に示す定常加熱時間t2後、直ちに熱処
理室1aより外部へ取り出すと、例えば半導体ウェハの
塑性変形を生ずることがある。
■In order to increase the processing efficiency of heat treatment equipment,
If the semiconductor wafer is taken out of the heat treatment chamber 1a immediately after the steady-state heating time t2 shown in FIG. 7(b), plastic deformation of the semiconductor wafer may occur, for example.

これは半導体ウェハが炉内部温度に上昇している状態か
ら外部すなわち常温中に取り出された事により、該ウェ
ハの温度特性における急激な温度勾配を受け、熱スリッ
プ現象と呼ばれる結晶転位欠陥を生ずるものである。
This is because the semiconductor wafer is taken out from the furnace at room temperature, which causes a sharp temperature gradient in the temperature characteristics of the wafer, resulting in crystal dislocation defects called thermal slip phenomenon. It is.

■また、熱処理装置の熱容量が大きいため同図(b)の
冷却制御範囲Cについて被熱処理物4の冷却速度を制御
する必要性がある場合、熱処理装置の放置時間り、対炉
内降下温度に依存する冷却特性に合致するものについて
は対処することができるが、半導体ウェハ内の酸素析出
量を制御を必要とする例えば、冷却制御範囲C内におい
て、半導体ウェハの冷却速度を可変する場合について対
処することができないという問題がある。
■Also, if it is necessary to control the cooling rate of the object to be heat treated 4 in the cooling control range C in Figure (b) due to the large heat capacity of the heat treatment equipment, it is necessary to Although it is possible to deal with cases that match the dependent cooling characteristics, for example, cases where the cooling rate of the semiconductor wafer is varied within the cooling control range C that requires control of the amount of oxygen precipitated within the semiconductor wafer can be dealt with. The problem is that it cannot be done.

本発明は、かかる従来例の課題に鑑み創作されたもので
あり、長時間安定な熱処理をすることができ、かつ該熱
処理装置固有の熱容量に依存されることなく、被熱処理
物の冷却速度を制御し、その降温熱処理をすることを可
能とする半導体装置の製造装置及びその製造方法の提供
を目的とする。
The present invention was created in view of the problems of the conventional examples, and is capable of performing stable heat treatment for a long period of time, and is capable of controlling the cooling rate of the object to be heat treated without depending on the heat capacity specific to the heat treatment apparatus. An object of the present invention is to provide a semiconductor device manufacturing apparatus and a manufacturing method thereof that enable controlled temperature-lowering heat treatment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造装置及びその製造方法は、そ
の原理図を第1.2図に、その一実施例を第3〜6図に
示すように、その製造装置の原理を熱容量の異なる第1
の炉11と第2の炉12とが隣接し、かつ、 前記第1の炉11と第2の炉12との間において、被熱
処理物13を移動する移動手段14と、輻射熱を遮断す
る開閉手段15とを具備し、前記第1の炉11が長時間
、高温処理をする熱容量の大きな炉であり、 前記第2の炉12が短時間急熱急冷処理をする熱容量の
小さな炉であることを特徴とし、その半導体装置の製造
方法の原理を、熱容量の大きい第1の炉11により、被
熱処理物13の所望の加熱処理をし、 前記第1の炉11の温度とほぼ等しい熱容量の小さい第
2の炉12に被熱処理物13を移動し、前記第2の炉1
2により、被熱処理物13の冷却速度の制御をして、そ
の降温処理をすることを特徴とし、 第1の製造装置を炉本体21a、抵抗加熱体21b、熱
処理室21C,シャッター23a及び移動ステージ21
dを設けた第1の炉11と、炉本体22a、赤外ランプ
加熱体22b、熱処理室22C,シャッター23b、2
3c、及び前記第1の炉11に、被熱処理物13を出し
入れする第1の移動手段14を設けた第2の炉12とを
具備し、かつ 前記第2の炉12に設けられる第2の移動手段24を介
して第1の炉11と、第2の炉12とを分離及び接続す
ることを特徴とし、 その製造方法を第1の炉11の加熱体21bの出力を制
御して、第1の炉11を、被熱処理物13の出入可能温
度に維持し、 任意の時刻T1において、シャッター23aを開閉し、
前記被熱処理物13を第1の炉11に導入し、所望処理
温度に第1の炉11を昇温し、前記被熱処理物13を所
望処理時間、処理温度により加熱処理終了時刻T4まで
加熱し、前記加熱処理時刻T4の数分前に第2の炉12
の加熱体22bの出力を制御して、該第2の炉12の温
度を第1の炉11の温度と同一になるように昇温し、 前記加熱処理終了時刻T4において、開閉装置23a、
23b、23cを開閉し、被熱処理物13を第1の移動
手段14を介して第2の炉12へ移動し、 前記第2の炉12の加熱体22bの出力を制御して、冷
却速度を調整し、被熱処理物の降温熱処理をすることを
特徴とし、 その第2の製造装置及びその製造方法を被熱処理物13
が第1の炉11から第2の炉12に移動した後、第2の
炉12が第1の炉11から分離され、 前記第1の炉11が急冷処理、され、該第1の炉11の
温度が次期熱処理物13の導入可能温度まで降下され、 前記導入可能温度を維持することを特徴とし、上記目的
を達成する。
As shown in FIG. 1.2 and one embodiment of the semiconductor device manufacturing apparatus and manufacturing method of the present invention in FIGS. 1
The furnace 11 and the second furnace 12 are adjacent to each other, and between the first furnace 11 and the second furnace 12, there is a moving means 14 for moving the object to be heat treated 13, and an opening/closing means for blocking radiant heat. means 15, wherein the first furnace 11 is a furnace with a large heat capacity that performs high-temperature treatment for a long time, and the second furnace 12 is a furnace with a small heat capacity that performs rapid heating and cooling treatment for a short time. The principle of the semiconductor device manufacturing method is as follows: a first furnace 11 with a large heat capacity performs the desired heat treatment on the object to be heat treated 13; The object to be heat treated 13 is moved to the second furnace 12, and the second furnace 1
2, the cooling rate of the object to be heat-treated 13 is controlled and the temperature lowering process is performed. 21
d, a furnace body 22a, an infrared lamp heating body 22b, a heat treatment chamber 22C, shutters 23b, 2
3c, and a second furnace 12 provided with a first moving means 14 for taking the object to be heat treated 13 in and out of the first furnace 11, and a second furnace 12 provided in the second furnace 12. The first furnace 11 and the second furnace 12 are separated and connected via the moving means 24, and the manufacturing method is performed by controlling the output of the heating body 21b of the first furnace 11. The furnace 11 of No. 1 is maintained at a temperature at which the object to be heat treated 13 can enter and exit, and at an arbitrary time T1, the shutter 23a is opened and closed,
The object to be heat treated 13 is introduced into the first furnace 11, the temperature of the first furnace 11 is raised to a desired treatment temperature, and the object to be heat treated 13 is heated for the desired treatment time and at the treatment temperature until the heat treatment end time T4. , several minutes before the heat treatment time T4, the second furnace 12
The output of the heating body 22b is controlled to raise the temperature of the second furnace 12 to be the same as the temperature of the first furnace 11, and at the heat treatment end time T4, the opening/closing device 23a,
23b and 23c are opened and closed, the object to be heat treated 13 is moved to the second furnace 12 via the first moving means 14, and the output of the heating body 22b of the second furnace 12 is controlled to control the cooling rate. The second manufacturing apparatus and the manufacturing method thereof are characterized in that the second manufacturing apparatus and the manufacturing method thereof are
is transferred from the first furnace 11 to the second furnace 12, the second furnace 12 is separated from the first furnace 11, the first furnace 11 is subjected to a rapid cooling treatment, and the first furnace 11 is The temperature is lowered to a temperature at which the next heat-treated material 13 can be introduced, and the temperature at which the next heat-treated material 13 can be introduced is maintained, thereby achieving the above object.

〔作用] 本発明の製造装置及び製造方法の原理によれば長時間、
高温処理をする熱容量の大きな第1の炉と、短時間、急
熱急冷処理をする熱容量の小さな第2の炉とを具備して
いる。
[Operation] According to the principle of the manufacturing apparatus and manufacturing method of the present invention, for a long time,
It is equipped with a first furnace with a large heat capacity that performs high-temperature treatment, and a second furnace with a small heat capacity that performs rapid heating and cooling treatment for a short time.

このため、第1の炉において被熱処理物の安定な高温加
熱処理をした後、第1の移動手段を介在して、第1の炉
と同温度に維持された第2の炉へ被熱処理物を移動し、
該第2の炉の冷却温度を制御することより、該被熱処理
物の降温冷却処理をすることができる。
For this reason, after the object to be heat-treated is subjected to stable high-temperature heat treatment in the first furnace, the object to be heat-treated is transferred to the second furnace maintained at the same temperature as the first furnace via the first moving means. move,
By controlling the cooling temperature of the second furnace, the object to be heat treated can be cooled down.

これにより被熱処理物の熱特性において、従来のような
急激な温度勾配による熱ストレスを受けることなく、該
被熱処理物に必要な、例えば熱履歴現象の消去や、酸素
析出量の制御をすることが可能となる。
As a result, the thermal characteristics of the heat-treated object are not subjected to thermal stress due to a sharp temperature gradient as in the conventional method, and the heat-treated object is able to eliminate the thermal history phenomenon and control the amount of oxygen precipitated. becomes possible.

また、本発明の製造装置及び製造方法によれば、抵抗加
熱体を熱源とする長時間、高温処理をする第1の炉と、
赤外線ランプ加熱体を熱源とする短時間、急熱急冷処理
をする第2の炉と、第2の炉に第1及び2の移動手段と
を設けている。
Further, according to the manufacturing apparatus and manufacturing method of the present invention, a first furnace that performs high-temperature treatment for a long time using a resistance heating element as a heat source;
A second furnace that performs rapid heating and cooling treatment for a short time using an infrared lamp heating element as a heat source, and first and second moving means are provided in the second furnace.

このため、第1の炉において、被熱処理物を抵抗加熱体
で長時間高温処理をした後、第1の移動手段を操作して
、第2の炉に被熱処理物を移動した後、第2の移動手段
を操作して、第1の炉と第2の炉とを分離し、第2の炉
において、赤外ランプ加熱体の出力電圧を制御すること
により降温処理することができる。
For this reason, after the object to be heat-treated is subjected to high-temperature treatment for a long time using a resistance heating element in the first furnace, the object to be heat-treated is moved to the second furnace by operating the first moving means. The first furnace and the second furnace are separated by operating the moving means, and the temperature lowering process can be performed in the second furnace by controlling the output voltage of the infrared lamp heater.

これにより第1の炉の被熱処理室の温度を急激に降下さ
せて、次期被熱処理物の導入準備等をすることができ、
第1の炉の処理効率を向上させることが可能となる。
As a result, the temperature in the heat treatment chamber of the first furnace can be rapidly lowered to prepare for the introduction of the next heat treatment object, etc.
It becomes possible to improve the processing efficiency of the first furnace.

〔実施例〕〔Example〕

次に図を参照しながら本発明の実施例について説明をす
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第3〜6図は、本発明の実施例に係る半導体装置の製造
装置及びその製造方法を説明する図であり、第3図は、
本発明の実施例に係る半導体装置の製造装置の構造図を
示している。
3 to 6 are diagrams for explaining a semiconductor device manufacturing apparatus and its manufacturing method according to an embodiment of the present invention, and FIG.
1 shows a structural diagram of a semiconductor device manufacturing apparatus according to an embodiment of the present invention.

図において、11は長時間高温処理をする第1の炉であ
り、耐火材料、断熱材料等により形成される熱容量の大
きな炉本体21aと、長時間高温加熱をする抵抗加熱体
21bと、被熱処理物の半導体ウェハ13を熱処理する
熱処理室21cと。
In the figure, 11 is a first furnace that performs high-temperature treatment for a long time, and includes a furnace body 21a with a large heat capacity made of a refractory material, a heat insulating material, etc., a resistance heating element 21b that performs high-temperature heating for a long time, and a and a heat treatment chamber 21c for heat-treating the semiconductor wafer 13.

半導体ウェハ13を保持して移動する移動ステージ21
d、シャッター23aとにより構成している。
A moving stage 21 that holds and moves the semiconductor wafer 13
d, and a shutter 23a.

なお、シャッター23aは炉本体21aの熱処理室21
cの出入口に設けられ、輻射熱を遮断する機能を有して
いる。また、加熱体には、抵抗加熱体21b等の直接加
熱方式や、高周波誘導炉。
Note that the shutter 23a is connected to the heat treatment chamber 21 of the furnace body 21a.
It is installed at the entrance and exit of the room c and has the function of blocking radiant heat. Further, the heating body may be a direct heating method such as a resistance heating body 21b or a high frequency induction furnace.

ガスバーナ燃焼炉等の間接加熱方式であっても良い。An indirect heating method such as a gas burner combustion furnace may also be used.

また、12は短時間、急熱急冷処理をする第2の炉であ
り、熱容量の小さな炉本体22aと、赤外ランプ加熱体
22bと、熱処理室22cと、シャ7ター23b、23
Cと、移動ステージ21dを第2の炉12に導入する第
1の移動手段14と。
Further, 12 is a second furnace that performs rapid heating and cooling treatment for a short time, and includes a furnace body 22a with a small heat capacity, an infrared lamp heating body 22b, a heat treatment chamber 22c, and shutters 23b, 23.
C, and the first moving means 14 for introducing the moving stage 21d into the second furnace 12.

第2の炉12自体を移動する第2の移動手段24とによ
り構成している。
The second moving means 24 moves the second furnace 12 itself.

なお、第2の移動手段24は、第1の炉11において半
導体ウェハ13の長時間、高温処理をした後に第1の移
動手段14を操作して、半導体ウェハ13を第2の炉1
2に移動した後、第1の炉11と第2の炉12とを分離
するものである。
The second moving means 24 operates the first moving means 14 to move the semiconductor wafer 13 to the second furnace 1 after subjecting the semiconductor wafer 13 to high temperature treatment for a long time in the first furnace 11.
2, the first furnace 11 and second furnace 12 are separated.

第4図は、本発明の実施例の半導体装置の製造装置に係
る上面図である。
FIG. 4 is a top view of the semiconductor device manufacturing apparatus according to the embodiment of the present invention.

図において、第2の炉12は、例えば軌道25に沿って
第1の炉11の移動方向日へ移動され、第1の炉11の
熱処理室21cが他の被熱処理物の出入れに妨げとなら
ない位置まで待避させるものである。
In the figure, the second furnace 12 is moved, for example, along a track 25 in the moving direction of the first furnace 11, so that the heat treatment chamber 21c of the first furnace 11 does not interfere with the taking in and out of other objects to be heat treated. This will allow the vehicle to be evacuated to a position where it will not be possible.

なお、第2の炉12を待避させた後は、第1の炉11を
例えば半導体ウェハ13の導入可能温度まで急冷し、次
期被熱処理物を導入準備等を行う。
Note that after the second furnace 12 is evacuated, the first furnace 11 is rapidly cooled down to a temperature at which the semiconductor wafer 13 can be introduced, for example, and preparations are made for introducing the next object to be heat-treated.

これにより第1の炉11の処理効率が良くなる。This improves the processing efficiency of the first furnace 11.

また、第2の移動手段24を設けない場合は、処理効率
は下がるが、製造装置自体のコストを下げることが可能
となる。
Furthermore, if the second moving means 24 is not provided, the processing efficiency decreases, but the cost of the manufacturing apparatus itself can be reduced.

これ等により本発明の実施例に係る半導体装置の製造装
置を構成する。
These constitute a semiconductor device manufacturing apparatus according to an embodiment of the present invention.

第5図は、本発明の実施例に係る半導体装置の製造方法
を説明するフローチャートである。
FIG. 5 is a flowchart illustrating a method for manufacturing a semiconductor device according to an embodiment of the present invention.

図において、Plで第1の炉11の抵抗加熱体21bの
出力電圧等を制御して、第1の炉11の熱処理室21c
の温度を、半導体ウェハ13の出入れ可能温度に維持す
る。
In the figure, the output voltage, etc. of the resistance heating element 21b of the first furnace 11 is controlled by Pl, and the heat treatment chamber 21c of the first furnace 11 is heated.
The temperature is maintained at a temperature at which the semiconductor wafer 13 can be taken in and taken out.

次いでP2で時刻T1において、シャッター23aを開
閉し、半導体ウェハ13を第1の炉11にセットし、所
望処理温度、例えば1000(”C〕に第1の炉11を
昇温する。
Next, at time T1 at P2, the shutter 23a is opened and closed, the semiconductor wafer 13 is set in the first furnace 11, and the temperature of the first furnace 11 is raised to a desired processing temperature, for example, 1000 ("C").

さらにP、で、半導体ウェハ13を所望処理時間、例え
ば100 (時間〕、その加熱温度1000(”C〕の
処理条件を維持して、その加熱処理をする。
Further, at P, the semiconductor wafer 13 is heat-treated for a desired processing time, for example, 100 hours, while maintaining the processing conditions of a heating temperature of 1000C.

一方P4で、加熱処理終了時刻T、の数分前、例えば時
刻T、に、第2の炉12の赤外ランプ加熱体22bの出
力電圧を制御して、第2の炉12の熱処理室22cの温
度を第1の炉11の熱処理室の温度(1000(’〔2
〕 )に同一にして維持する。
On the other hand, at P4, several minutes before the heat treatment end time T, for example, at time T, the output voltage of the infrared lamp heating element 22b of the second furnace 12 is controlled, and the heat treatment chamber 22c of the second furnace 12 is heated. The temperature of the heat treatment chamber of the first furnace 11 (1000('[2
] ) to maintain the same.

次にP、で加熱処理時刻T、において、シャッター23
 a、  23 b、  23 cを開閉して、半導体
ウェハ13を保持した移動ステージ21dを第1の移動
手段14を操作して、第2の炉12の熱処理室22cに
導入する。
Next, at time T, the shutter 23 is heated at P.
a, 23b, and 23c are opened and closed, and the moving stage 21d holding the semiconductor wafer 13 is introduced into the heat treatment chamber 22c of the second furnace 12 by operating the first moving means 14.

次いで、第2の炉12の赤外ランプ加熱体22bの出力
電圧を降下させて、その出力を制御し、例えばその冷却
速度100(’C/C/分定制御して、半導体ウェハ1
3の降温冷却処理をする。
Next, the output voltage of the infrared lamp heating element 22b of the second furnace 12 is lowered to control its output, and, for example, the cooling rate is controlled to 100 ('C/C/C/C), and the semiconductor wafer 1
3. Perform the temperature-lowering cooling process.

これにより冷却速度を制御できることから、例えば半導
体ウェハ13のシリコンインゴット製作時に生じた熱履
歴現象を消去したり、ゲッタリング効果を制御したりす
るのに必要な酸素析出量を制御することが可能となる。
Since the cooling rate can be controlled by this, it is possible to control the amount of oxygen precipitated, which is necessary for, for example, erasing the thermal history phenomenon that occurred during the production of the silicon ingot of the semiconductor wafer 13 or controlling the gettering effect. Become.

なお、P、で第1の炉11の熱処理室21cから半導体
ウェハ13を第2の炉12に移動した後に、抵抗加熱体
21bやシャッター23aを制御して、第1の炉11の
熱処理室21cの温度を次期半導体ウェハ13の導入可
能温度まで降下させる。その後はPlに戻って同様な動
作を繰り返して半導体ウェハ13の高温、長時間処理及
び短時間降温処理を行う。
Note that after the semiconductor wafer 13 is moved from the heat treatment chamber 21c of the first furnace 11 to the second furnace 12 at P, the resistance heating body 21b and the shutter 23a are controlled to move the semiconductor wafer 13 from the heat treatment chamber 21c of the first furnace 11 to the second furnace 12. The temperature of the semiconductor wafer 13 is lowered to a temperature at which the next semiconductor wafer 13 can be introduced. Thereafter, the process returns to Pl and repeats the same operation to perform high-temperature, long-time processing and short-time temperature cooling processing on the semiconductor wafer 13.

第6図は本発明の実施例に係る半導体装置の製造方法に
係る説明図であり、同図(a)は第1の炉の熱性図を示
している。
FIG. 6 is an explanatory diagram of a method for manufacturing a semiconductor device according to an embodiment of the present invention, and FIG. 6(a) shows a thermal diagram of the first furnace.

図において、縦軸は炉内温度θ+(’c)であり、第1
の炉11の熱処理室21cの温度である。また横軸は時
間T〔分〕であり、加熱、冷却処理に係る時間を示して
いる。なお、L□は加熱特性。
In the figure, the vertical axis is the furnace temperature θ+('c), and the first
This is the temperature of the heat treatment chamber 21c of the furnace 11. Further, the horizontal axis is time T [minutes], which indicates the time related to heating and cooling processing. Note that L□ is the heating characteristic.

LCIは冷却特性である。LCI is a cooling characteristic.

またT、は任意の時刻であり、例えば半導体ウェハ13
の導入可能温度500(’〔2〕に上昇した第1の炉1
1に該半導体ウェハ13を熱処理室21Cに導入する時
刻である。T2は半導体ウェハ13が所望温度、例えば
1000 (”〔2〕に上昇した時間であり、T、−T
、はその立ち上がり時間であり、炉本体21aの熱容量
に比例する時間である。
Further, T is an arbitrary time, for example, the semiconductor wafer 13
The temperature that can be introduced into the first furnace 1 has increased to 500 ('[2]
1 is the time to introduce the semiconductor wafer 13 into the heat treatment chamber 21C. T2 is the time when the semiconductor wafer 13 rises to a desired temperature, for example, 1000 (2), and T, -T
, is the start-up time, which is a time proportional to the heat capacity of the furnace body 21a.

またT4は加熱処理終了時刻である。Further, T4 is the end time of the heat treatment.

なお、破線に示すし、は自然放熱特性であり、炉本体2
1aの熱容量に左右される特性である。
Note that the dashed line indicates natural heat dissipation characteristics, and
This characteristic depends on the heat capacity of 1a.

なおTs゛は自然放熱後、炉内温度が降下して次期半導
体ウェハ導入可能な時刻である。またり。Cはシャッタ
ー23aや抵抗加熱体21bを制御して、第1の炉11
を冷却する急冷特性を示している。なおTsは第1の炉
11の熱処理室の温度が半導体ウェハ13導入可能とな
った導入可能時刻を示している。
Note that Ts' is the time after natural heat dissipation, when the temperature inside the furnace drops and the next semiconductor wafer can be introduced. Again. C controls the shutter 23a and the resistance heating element 21b to open the first furnace 11.
It shows rapid cooling characteristics. Note that Ts indicates the introduction time when the temperature of the heat treatment chamber of the first furnace 11 becomes such that the semiconductor wafer 13 can be introduced.

同図(b)は第2の炉の熱特性である。Figure (b) shows the thermal characteristics of the second furnace.

図においてLH2は加熱特性+LC2は冷却特性を示し
ている。
In the figure, LH2 indicates heating characteristics and LC2 indicates cooling characteristics.

またL1〜L4は降温冷却特性であり、半導体ウェハ1
3の冷却速度制御範囲Cを表すものである。なおL s
iはウェハ臨界放熱特性を示すものであり、ウェハ臨界
放熱特性L si以下の温度勾配により該ウェハを冷却
すると熱スリップ現象等を起こして、結晶転位欠陥を生
ずる限界特性を表すものである。
Further, L1 to L4 are temperature decreasing cooling characteristics, and the semiconductor wafer 1
3 represents the cooling rate control range C of No. 3. Furthermore, L s
i indicates the critical heat dissipation characteristic of the wafer, which is a critical characteristic that if the wafer is cooled with a temperature gradient below the critical heat dissipation characteristic L si of the wafer, a thermal slip phenomenon occurs and crystal dislocation defects are generated.

ここでT、は加熱処理終了時刻T4の数分前の時刻であ
り、第2の炉12の運転開始時刻である。
Here, T is a time several minutes before the heat treatment end time T4, and is the start time of the second furnace 12.

同図(〔2〕は半導体ウェハの熱特性図である。The same figure ([2] is a thermal characteristic diagram of a semiconductor wafer.

図において、半導体ウェハの総合熱特性は、半導体ウェ
ハ13の常温の状態から第1の炉11の加熱特性LNI
を受けて、さらに第2の炉12の降温冷却特性L0を受
けて常温の状態に至るウェハ温度θ3(’〔2〕対峙間
T〔分〕の関係を示したものである。
In the figure, the overall thermal characteristics of the semiconductor wafer are calculated from the normal temperature state of the semiconductor wafer 13 to the heating characteristic LNI of the first furnace 11.
The figure shows the relationship between the wafer temperature θ3 ('[2] and the opposing distance T [minutes]) which is further affected by the temperature decreasing cooling characteristic L0 of the second furnace 12 and reaches the room temperature state.

このようにして、長時間、高温処理をする熱容量の大き
な炉1例えば炉本体21a、抵抗加熱体21b、熱処理
室21c、移動ステージ21d。
In this way, a furnace 1 with a large heat capacity that performs high-temperature treatment for a long time, for example, the furnace body 21a, the resistance heating element 21b, the heat treatment chamber 21c, and the moving stage 21d.

シャッター23aから成る第1の炉11と、短時間急熱
、急冷処理をする熱容量の小さな炉2例えば炉本体22
a、赤外ランプ加熱体22b、熱処理室22c、第1.
2の移動手段14.24を設けた第2の炉12とを具備
している。
A first furnace 11 consisting of a shutter 23a, and a furnace 2 with a small heat capacity that performs rapid heating and cooling processes for a short time, such as a furnace body 22.
a, infrared lamp heating body 22b, heat treatment chamber 22c, 1st.
A second furnace 12 is provided with two moving means 14, 24.

このため、第1の炉11において、半導体ウェハ13を
所望加熱処理時間、抵抗加熱体21bにより安定な高温
加熱処理をした後、第1の移動手段14を介在して、加
熱処理終了時刻T、の数分前から第1の炉11と同じ温
度例えば1000 (”〔2〕に維持され第2の炉12
へ、半導体ウェハ13を移動し、第2の炉12の赤外ラ
ンプ加熱体22bの出力電圧等を制御することにより、
半導体ウェハ13の例えば冷却速度200(’C/C/
分度程度温冷却処理をすることが可能となる。
For this reason, after the semiconductor wafer 13 is subjected to stable high-temperature heat treatment by the resistance heating body 21b for a desired heat treatment time in the first furnace 11, the heat treatment end time T, The temperature of the second furnace 12 is maintained at the same temperature as the first furnace 11, e.g.
By moving the semiconductor wafer 13 to and controlling the output voltage etc. of the infrared lamp heating body 22b of the second furnace 12,
For example, the cooling rate of the semiconductor wafer 13 is 200 ('C/C/
It becomes possible to perform cooling treatment at a temperature of about a minute.

これにより、半導体ウェハ13の総合熱特性において、
従来のような急激な温度勾配による熱ストレスを受ける
ことなく、半導体ウェハのインゴット製作時に受けた熱
履歴現象の消去や酸素析出量を制御して、ゲッタリング
効果の制御をすることが可能となる。
As a result, in the overall thermal characteristics of the semiconductor wafer 13,
It becomes possible to control gettering effects by erasing the thermal history phenomenon experienced during ingot production of semiconductor wafers and controlling the amount of oxygen precipitated, without being subjected to thermal stress due to sudden temperature gradients as in the past. .

また、本発明の実施例によれば第2の炉12は第2の移
動手段24により第1の炉11と分離することができる
ので、自然放熱特性り。における第1の炉内温度が降下
して次期半導体ウェハ導入可能な時刻T、′と、半導体
ウェハ13を第2の炉12に移動した後第1の炉11を
急冷して、次期半導体ウェハ13の導入可能温度、例え
ば500〔°C〕に達した時−11T、との差分だけ第
1の炉11の稼働時間を省略することができる。これに
より、第1の炉11の処理効率を向上させることが可能
となる。
Further, according to the embodiment of the present invention, the second furnace 12 can be separated from the first furnace 11 by the second moving means 24, so that natural heat dissipation characteristics are improved. At the time T,' when the temperature inside the first furnace decreases and the next semiconductor wafer can be introduced, the semiconductor wafer 13 is moved to the second furnace 12, the first furnace 11 is rapidly cooled, and the next semiconductor wafer 13 is transferred to the second furnace 12. The operating time of the first furnace 11 can be omitted by the difference from -11T when the introduction temperature reaches, for example, 500 [° C.]. This makes it possible to improve the processing efficiency of the first furnace 11.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、被熱処理物に要求
される長時間、安定な高温加熱処理と、短時間、急冷降
温処理とをすることが可能となる。
As explained above, according to the present invention, it is possible to perform stable high-temperature heat treatment for a long time and rapid cooling temperature reduction treatment for a short time, which is required for the object to be heat-treated.

このため、例えば半導体ウェハの冷却速度に依存する酸
素析出量を制御して、熱履歴の消去やゲッタリング効果
の制御をすることができる。
Therefore, for example, by controlling the amount of oxygen precipitated depending on the cooling rate of the semiconductor wafer, it is possible to erase the thermal history and control the gettering effect.

これにより、スリップライン、結晶欠陥及び反りのない
半導体ウェハを提供することが可能となり、半導体素子
の歩留りを向上させること、高信頼度の半導体デバイス
を製造することが可能となる。
This makes it possible to provide a semiconductor wafer free of slip lines, crystal defects, and warpage, thereby making it possible to improve the yield of semiconductor elements and manufacture highly reliable semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1回は、本発明の半導体装置の製造装置に係る原理図
、 第2図は、本発明の半導体装置の製造方法に係る原理図
、 第3図は、本発明の実施例に係る半導体装置の製造装置
の構造図、 第4図は、本発明の実施例の半導体装置の製造装置に係
る上面図、 第5図は、本発明の実施例に係る半導体装置の製造方法
を説明するフローチャート、 第6図(a)、(b)、(〔2〕は、本発明の実施例に
係る半導体装置の製造方法に係る説明図、第7図(a)
、(b)は、従来例の半導体製造装置及び半導体装置の
製造方法に係る説明図である。 (符号の説明) 11・・・第1の炉、 12・・・第2の炉、 1.21a、22a・・・炉本体、 la、21c、22c・−・熱処理室、2a、2b、2
1b・・−加熱体(抵抗加熱体)、22b・・・赤外ラ
ンプ加熱体、 3、 15. 23 a〜23 c−・シ+ツタ−(開
閉装M)、 4.13・・・半導体ウェハ(被熱処理物)、5.21
d・・・移動ステージ、 14・・・第1の移動手段、 24・・・第2の移動手段、 25・・・軌道、 A、B・・・移動方向、 C・・・冷却速度制御範囲、 L、、、L峠2・・・加熱特性、 L c+〜Lc!・・・冷却特性、 L0〜L4・・・降温冷却特性、 L si・・・ウェハ臨界放熱特性、 L oc・・・急冷特性、 Lo・・・自然放熱特性、 T、T、、T、・・・時刻又は任意の時刻、T4・・・
加熱処理終了時刻、 ’r、、’r、’・・・導入可能な時刻、θ1.θ2.
θ3.θ・・・温度、 θ0・・・冷却温度範囲、 Ll・・・立ち上り時間、 1、・・・定常加熱時間、 tり・・・放置時間、 tc・・・冷却時間。
Part 1 is a principle diagram related to the semiconductor device manufacturing apparatus of the present invention, Figure 2 is a principle diagram related to the semiconductor device manufacturing method of the present invention, and Figure 3 is a semiconductor device according to an embodiment of the present invention. FIG. 4 is a top view of the semiconductor device manufacturing apparatus according to the embodiment of the present invention; FIG. 5 is a flowchart illustrating the semiconductor device manufacturing method according to the embodiment of the present invention; 6(a), (b), ([2] is an explanatory diagram related to the method for manufacturing a semiconductor device according to an embodiment of the present invention, FIG. 7(a)
, (b) are explanatory diagrams related to a conventional semiconductor manufacturing apparatus and a semiconductor device manufacturing method. (Explanation of symbols) 11...First furnace, 12...Second furnace, 1.21a, 22a...Furnace body, la, 21c, 22c...Heat treatment chamber, 2a, 2b, 2
1b...-heating body (resistance heating body), 22b... infrared lamp heating body, 3, 15. 23 a to 23 c-・Shi + Tsuta- (opening/closing case M), 4.13... Semiconductor wafer (object to be heat treated), 5.21
d...Moving stage, 14...First moving means, 24...Second moving means, 25...Trajectory, A, B...Movement direction, C...Cooling rate control range , L, , L Pass 2...Heating characteristics, L c+~Lc! ...Cooling characteristics, L0-L4... Temperature drop cooling characteristics, L si... Wafer critical heat radiation characteristics, Loc... Rapid cooling characteristics, Lo... Natural heat radiation characteristics, T, T,, T, ・...Time or arbitrary time, T4...
Heat treatment end time, 'r,,'r,'... Time at which introduction is possible, θ1. θ2.
θ3. θ...Temperature, θ0...Cooling temperature range, Ll...Rise time, 1,...Steady heating time, t...Leave time, tc...Cooling time.

Claims (1)

【特許請求の範囲】 〔1〕熱容量の異なる第1の炉(11)と第2の炉(1
2)とが隣接し、かつ、 前記第1の炉(11)と第2の炉(12)との間におい
て、被熱処理物(13)を移動する移動手段(14)と
、輻射熱を遮断する開閉手段(15)とを具備し、 前記第1の炉(11)が長時間、高温処理をする熱容量
の大きな炉であり、 前記第2の炉(12)が短時間、急熱急冷処理をする熱
容量の小さな炉であることを特徴とする半導体装置の製
造装置。 〔2〕熱容量の大きい第1の炉(11)により、被熱処
理物(13)の所望の加熱処理をし、 前記第1の炉(11)の温度とほぼ等しい熱容量の小さ
い第2の炉(12)に被熱処理物(13)を移動し、 前記第2の炉(12)により、被熱処理物(13)の冷
却速度の制御をして、その降温処理をすることを特徴と
する半導体装置の製造方法。 〔3〕炉本体(21a)、抵抗加熱体(21b)、熱処
理室(21c)、シャッター(23a)及び移動ステー
ジ(21d)を設けた第1の炉(11)と、 炉本体(22a)、赤外ランプ加熱体(22b)、熱処
理室(22c)、シャッター(23b、23c)、及び
前記第1の炉(11)に、被熱処理物(13)を出し入
れする第1の移動手段(14)を設けた第2の炉(12
)とを具備し、かつ 前記第2の炉(12)に設けられる第2の移動手段(2
4)を介して第1の炉(11)と、第2の炉(12)と
を分離及び接続することを特徴とする半導体装置の製造
装置。 (4)第1の炉(11)の加熱体(21b)の出力を制
御して、第1の炉(11)を、被熱処理物(13)の導
入可能温度に維持し、 任意の時刻(T_1)において、シャッター(23a)
を開閉し、前記被熱処理物(13)を第1の炉(11)
に導入し、所望処理温度に第1の炉(11)を昇温し、 前記被熱処理物(13)を所望処理時間、処理温度によ
り加熱処理終了時刻(T_4)まで加熱し、前記加熱処
理時刻(T_4)の数分前に第2の炉(12)の加熱体
(22b)の出力を制御して、該第2の炉(12)の温
度を第1の炉(11)の温度と同一になるように昇温し
、 前記加熱処理終了時刻(T_4)において、開閉装置(
23a、23b、23c)を開閉し、被熱処理物(13
)を第1の移動手段(14)を介して第2の炉(12)
へ移動し、 前記第2の炉(12)の加熱体(22b)の出力を制御
して、冷却速度を調整し、被熱処理物の降温熱処理をす
ることを特徴とする半導体装置の製造方法。 〔5〕前記被熱処理物(13)が第1の炉(11)から
第2の炉(12)に移動した後、第2の炉(12)が第
1の炉(11)から分離され、前記第1の炉(11)が
急冷処理され、該第1の炉(11)の温度が次期熱処理
物(13)の導入可能温度まで降下され、 前記導入可能温度を維持することを特徴とする半導体装
置の製造装置。
[Claims] [1] A first furnace (11) and a second furnace (11) having different heat capacities.
2) are adjacent to each other, and a moving means (14) for moving the object to be heat treated (13) between the first furnace (11) and the second furnace (12), and a moving means (14) that blocks radiant heat. opening/closing means (15), the first furnace (11) is a furnace with a large heat capacity that performs high temperature treatment for a long time, and the second furnace (12) performs rapid heating and quenching treatment for a short time. 1. A semiconductor device manufacturing device characterized by a furnace having a small heat capacity. [2] A first furnace (11) with a large heat capacity performs the desired heat treatment on the object to be heat treated (13), and a second furnace (11) with a small heat capacity that is approximately equal to the temperature of the first furnace (11) is heated. 12) A semiconductor device characterized in that the object to be heat treated (13) is moved to the second furnace (12), the cooling rate of the object to be heat treated (13) is controlled by the second furnace (12), and the temperature of the object (13) is lowered. manufacturing method. [3] A first furnace (11) equipped with a furnace body (21a), a resistance heating element (21b), a heat treatment chamber (21c), a shutter (23a), and a moving stage (21d), a furnace body (22a), an infrared lamp heating element (22b), a heat treatment chamber (22c), shutters (23b, 23c), and a first moving means (14) for moving the object to be heat treated (13) into and out of the first furnace (11); A second furnace (12
), and a second moving means (2) provided in the second furnace (12).
4) A semiconductor device manufacturing apparatus characterized in that a first furnace (11) and a second furnace (12) are separated and connected via a. (4) Control the output of the heating element (21b) of the first furnace (11) to maintain the first furnace (11) at a temperature at which the material to be heat treated (13) can be introduced, and at any time ( At T_1), the shutter (23a)
The object to be heat treated (13) is transferred to the first furnace (11).
the first furnace (11) is heated to the desired treatment temperature, the object to be heat treated (13) is heated for the desired treatment time and treatment temperature until the heat treatment end time (T_4), and the heat treatment is completed at the heat treatment time. A few minutes before (T_4), the output of the heating element (22b) of the second furnace (12) is controlled to make the temperature of the second furnace (12) the same as the temperature of the first furnace (11). At the end time of the heat treatment (T_4), the switchgear (
23a, 23b, 23c) to open and close the object to be heat treated (13
) to the second furnace (12) via the first moving means (14)
A method for manufacturing a semiconductor device, characterized in that the output of the heating element (22b) of the second furnace (12) is controlled to adjust the cooling rate to perform temperature-lowering heat treatment on the object to be heat treated. [5] After the object to be heat treated (13) is moved from the first furnace (11) to the second furnace (12), the second furnace (12) is separated from the first furnace (11), The first furnace (11) is subjected to a rapid cooling treatment, and the temperature of the first furnace (11) is lowered to a temperature at which the next heat-treated material (13) can be introduced, and the temperature at which the next heat treatment material (13) can be introduced is maintained. Manufacturing equipment for semiconductor devices.
JP12583988A 1988-05-25 1988-05-25 Equipment and method for manufacturing semiconductor device Pending JPH01296628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12583988A JPH01296628A (en) 1988-05-25 1988-05-25 Equipment and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12583988A JPH01296628A (en) 1988-05-25 1988-05-25 Equipment and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH01296628A true JPH01296628A (en) 1989-11-30

Family

ID=14920219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12583988A Pending JPH01296628A (en) 1988-05-25 1988-05-25 Equipment and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH01296628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134515A (en) * 2000-10-25 2002-05-10 Shin Etsu Handotai Co Ltd Silicon wafer and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840824A (en) * 1981-09-03 1983-03-09 Nec Corp Heat treatment device for semiconductor wafer
JPS612330A (en) * 1984-06-15 1986-01-08 Hitachi Ltd Processing equipment
JPS61190949A (en) * 1985-02-19 1986-08-25 Rohm Co Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840824A (en) * 1981-09-03 1983-03-09 Nec Corp Heat treatment device for semiconductor wafer
JPS612330A (en) * 1984-06-15 1986-01-08 Hitachi Ltd Processing equipment
JPS61190949A (en) * 1985-02-19 1986-08-25 Rohm Co Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134515A (en) * 2000-10-25 2002-05-10 Shin Etsu Handotai Co Ltd Silicon wafer and its manufacturing method

Similar Documents

Publication Publication Date Title
US5853480A (en) Apparatus for fabricating a single-crystal semiconductor
US20030209200A1 (en) Temperature control for single substrate semiconductor processing reactor
JP3451908B2 (en) SOI wafer heat treatment method and SOI wafer
JPH02263792A (en) Heat treatment of silicon
JPS58501927A (en) Method for reducing oxygen precipitation in silicon wafers
JPH01296628A (en) Equipment and method for manufacturing semiconductor device
JPH10326790A (en) Method for heat-treating silicon wafer and silicon wafer
JP2650908B2 (en) Heat treatment method
JPS63283124A (en) Reaction furnace
JPH0119265B2 (en)
JPH06216056A (en) Vertical furnace
JPH01248626A (en) Device for heat treatment of wafer
JPH0379985A (en) Controlling method for temperature of electric furnace
JPH02196081A (en) Method for growing gallium arsenide single crystal
JPS622616A (en) Heat treatment method of semiconductor wafer
JPH04134816A (en) Semiconductor manufacturing equipment
JPH0594980A (en) Thermal treatment device
KR0121711Y1 (en) Hot-wall type rapid thermal processing device
KR200158401Y1 (en) Heater for diffusion tube used for annealing and oxide film deposition on semiconductor device
KR940009372A (en) Single Crystal Ferrite Manufacturing Method
CN116013771A (en) Well pushing method for improving surface flatness of wafer
JPH0324720A (en) Wafer processing method and processing equipment
KR100309646B1 (en) Method of curing a semiconductor substrate
JPS63175419A (en) Heat treatment apparatus
JPS62235740A (en) Thermal oxidation of silicon