JPH01296598A - Potential sensing device for space in probe characteristic - Google Patents

Potential sensing device for space in probe characteristic

Info

Publication number
JPH01296598A
JPH01296598A JP63126332A JP12633288A JPH01296598A JP H01296598 A JPH01296598 A JP H01296598A JP 63126332 A JP63126332 A JP 63126332A JP 12633288 A JP12633288 A JP 12633288A JP H01296598 A JPH01296598 A JP H01296598A
Authority
JP
Japan
Prior art keywords
probe
current
circuit
zero
saturation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63126332A
Other languages
Japanese (ja)
Other versions
JPH0722038B2 (en
Inventor
Kazuo Shimizu
清水 和男
Hiroshi Amamiya
雨宮 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP63126332A priority Critical patent/JPH0722038B2/en
Publication of JPH01296598A publication Critical patent/JPH01296598A/en
Publication of JPH0722038B2 publication Critical patent/JPH0722038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To enhance the accuracy of a sensing device and quicken the operation by sweeping the probe voltage from positive ion current saturation region toward the electron current saturation region, and determining the bent point in the extent from the electron current repulsive region till the electron current saturation region about the obtained probe characteristic curve from secondary differential signals of a curve after the current makes zero intersection. CONSTITUTION:A probe electrode P is inserted in plasma to sense the probe current Ip flowing in compliance with a signal Vp in a sweep voltage generator circuit 1 using a current sensor circuit 2. This sensing of probe current Ip yields the probe characteristic, and the current detection signal is subjected to second order differentiation by a second order differentiation circuit 3. In this second order differentiation signal, particularly, the point of intersection with the zero potential in the boundary of the electron current saturation region from the electron current repulsive region is the space potential Vs, and No.1 zero point is sensed by No.1 zero sensor circuit 4 while floating potential Vf is sensed by No.2 zero sensor circuit 5 so as to specify the regions besides the positive ion current saturation region, followed by processing by a gate circuit 6 and a sample hold circuit 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はプラズマの空間電位を検出する装置に係わり、
特に、プラズマ中にプローブを挿入して空間電位を高速
、かつ高信頼度で検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a device for detecting the space potential of plasma.
In particular, the present invention relates to a device that detects space potential at high speed and with high reliability by inserting a probe into plasma.

(従来技術および問題点) 第3図はプローブ電圧(V、)電流(l、)特性の典型
例を示したものであるが、同特性から直接空間電位を決
定すると、誤差を招くため、通常は第4図に示すように
、同特性を対数電流1直で書き換えて、電子電流反撥領
域の延長線と電子電流飽和領域の延長線の交点を空間電
位とする方法が採られてきた。しかし、この方法は測定
時間や人的判断を必要とし、その適用範囲は低温ブラス
マに限定され、検出温度範囲が狭く、また、プローブ表
面に不純物を堆積させ易い反応性プラスマへの応用にも
問題があった。
(Prior art and problems) Figure 3 shows a typical example of probe voltage (V,) current (l,) characteristics, but determining the space potential directly from the same characteristics will lead to errors, so it is usually As shown in FIG. 4, a method has been adopted in which the same characteristic is rewritten using a single logarithmic current, and the intersection of the extended line of the electron current repulsion region and the extended line of the electron current saturation region is set as the space potential. However, this method requires measurement time and human judgment, its applicability is limited to low-temperature plasma, the detection temperature range is narrow, and there are also problems in its application to reactive plasma, which tends to deposit impurities on the probe surface. was there.

(考案が解決しようとする課題) 一般に、空間電位は、プラスマの状態を知る上で重要で
あるが、電子密度を算定する場合に不可欠の物理量であ
り、更に、プラズマ中の電子のエネルギー分布を求める
場合の基準値となるものである。従来法にしたがいグラ
フ上から、これを求めるのでは、単に適用範囲が狭いだ
けでなく、精度を改善しえない。
(Problem to be solved by the invention) In general, space potential is important in knowing the state of plasma, but it is also an essential physical quantity when calculating electron density. This is the standard value when calculating. Obtaining this from a graph according to the conventional method not only has a narrow scope of application, but also cannot improve accuracy.

本発明の目的は、低温から高温までの各種プラズマ、工
業的に応用の広い反応性プラズマを対象に、高速、かつ
高精度で空間電位を検出できる装置を提供することにあ
る。
An object of the present invention is to provide an apparatus capable of detecting space potential at high speed and with high precision for various plasmas ranging from low to high temperatures and reactive plasmas with a wide range of industrial applications.

(課題を解決するだめの手段) 上述した問題点は、プローブ特性曲線上における、電子
電流反撥領域と電子電流飽和領域の境界に生じる湾曲点
を電子回路的に精度良く検出することによって解決され
る。具体的には、プローブ電流の検出回路、この検出さ
れたプローブ電流信号の二次微分信号を求める二次微分
回路、この二次微分信号がゼロ電位を交叉する点を検出
するための第一のゼロ点検出回路、前記検出されたプロ
ーブ電流信号がゼロ電位を交叉する点を検出するだめの
第二のゼロ点検出回路、前記の両ゼロ点検出回路の出力
信号によりプローブ電圧を抽出するサンプル・ホールト
回路を備える本発明の空間電位検出装置によって解決さ
れる。
(Means to Solve the Problem) The above-mentioned problem can be solved by accurately detecting, using an electronic circuit, a curved point that occurs at the boundary between the electron current repulsion region and the electron current saturation region on the probe characteristic curve. . Specifically, it includes a probe current detection circuit, a second-order differential circuit for obtaining a second-order differential signal of the detected probe current signal, and a first differential circuit for detecting the point at which this second-order differential signal crosses zero potential. a zero point detection circuit, a second zero point detection circuit for detecting the point at which the detected probe current signal crosses zero potential, and a sample sensor for extracting the probe voltage from the output signals of both of the zero point detection circuits. This problem is solved by the space potential detection device of the present invention including a halt circuit.

(作用および発明の効果) 本発明においては、プローブ電圧を正イオン電流飽和領
域から電子電流飽和領域に向けて掃引し、得られるプロ
ーブ特性曲線につき、特に、電子電流反撥領域から電子
電流飽和領域に至る間に生じる湾曲点を、プローブ電流
がゼロ点を交差した後の上記特性曲線の二次微分信号か
ら求めるもので、検出法自体の信頼性が高く、高精度か
つ高速性に富み、広範な適用性を有するプラズマの空間
電位の検出装置が開発できた。
(Operation and Effects of the Invention) In the present invention, the probe voltage is swept from the positive ion current saturation region to the electron current saturation region, and the obtained probe characteristic curve is particularly focused from the electron current repulsion region to the electron current saturation region. The bending point that occurs during the probe current is determined from the second-order differential signal of the above characteristic curve after the probe current crosses the zero point.The detection method itself is highly reliable, highly accurate, fast, and widely applicable. We have developed a plasma space potential detection device that has applicability.

(実施例) 以下に、本発明の一実施例である第1図のブロック図お
よび第2図の各部動作波形を参照しつつ詳細に説明する
(Embodiment) Hereinafter, an embodiment of the present invention will be described in detail with reference to the block diagram in FIG. 1 and the operation waveforms of each part in FIG. 2.

プラズマ中にプローブ電極Pを挿入し、掃引電圧発生回
路1の信号Vp に対応して流れるプローブ電流1pを
電流検出回路2によって検出する。
A probe electrode P is inserted into the plasma, and a probe current 1p flowing in response to a signal Vp from a sweep voltage generation circuit 1 is detected by a current detection circuit 2.

これより、第2図a)に示すプローブ特性を得る。As a result, the probe characteristics shown in FIG. 2a) are obtained.

この電流検出信号は二次微分回路3で二階微分され、同
図b)に示す二次微分信号となるのであるが、この信号
中、特に、電子電流反撥領域から電子電流飽和領域の境
界において、ゼロ電位と交叉する点が空間電位Vsであ
って、第一のゼロ点検出回路4は同図C)に示すように
、この点Vs を検出する。ただし、通常雑音が存在す
るため、正イオン電流飽和領域における二次微分信号は
ゼロ電位と交叉する。そこで、第二のゼロ点検出回路5
を用いて、同図d)に示すように、浮動電位Vf を検
出し、上記正イオン電流飽和領域以外の領域を特定する
。これより、ゲート回路6は同図e)に示す出力を生じ
、その出力の立ち上がり時において、サンプル・ホール
ド回路7は、その人力である掃引電圧発生回路出力を同
図f)に示すように、抽出保持する。以上より、サンプ
ル・ホールド回路7からは、プローブ電圧の掃引毎に、
空間電位を表す出力Vsが得られる。
This current detection signal is second-order differentiated by the second-order differentiation circuit 3, resulting in the second-order differentiation signal shown in b) of the same figure.In this signal, especially at the boundary between the electron current repulsion region and the electron current saturation region, The point where the zero potential intersects is the space potential Vs, and the first zero point detection circuit 4 detects this point Vs as shown in FIG. However, since noise usually exists, the second-order differential signal in the positive ion current saturation region crosses the zero potential. Therefore, the second zero point detection circuit 5
As shown in d) of the same figure, the floating potential Vf is detected using the method, and a region other than the positive ion current saturation region is specified. As a result, the gate circuit 6 generates the output shown in e) of the same figure, and at the time of the rise of the output, the sample-and-hold circuit 7 generates the output of the sweep voltage generating circuit, which is the manual input, as shown in f) of the same figure. Extract and hold. From the above, the sample-and-hold circuit 7 outputs the following information every time the probe voltage is swept:
An output Vs representing the spatial potential is obtained.

上記の説明から明らかなように、第一のゼロ点検出回路
の出力信号が得られた後の、第二のゼロ点検出回路の出
力信号が得られた時のプローブ電圧(総員電圧)を求め
れば、その値が空間電位となる。従って、第1図に示さ
れた回路の他に、種々の別の形態の回路を当業者は容易
に想起出来ることは言うまでもない。
As is clear from the above explanation, the probe voltage (total voltage) when the output signal of the second zero point detection circuit is obtained after the output signal of the first zero point detection circuit is obtained can be calculated. In this case, that value becomes the space potential. Therefore, it goes without saying that those skilled in the art can easily conceive of various other types of circuits in addition to the circuit shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に基づくプローブ特性中の空間電位の
検出装置のブロック図、 第2図a)〜f)は、上記ブロック図における各部の動
作波形図、 第3図および第4図は、それぞれ、プローブ特性および
その対数特性を示すグラフ。 (符号の説明) P・・・ プローブ電極。 1・・・・・掃引電圧発生回路。 2 ・・・電流検出回路。 3・・・・・・二次微分回路。 4・・ 第一のゼロ点検出回路。 5・・・・・第二のゼロ点検出回路。 6・・・ゲート回路。 7・・・・サンプル・ホールト回路。
Fig. 1 is a block diagram of a detection device for space potential in probe characteristics based on the present invention, Fig. 2 a) to f) are operational waveform diagrams of each part in the above block diagram, and Figs. 3 and 4 are , graphs showing the probe characteristics and its logarithmic characteristics, respectively. (Explanation of symbols) P... Probe electrode. 1...Sweep voltage generation circuit. 2...Current detection circuit. 3...Second order differential circuit. 4. First zero point detection circuit. 5...Second zero point detection circuit. 6...Gate circuit. 7...Sample/halt circuit.

Claims (1)

【特許請求の範囲】[Claims] プローブ電流の検出回路、この検出されたプローブ電流
信号の二次微分信号を求める二次微分回路、この二次微
分信号がゼロ電位を交叉する点を検出するための第一の
ゼロ点検出回路、前記検出されたプローブ電流信号がゼ
ロ電位を交叉する点を検出するための第二のゼロ点検出
回路、前記の両ゼロ点検出回路の出力信号によりプロー
ブ電圧を抽出するサンプル・ホールド回路を備える空間
電位検出装置。
a probe current detection circuit; a second-order differential circuit for obtaining a second-order differential signal of the detected probe current signal; a first zero point detection circuit for detecting a point at which this second-order differential signal crosses zero potential; A space equipped with a second zero point detection circuit for detecting the point at which the detected probe current signal crosses zero potential, and a sample and hold circuit for extracting the probe voltage from the output signals of both of the zero point detection circuits. Potential detection device.
JP63126332A 1988-05-24 1988-05-24 Device for detecting space potential in probe characteristics Expired - Lifetime JPH0722038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63126332A JPH0722038B2 (en) 1988-05-24 1988-05-24 Device for detecting space potential in probe characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63126332A JPH0722038B2 (en) 1988-05-24 1988-05-24 Device for detecting space potential in probe characteristics

Publications (2)

Publication Number Publication Date
JPH01296598A true JPH01296598A (en) 1989-11-29
JPH0722038B2 JPH0722038B2 (en) 1995-03-08

Family

ID=14932564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63126332A Expired - Lifetime JPH0722038B2 (en) 1988-05-24 1988-05-24 Device for detecting space potential in probe characteristics

Country Status (1)

Country Link
JP (1) JPH0722038B2 (en)

Also Published As

Publication number Publication date
JPH0722038B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US6392416B1 (en) Electrode integrity checking
CN102598200B (en) For measuring the transducer of plasma parameter
JPH01296598A (en) Potential sensing device for space in probe characteristic
JPS59204785A (en) Optical detection
US5031125A (en) Apparatus for measuring electron temperature
JP4704641B2 (en) Method and apparatus for detecting slow and minute changes in electrical signal including sign of change, and circuit arrangement for accurate detection of peak value of AC voltage
JPH0855145A (en) Method and device for semiconductor process simulation
US4922205A (en) Apparatus for detecting contamination on probe surface
KR930007718B1 (en) Digitizer for a computer
JP3017314B2 (en) Probe surface contamination detector
US4370574A (en) Detector for time difference between transitions in two wave forms
JPH0665192B2 (en) Electronic temperature measuring device
JPH0466818A (en) Electromagnetic flow meter
JPS61290313A (en) Solid shape measuring apparatus
JPS61118823A (en) Voltage-sensitive coordinate input device
CN115046601A (en) Method for determining conductivity, electromagnetic induction flowmeter and operation method thereof
JPH0232575A (en) Detection of faint signal
SU798631A1 (en) Method of measuring complex-impedance components
JPH0665193B2 (en) Contamination detection device for probe surface
JPH0711991B2 (en) Electronic temperature measurement method with double probe
US6859061B2 (en) Device for analyzing failure in semiconductor device provided with internal voltage generating circuit
JPS5912570Y2 (en) Flow rate measuring device
JP2639276B2 (en) Signal waveform peak value detection method
JPS60245024A (en) Determining means of coordinate value of digitizer
JPS63301452A (en) Method for detecting drift of analizer