WO2022227047A1 - Method for managing a breaker and controller of a breaker - Google Patents

Method for managing a breaker and controller of a breaker Download PDF

Info

Publication number
WO2022227047A1
WO2022227047A1 PCT/CN2021/091641 CN2021091641W WO2022227047A1 WO 2022227047 A1 WO2022227047 A1 WO 2022227047A1 CN 2021091641 W CN2021091641 W CN 2021091641W WO 2022227047 A1 WO2022227047 A1 WO 2022227047A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
test
waveform
actual
time
Prior art date
Application number
PCT/CN2021/091641
Other languages
French (fr)
Inventor
Xin Ye
Congwen LU
Yanyan Cheng
Chunfa CHEN
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to EP21938521.8A priority Critical patent/EP4330693A1/en
Priority to PCT/CN2021/091641 priority patent/WO2022227047A1/en
Priority to CN202180090424.XA priority patent/CN116711048A/en
Publication of WO2022227047A1 publication Critical patent/WO2022227047A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/74Means for adjusting the conditions under which the device will function to provide protection

Definitions

  • Embodiments of the present disclosure generally relate to the field of breaker, and more particularly, to a method for managing a breaker and a controller of a breaker.
  • a circuit breaker usually does not contain a voltage detecting unit inside, especially for those circuit breakers with simple structures. In those cases, the time point where an actuating voltage is applied to a coil of the circuit breaker to actuate the circuit breaker cannot be obtained. As a result, a closing time and an opening time of the circuit breaker cannot be determined. In order to detect when the actuating voltage is applied to the coil, dedicated sensors are provided to the circuit breaker, which may increase the complexity and volume of the circuit breaker.
  • the closing time and the opening time of the circuit breaker may be determined based on the determined time point.
  • various example embodiments of the present disclosure provide a method for managing a breaker and a controller of a breaker for determining a time point where an actuating voltage is applied to the breaker in a manner of high accuracy, low complexity, and high reliability.
  • example embodiments of the present disclosure provide a method for managing a breaker.
  • the method comprises: obtaining at least one test time interval between at least one actuation point and at least one change point for at least one test current that is caused by applying at least one test voltage to a coil of the breaker, the at least one actuation point representing at least one time point where the at least one test voltage is applied to the coil to actuate the breaker, and the at least one change point representing at least one time point where the at least one test current in the coil starts to change; detecting a change point for an actual current that is caused by applying an actual voltage to the coil, the change point for the actual current representing a time point where the actual current in the coil starts to change; and determining an actuation point for the actual current at least based on the change point for the actual current and the at least one test time interval, the actuation point for the actual current representing a time point where the actual voltage is applied to the coil.
  • the actuation point for the actual current representing a time point where the actual voltage
  • determining the actuation point for the actual current further comprises: obtaining at least one test waveform of the at least one test current in the coil; selecting, from the at least one test waveform, a closest test waveform that is closest to an actual waveform of the actual current in the coil; and determining the actuation point for the actual current based on the closest test waveform.
  • determining the actuation point for the actual current based on the closest test waveform comprises: selecting, from the at least one test time interval, a test time interval corresponding to the closest test waveform; and determining the actuation point for the actual current based on the change point for the actual current and the selected test time interval.
  • selecting the closest test waveform further comprises: determining at least one similarity between the actual waveform and the at least one test waveform; and selecting the closest test waveform based on the at least one similarity.
  • determining the at least one similarity comprises: with respect to a target test waveform in the at least one test waveform, determining at least one target slope for the target test waveform associated with at least one target point after a change point for a test current corresponding to the target test waveform; determining at least one slope for the actual waveform associated with at least one time point, that is corresponding to the at least one target point, after the change point for the actual current; and determining a similarity between the actual waveform and the target test waveform based on a comparison of the at least one target slope and the at least one slope.
  • the closest waveform can be determined by comparing the slope at corresponding points in the test waveform and the actual waveform. It provides a simple way to determine the closest waveform.
  • determining the at least one slope for the actual waveform comprises: generating a line associated with a time point in the at least one time point based on any of: a tangent line of the actual waveform at the time point, a line defined by the time point and another time point in the at least one time point; and determining a slope for the actual waveform based on a slope of the line.
  • the closest waveform can be determined in several ways, and the accuracy of determining the closest waveform can be improved.
  • the method further comprises: detecting a complete point for the breaker, the complete point representing a time point where an actuation of the breaker is complete; and obtaining an operating time of the breaker based on the actuation point for the actual current and the complete point for the actual current.
  • the operating time of the breaker that is, the closing time and the opening time of the circuit breaker, can be determined in the case that the time point where the actual voltage being applied to the coil cannot be obtained.
  • the method herein provides a broader application range than the ordinary method of determining the closing time and the opening time of the breaker.
  • example embodiments of the present disclosure provide a controller of a breaker.
  • the controller comprises a storage module, configured to store at least one test time interval between at least one actuation point and at least one change point for at least one test current that is caused by applying at least one test voltage to a coil of the breaker, the at least one actuation point representing at least one time point where the at least one test voltage is applied to the coil to actuate the breaker, and the at least one change point representing at least one time point where the at least one test current in the coil starts to change; a detecting module, configured to detect a change point for an actual current that is caused by applying an actual voltage to the coil, the change point for the actual current representing a time point where the actual current in the coil starts to change; and a time determining module, configured to determine an actuation point for the actual current at least based on the change point for the actual current and the at least one test time interval, the actuation point for the actual current representing a time point where the actual voltage
  • the storage module is further configured to store at least one test waveform of the at least one test current in the coil
  • the detecting module is further configured to measure an actual waveform of the actual current in the coil
  • the time determining module is further configured to: obtain the at least one test waveform; select, from the at least one test waveform, a closest test waveform that is closest to the actual waveform; and determine the actuation point for the actual current based on the closest test waveform.
  • the time determining module is further configured to:select, from the at least one test time interval, a test time interval corresponding to the closest test waveform; and determine the actuation point for the actual current based on the change point for the actual current and the selected test time interval.
  • the time determining module is further configured to: determine at least one similarity between the actual waveform and the at least one test waveform; and select the closest test waveform based on the at least one similarity.
  • the time determining module is further configured to:with respect to a target test waveform in the at least one test waveform: determine at least one target slope for the target test waveform associated with at least one target point after a change point for a test current corresponding to the target test waveform; determine at least one slope for the actual waveform associated with at least one time point, that is corresponding to the at least one target point, after the change point for the actual current; and determine a similarity between the actual waveform and the target test waveform based on a comparison of the at least one target slope and the at least one slope.
  • the time determining module is further configured to: generate a line associated with a time point in the at least one time point based on any of: a tangent line of the actual waveform at the time point, a line defined by the time point and another time point in the at least one time point; and determine a slope for the actual waveform based on a slope of the line.
  • the detecting module is further configured to detect a complete point for the actual current, the complete point representing a time point where an actuation of the breaker is complete, wherein the time determining module is further configured to obtain an operating time of the breaker based on the actuation point for the actual current and the complete point for the actual current.
  • FIG. 1 is a schematic view illustrating a principle for determining an actuation point for an actual current in accordance with an embodiment of the present disclosure
  • FIG. 2 is a flow chart illustrating a method for managing a breaker in accordance with an embodiment of the present disclosure
  • FIG. 3 is a schematic view illustrating a procedure of determining the at least one slope for the actual waveform in accordance with an embodiment of the present disclosure
  • FIG. 4 is a schematic view illustrating a procedure of determining the at least one slope for the actual waveform in accordance with another embodiment of the present disclosure.
  • FIG. 5 is a schematic view illustrating a controller of a breaker in accordance with an embodiment of the present disclosure.
  • the term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ”
  • the term “or” is to be read as “and/or” unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “being operable to” is to mean a function, an action, a motion or a state can be achieved by an operation induced by a user or an external mechanism.
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • the terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
  • Some approaches have been provided for determining the time point where the actuating voltage is applied to the coil.
  • a specific voltage detecting unit and a specific voltage detecting interface are provided on the circuit board of the circuit breaker, and thus the complexity and size of the circuit breaker are increased. Therefore, it is desired to provide an effective solution for determining the time point where the actuating voltage is applied.
  • FIG. 1 is a schematic view 100 illustrating a principle for determining an actuation point for an actual current in accordance with an embodiment of the present disclosure.
  • plots 110 and 120 represent waveforms related to an actual current and a test current, respectively.
  • An actuation point, shown as T1 in FIG. 1, represents a time point where a test voltage is applied to a coil of a breaker to actuate the breaker.
  • a test time interval shown as T in FIG. 1, represents a time interval between the actuation point T1 and the change point T2.
  • an actuation point for an actual current shown as T1’ in FIG. 1, represents a time point where an actual voltage is applied to the coil.
  • a change point for the actual current shown as T2’ in FIG. 1, represents a time point where the actual current in the coil starts to change.
  • the actuation point for the actual current T1’ is determined based on the change point for the actual current T2’ and the test time interval T.
  • the above idea may be implemented in various manners, which will be described in detail in the following paragraphs.
  • plot 120 represents a test waveform of a test current in a coil of a breaker that is caused by applying a test voltage to the coil during a testing stage.
  • the testing stage may be implemented before the breaker is actually put into usage. For example, the testing stage may be implemented during a factory test.
  • plot 110 represents an actual waveform of an actual current in the coil that is caused by applying an actual voltage to the coil during an operating stage.
  • the operating stage is a stage where the breaker is actually put into usage.
  • the actual voltage is applied to the coil.
  • the method herein does not need a voltage detecting unit. Accordingly, the complexity and the volume of the circuit breaker can be reduced.
  • FIG. 2 is a flow chart illustrating a method 200 for managing a breaker in accordance with an embodiment of the present disclosure.
  • the method 200 in FIG. 2 can be implemented by any circuit breaker controller of the present disclosure.
  • At 210 at least one test time interval T is obtained.
  • the above test time interval T, the actuation point T1 and the change point T2 are measured during the testing stage.
  • one or more test voltages may be applied to the coil and then a group of T, T1, and T2 may be obtained from measurements related to each of the test voltages.
  • the test time interval T can be determined by subtracting T1 from T2.
  • the resulting test time interval T can be stored in a storage device during the testing stage.
  • at least one test waveform of the at least one test current in the coil under at least one test voltage is measured and stored during the test stage, and the at least one test time interval T can be obtained from the at least one test waveform.
  • the stored T, T1, T2 and the test waveform may be read from the storage device during the operating stage.
  • the test voltage is the rated voltage of the coil. In other embodiments, the test voltage can be set to another value, for example, 90%of the rated voltage, 110%of the rated voltage, and so on. It is to be understood that the above values are just examples and the scope of the present disclosure is not intended to be limited in this respect.
  • test voltage is the rated voltage of the coil. In other embodiments, the test voltage can be set to another value, for example, 90%of the rated voltage, 110%of the rated voltage, and so on. It is to be understood that the above values are just examples and the scope of the present disclosure is not intended to be limited in this respect.
  • test voltage can be ranged from 80%to 110%of the rated voltage of the coil. In other embodiments, the range can be set to another value, for example, 64%to 79%of the rated voltage, and so on. It is to be understood that the above values are just examples and the scope of the present disclosure is not intended to be limited in this respect.
  • test voltages can range from 80%to 110%of the rated voltage of the coil. In other embodiments, the range can be set to another value, for example, 64%to 79%of the rated voltage, and so on. It is to be understood that the above values are just examples and the scope of the present disclosure is not intended to be limited in this respect.
  • the change point T2’ for the actual current is detected.
  • the change point T2’ for the actual current is detected by a current detector during the operating stage, for example, a Hall sensor.
  • the current detector can be implemented by another type of detector. It is to be understood that the above types are just examples and the scope of the present disclosure is not intended to be limited in this respect.
  • the change point T2’ for the actual current is obtained from an actual waveform of the actual current in the coil.
  • the actual waveform is measured by a current detector, for example, a Hall sensor, during the operating stage.
  • the current detector can be implemented by another type of detector. It is to be understood that the above types are just examples and the scope of the present disclosure is not intended to be limited in this respect.
  • the actual voltage is stable and is set to a fixed value or around the fixed value (for example, the rated voltage of the coil)
  • only one test time interval T under the fixed value or around the fixed value is needed to determine the actuation point T1’ for the actual current.
  • an actual time interval T’ between the actual actuation point and the change point for the actual current T2’ changes according to the variation of the actual voltage.
  • more than one test time interval under different test voltages in the range are needed when determining the actuation point for the actual current T1’.
  • a closest test time interval that is closest to the actual time interval T’ of the actual current is selected to determine the actuation point T1’.
  • obtaining more than one test time interval may provide a more accurate determining of the actuation point T1’ for the actual current for more actual voltages.
  • the number of the test time intervals is ten. In other embodiments, another number is possible, for example, 5, 15, and so on. It is to be understood that the above values are just examples and the scope of the present disclosure is not intended to be limited in this respect.
  • the closest test time interval is based on the closest test waveform.
  • a test time interval T corresponding to the closest test waveform is selected.
  • the closest test waveform at least one similarity between the actual waveform and each of the test waveforms may be determined.
  • the actual waveform and a target test waveform are compared.
  • a target slope is determined for the target test waveform associated with a target point Ta after a change point T2 for a test current corresponding to the target test waveform.
  • a slope is determined for the actual waveform associated with a time point Ta’, that is corresponding to the target point Ta, after the change point for the actual current T2’.
  • a similarity is determined between the actual waveform and the target test waveform based on a comparison of the target slope and the slope.
  • the closest waveform can be determined by comparing the slope of corresponding points in the test waveform and the actual waveform. It provides a simple way to determine the closest waveform.
  • FIG. 3 illustrates a procedure 300 of determining the at least one slope for the actual waveform in accordance with an embodiment of the present disclosure.
  • plot 310 represents a target test waveform
  • plot 320 represents an actual waveform.
  • a tangent line 330 of the actual waveform at the time point Ta’ is generated, and a slope for the actual waveform is determined based on a slope of the tangent line 330.
  • a tangent line 340 of the target test waveform at the time point Ta is generated, and a slope for the target test waveform is determined based on a slope of the tangent line 340.
  • the time interval between Ta and T2 is same as the time interval between Ta’ and T2’.
  • the slope for each test waveform is determined in a similar manner, and a closest slope to the slope for the actual waveform is selected from the slopes for the test waveforms. Accordingly, the test waveform corresponding to the closest slope is determined.
  • FIG. 4 illustrates a procedure 400 of determining the at least one slope for the actual waveform in accordance with another embodiment of the present disclosure.
  • plot 410 represents a target test waveform
  • plot 420 represents an actual waveform.
  • a line 440 of a target test waveform defined by the time point Ta and another time point Tb’ is generated, and a slope for the target test waveform is determined based on a slope of the line 440.
  • the time interval between Ta and T2 is same as the time interval between Ta’ and T2’, and the time interval between Ta and Tb is same as the time interval between Ta’ and Tb’.
  • the slope for each test waveform is determined, and a closest slope to the slope for the actual waveform is selected from the slopes for the test waveforms. Accordingly, the test waveform corresponding to the closest slope is determined.
  • multiple pairs of points may be used to determine multiple slopes for the actual waveform and the target test waveform for further comparison. In these cases, the accuracy of selecting the closest waveform can be improved.
  • a complete time point T3’ where an actuation of the breaker is complete can be detected.
  • the actuation of the breaker comprises the opening of the breaker and the closing of the breaker. With the actuation point for the actual current T1’ and the complete time point T3’, the opening time and the closing time of the breaker can be determined.
  • the method as shown in FIGs. 1-4 does not need a voltage detecting unit, meanwhile the accuracy of determining the actuation point for the actual current T1’ is guaranteed. Accordingly, the closing time and the opening time of the circuit breaker are determined in a manner of high accuracy, low complexity, and high reliability.
  • FIG. 5 is a schematic view illustrating a controller of a breaker in accordance with an embodiment of the present disclosure.
  • the controller 500 generally includes a storage module 510, a detecting module 520, and a time determining module 530.
  • the storage module 510 can be configured to store the test time interval T. In some embodiments, the storage module 510 also can be configured to store a test waveform of the test current in the coil.
  • the storage module 510 comprises a machine readable storage medium. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In other embodiments, the storage module 510 can be implemented by other types of storage devices. It is to be understood that the above types are just examples and the scope of the present disclosure is not intended to be limited in this respect.
  • the detecting module 520 can be configured to detect a change point for the actual current T2’. That is, when the current in the coil starts to change after the actuating voltage is applied to the coil, the time point of the change is recorded by the detecting module 520.
  • the detecting module 520 also can be configured to measure an actual waveform of the actual current in the coil. That is, the current values and the time information of the current in the coil are recorded by the detecting module 520.
  • the detecting module 520 also can be configured to detect the complete time point for the breaker. That is, when the current or the voltage of the breaker changes, the time point where the change is done is recorded by the detecting module 520.
  • the detecting module 520 may comprise a current sensor, for example, Hall sensor, and so on. In other embodiments, the detecting module 520 may comprise a voltage sensor. It is to be understood that the above types are just examples and the scope of the present disclosure is not intended to be limited in this respect.
  • the time determining module 530 can be further configured to obtain a test waveform from the storage module 510 and obtain an actual waveform from the detecting module 520.
  • the time determining module 530 can be further configured to determine the change point for the actual current T2’ from the actual waveform, and determine the test time interval T from the test waveform.
  • the time determining module 530 can be further configured to obtain more than one test waveform from the storage module 510, to obtain an actual waveform from the detecting module 520.
  • the time determining module 530 can be further configured to select a closest test waveform that is closest to the actual waveform from the test waveforms, and obtain a test time interval T from the closest test waveform.
  • the time determining module 530 can be further configured to determine at least one similarity between the actual waveform and each of the test waveforms, and select the closest test waveform based on the at least one similarity.
  • the time determining module 530 can be configured to determine a target slope for the target test waveform, the target slope is associated with a target point Ta after the change point T2 for the target test waveform.
  • the time determining module 530 can be configured to determine a slope for the actual waveform, the slope is associated with a time point Ta’, that is corresponding to the target point Ta, after the change point for the actual current T2’.
  • the time determining module 530 can be configured to determine a similarity between the actual waveform and the target test waveform based on a comparison of the target slope and the slope.
  • the time determining module 530 compares more than one slope for the actual waveform and more than one target slope for the target test waveform to perform a more accurate comparison between the actual waveform and the target test waveform.
  • a target slope is a slope of a tangent line of the target point Ta
  • a slope for the actual waveform is a slope of a tangent line of the time point Ta’.
  • a target slope is a slope of a line across a pair of points on the target test waveform whose time point are Ta’ and Tb’
  • a slope for the actual waveform is a slope of a line across a pair of points on the actual waveform whose time point are Ta and Tb.
  • the time interval between Ta and T2 is same as the time interval between Ta’ and T2’
  • the time interval between Ta and Tb is same as the time interval between Ta’ and Tb’.
  • the slope for each test waveform is determined, and a closest slope to the slope for the actual waveform is selected from the slopes for the test waveforms. Accordingly, the test waveform corresponding to the closest slope is determined.
  • multiple pairs of points may be used to determine multiple slopes for the actual waveform and the target test waveform for further comparison.
  • the time determining module 530 is further configured to obtain a complete time point T3’ for the breaker from detecting module 520, and to determine an opening time or closing time of the breaker based on T3’ and T1’. For example, the time determining module 530 may determine the opening time or closing time of the breaker by subtract T3’ with T1’, that is, T3’ -T1’.
  • the time determining module 530 comprises a single chip microcomputer (SCM) .
  • the time determining module 530 can be other kinds of controller, for example, DSP, and so on. It is to be understood that the above types are just examples and the scope of the present disclosure is not intended to be limited in this respect.
  • inventive embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed.
  • inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein.

Abstract

Embodiments of the present disclosure relate to a method for managing a breaker and a controller of a breaker. In the method, at least one test time interval is obtained, the at least one test time interval is between at least one actuation point and at least one change point for at least one test current that is caused by applying at least one test voltage to a coil of the breaker. A change point is detected for an actual current that is caused by applying an actual voltage to the coil. An actuation point is determined for the actual current at least based on the change point for the actual current and the at least one test time interval. With these embodiments, the actuation point may be determined in a simple way without a need of a voltage sensor being deployed in the breaker.

Description

METHOD FOR MANAGING A BREAKER AND CONTROLLER OF A BREAKER FIELD
Embodiments of the present disclosure generally relate to the field of breaker, and more particularly, to a method for managing a breaker and a controller of a breaker.
BACKGROUND
A circuit breaker usually does not contain a voltage detecting unit inside, especially for those circuit breakers with simple structures. In those cases, the time point where an actuating voltage is applied to a coil of the circuit breaker to actuate the circuit breaker cannot be obtained. As a result, a closing time and an opening time of the circuit breaker cannot be determined. In order to detect when the actuating voltage is applied to the coil, dedicated sensors are provided to the circuit breaker, which may increase the complexity and volume of the circuit breaker.
Thus, there is a need for an improved approach for determining the time point where the actuating voltage is applied to the circuit breaker. Therefore, the closing time and the opening time of the circuit breaker may be determined based on the determined time point.
SUMMARY
In view of the foregoing problems, various example embodiments of the present disclosure provide a method for managing a breaker and a controller of a breaker for determining a time point where an actuating voltage is applied to the breaker in a manner of high accuracy, low complexity, and high reliability.
In a first aspect of the present disclosure, example embodiments of the present disclosure provide a method for managing a breaker. The method comprises: obtaining at least one test time interval between at least one actuation point and at least one change point for at least one test current that is caused by applying at least one test voltage to a coil of the breaker, the at least one actuation point representing at  least one time point where the at least one test voltage is applied to the coil to actuate the breaker, and the at least one change point representing at least one time point where the at least one test current in the coil starts to change; detecting a change point for an actual current that is caused by applying an actual voltage to the coil, the change point for the actual current representing a time point where the actual current in the coil starts to change; and determining an actuation point for the actual current at least based on the change point for the actual current and the at least one test time interval, the actuation point for the actual current representing a time point where the actual voltage is applied to the coil. In these embodiments, the actuation point for the actual current can be determined in a simple way without a need of a voltage sensor being deployed in the breaker, which results in a lower complexity and a smaller breaker.
In some embodiments, determining the actuation point for the actual current further comprises: obtaining at least one test waveform of the at least one test current in the coil; selecting, from the at least one test waveform, a closest test waveform that is closest to an actual waveform of the actual current in the coil; and determining the actuation point for the actual current based on the closest test waveform. With these embodiments, actuation points for the actual currents under different actual voltages can be determined accurately, which increases the application range of the method.
In some embodiments, determining the actuation point for the actual current based on the closest test waveform comprises: selecting, from the at least one test time interval, a test time interval corresponding to the closest test waveform; and determining the actuation point for the actual current based on the change point for the actual current and the selected test time interval. With these embodiments, the accuracy of determining the actuation point for the actual current can be improved.
In some embodiments, selecting the closest test waveform further comprises: determining at least one similarity between the actual waveform and the at least one test waveform; and selecting the closest test waveform based on the at least one similarity. With these embodiments, many kinds of similarities can be used to select the closest test waveform, and the accuracy of selecting the closest test waveform can be improved.
In some embodiments, determining the at least one similarity comprises: with respect to a target test waveform in the at least one test waveform, determining at least one target slope for the target test waveform associated with at least one target point after a change point for a test current corresponding to the target test waveform; determining at least one slope for the actual waveform associated with at least one time point, that is corresponding to the at least one target point, after the change point for the actual current; and determining a similarity between the actual waveform and the target test waveform based on a comparison of the at least one target slope and the at least one slope. With these embodiments, the closest waveform can be determined by comparing the slope at corresponding points in the test waveform and the actual waveform. It provides a simple way to determine the closest waveform.
In some embodiments, determining the at least one slope for the actual waveform comprises: generating a line associated with a time point in the at least one time point based on any of: a tangent line of the actual waveform at the time point, a line defined by the time point and another time point in the at least one time point; and determining a slope for the actual waveform based on a slope of the line. With these embodiments, the closest waveform can be determined in several ways, and the accuracy of determining the closest waveform can be improved.
In some embodiments, the method further comprises: detecting a complete point for the breaker, the complete point representing a time point where an actuation of the breaker is complete; and obtaining an operating time of the breaker based on the actuation point for the actual current and the complete point for the actual current. With these embodiments, the operating time of the breaker, that is, the closing time and the opening time of the circuit breaker, can be determined in the case that the time point where the actual voltage being applied to the coil cannot be obtained. As a result, the method herein provides a broader application range than the ordinary method of determining the closing time and the opening time of the breaker.
In a second aspect of the present disclosure, example embodiments of the present disclosure provide a controller of a breaker. The controller comprises a storage module, configured to store at least one test time interval between at least one actuation point and at least one change point for at least one test current that is caused by applying at least one test voltage to a coil of the breaker, the at least one actuation  point representing at least one time point where the at least one test voltage is applied to the coil to actuate the breaker, and the at least one change point representing at least one time point where the at least one test current in the coil starts to change; a detecting module, configured to detect a change point for an actual current that is caused by applying an actual voltage to the coil, the change point for the actual current representing a time point where the actual current in the coil starts to change; and a time determining module, configured to determine an actuation point for the actual current at least based on the change point for the actual current and the at least one test time interval, the actuation point for the actual current representing a time point where the actual voltage is applied to the coil.
In some embodiments, the storage module is further configured to store at least one test waveform of the at least one test current in the coil, the detecting module is further configured to measure an actual waveform of the actual current in the coil, the time determining module is further configured to: obtain the at least one test waveform; select, from the at least one test waveform, a closest test waveform that is closest to the actual waveform; and determine the actuation point for the actual current based on the closest test waveform.
In some embodiments, the time determining module is further configured to:select, from the at least one test time interval, a test time interval corresponding to the closest test waveform; and determine the actuation point for the actual current based on the change point for the actual current and the selected test time interval.
In some embodiments, the time determining module is further configured to: determine at least one similarity between the actual waveform and the at least one test waveform; and select the closest test waveform based on the at least one similarity.
In some embodiments, the time determining module is further configured to:with respect to a target test waveform in the at least one test waveform: determine at least one target slope for the target test waveform associated with at least one target point after a change point for a test current corresponding to the target test waveform; determine at least one slope for the actual waveform associated with at least one time point, that is corresponding to the at least one target point, after the change point for  the actual current; and determine a similarity between the actual waveform and the target test waveform based on a comparison of the at least one target slope and the at least one slope.
In some embodiments, the time determining module is further configured to: generate a line associated with a time point in the at least one time point based on any of: a tangent line of the actual waveform at the time point, a line defined by the time point and another time point in the at least one time point; and determine a slope for the actual waveform based on a slope of the line.
In some embodiments, the detecting module is further configured to detect a complete point for the actual current, the complete point representing a time point where an actuation of the breaker is complete, wherein the time determining module is further configured to obtain an operating time of the breaker based on the actuation point for the actual current and the complete point for the actual current.
It is to be understood that the Summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
DESCRIPTION OF DRAWINGS
Through the following detailed descriptions with reference to the accompanying drawings, the above and other objectives, features and advantages of the example embodiments disclosed herein will become more comprehensible. In the drawings, several example embodiments disclosed herein will be illustrated in an exemplary and in a non-limiting manner, wherein:
FIG. 1 is a schematic view illustrating a principle for determining an actuation point for an actual current in accordance with an embodiment of the present disclosure;
FIG. 2 is a flow chart illustrating a method for managing a breaker in accordance with an embodiment of the present disclosure;
FIG. 3 is a schematic view illustrating a procedure of determining the at  least one slope for the actual waveform in accordance with an embodiment of the present disclosure;
FIG. 4 is a schematic view illustrating a procedure of determining the at least one slope for the actual waveform in accordance with another embodiment of the present disclosure; and
FIG. 5 is a schematic view illustrating a controller of a breaker in accordance with an embodiment of the present disclosure.
Throughout the drawings, the same or similar reference symbols are used to indicate the same or similar elements.
DETAILED DESCRIPTION OF EMBODIEMTNS
Principles of the present disclosure will now be described with reference to several example embodiments shown in the drawings. Though example embodiments of the present disclosure are illustrated in the drawings, it is to be understood that the embodiments are described only to facilitate those skilled in the art in better understanding and thereby achieving the present disclosure, rather than to limit the scope of the disclosure in any manner.
The term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “or” is to be read as “and/or” unless the context clearly indicates otherwise. The term “based on” is to be read as “based at least in part on. ” The term “being operable to” is to mean a function, an action, a motion or a state can be achieved by an operation induced by a user or an external mechanism. The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
Some approaches have been provided for determining the time point where the actuating voltage is applied to the coil. In some approaches, a specific voltage  detecting unit and a specific voltage detecting interface are provided on the circuit board of the circuit breaker, and thus the complexity and size of the circuit breaker are increased. Therefore, it is desired to provide an effective solution for determining the time point where the actuating voltage is applied.
In view of the above drawbacks, embodiments of the present disclosure provide a method for managing a breaker and a controller of a breaker. For the sake of description, the following paragraph first provides a brief description of some terms used in the present disclosure with reference to FIG. 1. FIG. 1 is a schematic view 100 illustrating a principle for determining an actuation point for an actual current in accordance with an embodiment of the present disclosure. In FIG. 1,  plots  110 and 120 represent waveforms related to an actual current and a test current, respectively. An actuation point, shown as T1 in FIG. 1, represents a time point where a test voltage is applied to a coil of a breaker to actuate the breaker. A change point, shown as T2 in FIG. 1, represents a time point where a test current in the coil starts to change. A test time interval, shown as T in FIG. 1, represents a time interval between the actuation point T1 and the change point T2. Similarly, an actuation point for an actual current, shown as T1’ in FIG. 1, represents a time point where an actual voltage is applied to the coil. A change point for the actual current, shown as T2’ in FIG. 1, represents a time point where the actual current in the coil starts to change.
According to embodiments of the present disclosure, the actuation point for the actual current T1’ is determined based on the change point for the actual current T2’ and the test time interval T. The above idea may be implemented in various manners, which will be described in detail in the following paragraphs.
Hereinafter, the details of the present disclosure will be described with reference to FIGs. 1-4. As shown in FIG. 1, plot 120 represents a test waveform of a test current in a coil of a breaker that is caused by applying a test voltage to the coil during a testing stage. Time points T1 and T2 can be measured during the testing stage, and the test time interval T can be obtained based on the time points T1 and T2. That is, T=T2-T1. Here, the testing stage may be implemented before the breaker is actually put into usage. For example, the testing stage may be implemented during a factory test.
Further, plot 110 represents an actual waveform of an actual current in the coil that is caused by applying an actual voltage to the coil during an operating stage. Here, the operating stage is a stage where the breaker is actually put into usage. During the operating stage, the actual voltage is applied to the coil. Here, the actual actuation point T1’ cannot be obtained directly, and the change point T2’ for the actual current can be measured by a current detecting device. Based on the test time interval T and the change point T2’ for the actual current, the actuation point T1’ for the actual current can be determined as: T1’ =T2’ -T.
Compared with the existing solutions where the actuation point T1’ for the actual current is directly measured by a voltage detecting unit, the method herein does not need a voltage detecting unit. Accordingly, the complexity and the volume of the circuit breaker can be reduced.
FIG. 2 is a flow chart illustrating a method 200 for managing a breaker in accordance with an embodiment of the present disclosure. The method 200 in FIG. 2 can be implemented by any circuit breaker controller of the present disclosure.
At 210, at least one test time interval T is obtained. Here, the above test time interval T, the actuation point T1 and the change point T2 are measured during the testing stage. For example, one or more test voltages may be applied to the coil and then a group of T, T1, and T2 may be obtained from measurements related to each of the test voltages. The test time interval T can be determined by subtracting T1 from T2. The resulting test time interval T can be stored in a storage device during the testing stage. In some embodiments, at least one test waveform of the at least one test current in the coil under at least one test voltage is measured and stored during the test stage, and the at least one test time interval T can be obtained from the at least one test waveform. Here, the stored T, T1, T2 and the test waveform may be read from the storage device during the operating stage.
In some embodiments, only one actuation point T1 and only one change point T2 are measured and stored during the testing stage. In some embodiments, the test voltage is the rated voltage of the coil. In other embodiments, the test voltage can be set to another value, for example, 90%of the rated voltage, 110%of the rated voltage, and so on. It is to be understood that the above values are just examples and  the scope of the present disclosure is not intended to be limited in this respect.
In some embodiments, only one test waveform under one test voltage is measured and stored during the testing stage. In some embodiments, the test voltage is the rated voltage of the coil. In other embodiments, the test voltage can be set to another value, for example, 90%of the rated voltage, 110%of the rated voltage, and so on. It is to be understood that the above values are just examples and the scope of the present disclosure is not intended to be limited in this respect.
In some embodiments, more than one actuation point T1 and more than one change point T2 under different test voltages are measured and stored during the testing stage. In some embodiments, the test voltage can be ranged from 80%to 110%of the rated voltage of the coil. In other embodiments, the range can be set to another value, for example, 64%to 79%of the rated voltage, and so on. It is to be understood that the above values are just examples and the scope of the present disclosure is not intended to be limited in this respect.
In some embodiments, more than one test waveform under different test voltages are measured and stored during the testing stage. In some embodiments, the test voltages can range from 80%to 110%of the rated voltage of the coil. In other embodiments, the range can be set to another value, for example, 64%to 79%of the rated voltage, and so on. It is to be understood that the above values are just examples and the scope of the present disclosure is not intended to be limited in this respect.
Still referring to FIG. 2, at 220, the change point T2’ for the actual current is detected. In some embodiments, the change point T2’ for the actual current is detected by a current detector during the operating stage, for example, a Hall sensor. In other embodiments, the current detector can be implemented by another type of detector. It is to be understood that the above types are just examples and the scope of the present disclosure is not intended to be limited in this respect.
In some embodiments, the change point T2’ for the actual current is obtained from an actual waveform of the actual current in the coil. The actual waveform is measured by a current detector, for example, a Hall sensor, during the operating stage. Alternatively and/or in addition, the current detector can be implemented by another type of detector. It is to be understood that the above types  are just examples and the scope of the present disclosure is not intended to be limited in this respect.
Still referring to FIG. 2, at 230, the actuation point T1’ for the actual current is determined based on the change point for the actual current T2’ and the test time interval T. That is, the actuation point for the actual current T1’ =T2’ -T. During the operating stage, when the actual voltage is stable and is set to a fixed value or around the fixed value (for example, the rated voltage of the coil) , only one test time interval T under the fixed value or around the fixed value is needed to determine the actuation point T1’ for the actual current.
When the actual voltage is unstable and varies in a range, for example, 60%to 110%of the rated voltage, an actual time interval T’ between the actual actuation point and the change point for the actual current T2’ changes according to the variation of the actual voltage. As a result, more than one test time interval under different test voltages in the range are needed when determining the actuation point for the actual current T1’. A closest test time interval that is closest to the actual time interval T’ of the actual current is selected to determine the actuation point T1’.
Compared with the cases that only one test time interval is obtained, obtaining more than one test time interval may provide a more accurate determining of the actuation point T1’ for the actual current for more actual voltages. The more the test time intervals are measured and stored during the testing stage, the more accuracy for determining the actuation point T1’ for the actual current may be provided during the operating stage. In some embodiments, the number of the test time intervals is ten. In other embodiments, another number is possible, for example, 5, 15, and so on. It is to be understood that the above values are just examples and the scope of the present disclosure is not intended to be limited in this respect.
In order to determine the closest test time interval, other information in addition to the actuation point T1 and the change point T2 of the current in the coil may be obtained. In some embodiments, the closest test time interval is based on the closest test waveform. When the closest test waveform is determined, a test time interval T corresponding to the closest test waveform is selected.
To select the closest test waveform, at least one similarity between the  actual waveform and each of the test waveforms may be determined. In some embodiments, the actual waveform and a target test waveform are compared. With respect to the target test waveform in the test waveforms, a target slope is determined for the target test waveform associated with a target point Ta after a change point T2 for a test current corresponding to the target test waveform. Then, a slope is determined for the actual waveform associated with a time point Ta’, that is corresponding to the target point Ta, after the change point for the actual current T2’. Next, a similarity is determined between the actual waveform and the target test waveform based on a comparison of the target slope and the slope. With these embodiments, the closest waveform can be determined by comparing the slope of corresponding points in the test waveform and the actual waveform. It provides a simple way to determine the closest waveform.
In some embodiments, more than one slope are determined for the actual waveform and the target test waveform to perform a more accuracy comparison between the actual waveform and the target test waveform. With these embodiments, the accuracy of determining the closest test waveform can be improved. FIG. 3 illustrates a procedure 300 of determining the at least one slope for the actual waveform in accordance with an embodiment of the present disclosure. As shown in FIG. 3, plot 310 represents a target test waveform, and plot 320 represents an actual waveform. A tangent line 330 of the actual waveform at the time point Ta’ is generated, and a slope for the actual waveform is determined based on a slope of the tangent line 330. Also, a tangent line 340 of the target test waveform at the time point Ta is generated, and a slope for the target test waveform is determined based on a slope of the tangent line 340. The time interval between Ta and T2 is same as the time interval between Ta’ and T2’. The slope for each test waveform is determined in a similar manner, and a closest slope to the slope for the actual waveform is selected from the slopes for the test waveforms. Accordingly, the test waveform corresponding to the closest slope is determined.
Having described determining the slope based on the tangent line at one point, reference will be made to FIG. 4 for determining the slope based on a line defined by two points. FIG. 4 illustrates a procedure 400 of determining the at least one slope for the actual waveform in accordance with another embodiment of the  present disclosure. As shown in FIG. 4, plot 410 represents a target test waveform, and plot 420 represents an actual waveform. A line 430 of the actual waveform defined by the time point Ta’ and another time point Tb’, for example, across Ta’ and Tb’, is generated. Then, a slope for the actual waveform is determined based on a slope of the line 430. Also, a line 440 of a target test waveform defined by the time point Ta and another time point Tb’ is generated, and a slope for the target test waveform is determined based on a slope of the line 440. The time interval between Ta and T2 is same as the time interval between Ta’ and T2’, and the time interval between Ta and Tb is same as the time interval between Ta’ and Tb’. The slope for each test waveform is determined, and a closest slope to the slope for the actual waveform is selected from the slopes for the test waveforms. Accordingly, the test waveform corresponding to the closest slope is determined.
In some embodiments, multiple pairs of points may be used to determine multiple slopes for the actual waveform and the target test waveform for further comparison. In these cases, the accuracy of selecting the closest waveform can be improved.
After the actuation point for the actual current T1’ is determined, a complete time point T3’ where an actuation of the breaker is complete can be detected. The actuation of the breaker comprises the opening of the breaker and the closing of the breaker. With the actuation point for the actual current T1’ and the complete time point T3’, the opening time and the closing time of the breaker can be determined.
Compared with the solutions wherein the actuation point T1’ for the actual current is determined by a voltage detecting unit, the method as shown in FIGs. 1-4 does not need a voltage detecting unit, meanwhile the accuracy of determining the actuation point for the actual current T1’ is guaranteed. Accordingly, the closing time and the opening time of the circuit breaker are determined in a manner of high accuracy, low complexity, and high reliability.
Hereinafter, a controller of a breaker of the present disclosure will be described in detail with reference to FIG. 5. FIG. 5 is a schematic view illustrating a controller of a breaker in accordance with an embodiment of the present disclosure.  As shown in FIG. 5, the controller 500 generally includes a storage module 510, a detecting module 520, and a time determining module 530.
The storage module 510 can be configured to store the test time interval T. In some embodiments, the storage module 510 also can be configured to store a test waveform of the test current in the coil.
In some embodiments, the storage module 510 comprises a machine readable storage medium. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In other embodiments, the storage module 510 can be implemented by other types of storage devices. It is to be understood that the above types are just examples and the scope of the present disclosure is not intended to be limited in this respect.
The detecting module 520 can be configured to detect a change point for the actual current T2’. That is, when the current in the coil starts to change after the actuating voltage is applied to the coil, the time point of the change is recorded by the detecting module 520.
In some embodiments, the detecting module 520 also can be configured to measure an actual waveform of the actual current in the coil. That is, the current values and the time information of the current in the coil are recorded by the detecting module 520.
In some embodiments, the detecting module 520 also can be configured to detect the complete time point for the breaker. That is, when the current or the voltage of the breaker changes, the time point where the change is done is recorded by the detecting module 520.
In some embodiments, the detecting module 520 may comprise a current sensor, for example, Hall sensor, and so on. In other embodiments, the detecting module 520 may comprise a voltage sensor. It is to be understood that the above  types are just examples and the scope of the present disclosure is not intended to be limited in this respect.
The time determining module 530 can be configured to obtain the change point for the actual current T2’ from the detecting module 520 and obtain the test time interval T from the storage module 510, and can be configured to determine the actuation point for the actual current T1’ based on T2’ and T. For example, the time determining module 530 may determine T1’ by subtracting T from T2’. That is, T1’=T2’ -T.
In some embodiments, the time determining module 530 can be further configured to obtain a test waveform from the storage module 510 and obtain an actual waveform from the detecting module 520. The time determining module 530 can be further configured to determine the change point for the actual current T2’ from the actual waveform, and determine the test time interval T from the test waveform.
In some embodiments, the time determining module 530 can be further configured to obtain more than one test waveform from the storage module 510, to obtain an actual waveform from the detecting module 520. The time determining module 530 can be further configured to select a closest test waveform that is closest to the actual waveform from the test waveforms, and obtain a test time interval T from the closest test waveform.
In some embodiments, the time determining module 530 can be further configured to determine at least one similarity between the actual waveform and each of the test waveforms, and select the closest test waveform based on the at least one similarity.
In some embodiments, the time determining module 530 can be configured to determine a target slope for the target test waveform, the target slope is associated with a target point Ta after the change point T2 for the target test waveform. Next, the time determining module 530 can be configured to determine a slope for the actual waveform, the slope is associated with a time point Ta’, that is corresponding to the target point Ta, after the change point for the actual current T2’. Next, the time determining module 530 can be configured to determine a similarity between the  actual waveform and the target test waveform based on a comparison of the target slope and the slope.
In some embodiments, the time determining module 530 compares more than one slope for the actual waveform and more than one target slope for the target test waveform to perform a more accurate comparison between the actual waveform and the target test waveform.
In some embodiments, a target slope is a slope of a tangent line of the target point Ta, and a slope for the actual waveform is a slope of a tangent line of the time point Ta’. In some embodiments, a target slope is a slope of a line across a pair of points on the target test waveform whose time point are Ta’ and Tb’, and a slope for the actual waveform is a slope of a line across a pair of points on the actual waveform whose time point are Ta and Tb. The time interval between Ta and T2 is same as the time interval between Ta’ and T2’, and the time interval between Ta and Tb is same as the time interval between Ta’ and Tb’. The slope for each test waveform is determined, and a closest slope to the slope for the actual waveform is selected from the slopes for the test waveforms. Accordingly, the test waveform corresponding to the closest slope is determined.
In some embodiments, multiple pairs of points may be used to determine multiple slopes for the actual waveform and the target test waveform for further comparison.
In some embodiments, the time determining module 530 is further configured to obtain a complete time point T3’ for the breaker from detecting module 520, and to determine an opening time or closing time of the breaker based on T3’ and T1’. For example, the time determining module 530 may determine the opening time or closing time of the breaker by subtract T3’ with T1’, that is, T3’ -T1’.
In some embodiments, the time determining module 530 comprises a single chip microcomputer (SCM) . In other embodiments, the time determining module 530 can be other kinds of controller, for example, DSP, and so on. It is to be understood that the above types are just examples and the scope of the present disclosure is not intended to be limited in this respect.
While several inventive embodiments have been described and illustrated  herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.

Claims (14)

  1. A method (200) for managing a breaker, comprising:
    obtaining (210) at least one test time interval between at least one actuation point and at least one change point for at least one test current that is caused by applying at least one test voltage to a coil of the breaker, the at least one actuation point representing at least one time point where the at least one test voltage is applied to the coil to actuate the breaker, and the at least one change point representing at least one time point where the at least one test current in the coil starts to change;
    detecting (220) a change point for an actual current that is caused by applying an actual voltage to the coil, the change point for the actual current representing a time point where the actual current in the coil starts to change; and
    determining (230) an actuation point for the actual current at least based on the change point for the actual current and the at least one test time interval, the actuation point for the actual current representing a time point where the actual voltage is applied to the coil.
  2. The method (200) according to claim 1, wherein determining (230) the actuation point for the actual current further comprises:
    obtaining at least one test waveform of the at least one test current in the coil;
    selecting, from the at least one test waveform, a closest test waveform that is closest to an actual waveform of the actual current in the coil; and
    determining the actuation point for the actual current based on the closest test waveform.
  3. The method (200) according to claim 2, wherein determining (230) the actuation point for the actual current based on the closest test waveform comprises:
    selecting, from the at least one test time interval, a test time interval corresponding to the closest test waveform; and
    determining the actuation point for the actual current based on the change point for the actual current and the selected test time interval.
  4. The method (200) according to claim 2, wherein selecting the closest test waveform further comprises:
    determining at least one similarity between the actual waveform and the at least one test waveform; and
    selecting the closest test waveform based on the at least one similarity.
  5. The method (200) according to claim 4, wherein determining the at least one similarity comprises: with respect to a target test waveform in the at least one test waveform,
    determining at least one target slope for the target test waveform associated with at least one target point after a change point for a test current corresponding to the target test waveform;
    determining at least one slope for the actual waveform associated with at least one time point, that is corresponding to the at least one target point, after the change point for the actual current; and
    determining a similarity between the actual waveform and the target test waveform based on a comparison of the at least one target slope and the at least one slope.
  6. The method (200) according to claim 5, wherein determining the at least one slope for the actual waveform comprises:
    generating a line associated with a time point in the at least one time point based on any of: a tangent line of the actual waveform at the time point, a line defined by the time point and another time point in the at least one time point; and
    determining a slope for the actual waveform based on a slope of the line.
  7. The method (200) according to any of claims 1-6, further comprising:
    detecting a complete point for the breaker, the complete point representing a time point where an actuation of the breaker is complete; and
    obtaining an operating time of the breaker based on the actuation point for the actual current and the complete point for the actual current.
  8. A controller (500) of a breaker, comprising:
    a storage module (510) , configured to store at least one test time interval between at least one actuation point and at least one change point for at least one test current that is caused by applying at least one test voltage to a coil of the breaker, the at least one actuation point representing at least one time point where the at least one test voltage is applied to the coil to actuate the breaker, and the at least one change point representing at least one time point where the at least one test current in the coil starts to change;
    a detecting module (520) , configured to detect a change point for an actual current that is caused by applying an actual voltage to the coil, the change point for the actual current representing a time point where the actual current in the coil starts to change; and
    a time determining module (530) , configured to determine an actuation point for the actual current at least based on the change point for the actual current and the at least one test time interval, the actuation point for the actual current representing a time point where the actual voltage is applied to the coil.
  9. The controller (500) according to claim 8, wherein the storage module (510) is further configured to store at least one test waveform of the at least one test current in the coil,
    the detecting module (520) is further configured to measure an actual waveform of the actual current in the coil,
    the time determining module (530) is further configured to:
    obtain the at least one test waveform;
    select, from the at least one test waveform, a closest test waveform that is closest to the actual waveform; and
    determine the actuation point for the actual current based on the closest test waveform.
  10. The controller (500) according to claim 9, wherein the time determining module (530) is further configured to:
    select, from the at least one test time interval, a test time interval corresponding to the closest test waveform; and
    determine the actuation point for the actual current based on the change point  for the actual current and the selected test time interval.
  11. The controller (500) according to claim 9, wherein the time determining module (530) is further configured to:
    determine at least one similarity between the actual waveform and the at least one test waveform; and
    select the closest test waveform based on the at least one similarity.
  12. The controller (500) according to claim 11, wherein the time determining module (530) is further configured to: with respect to a target test waveform in the at least one test waveform:
    determine at least one target slope for the target test waveform associated with at least one target point after a change point for a test current corresponding to the target test waveform;
    determine at least one slope for the actual waveform associated with at least one time point, that is corresponding to the at least one target point, after the change point for the actual current; and
    determine a similarity between the actual waveform and the target test waveform based on a comparison of the at least one target slope and the at least one slope.
  13. The controller (500) according to claim 12, wherein the time determining module (530) is further configured to:
    generate a line associated with a time point in the at least one time point based on any of: a tangent line of the actual waveform at the time point, a line defined by the time point and another time point in the at least one time point; and
    determine a slope for the actual waveform based on a slope of the line.
  14. The controller (500) according to any of claims 8-13, wherein the detecting module (520) is further configured to detect a complete point for the breaker, the complete point representing a time point where an actuation of the breaker is complete,
    wherein the time determining module (530) is further configured to obtain an  operating time of the breaker based on the actuation point for the actual current and the complete point for the actual current.
PCT/CN2021/091641 2021-04-30 2021-04-30 Method for managing a breaker and controller of a breaker WO2022227047A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21938521.8A EP4330693A1 (en) 2021-04-30 2021-04-30 Method for managing a breaker and controller of a breaker
PCT/CN2021/091641 WO2022227047A1 (en) 2021-04-30 2021-04-30 Method for managing a breaker and controller of a breaker
CN202180090424.XA CN116711048A (en) 2021-04-30 2021-04-30 Method for managing a circuit breaker and controller for a circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/091641 WO2022227047A1 (en) 2021-04-30 2021-04-30 Method for managing a breaker and controller of a breaker

Publications (1)

Publication Number Publication Date
WO2022227047A1 true WO2022227047A1 (en) 2022-11-03

Family

ID=83847533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091641 WO2022227047A1 (en) 2021-04-30 2021-04-30 Method for managing a breaker and controller of a breaker

Country Status (3)

Country Link
EP (1) EP4330693A1 (en)
CN (1) CN116711048A (en)
WO (1) WO2022227047A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202512214U (en) * 2012-04-19 2012-10-31 黄彦 Breaker operation time detecting device
US20130257438A1 (en) * 2012-03-27 2013-10-03 Douglas Hogg Testing a circuit assembly that contains a piezoelectric switch
CN103969576A (en) * 2014-04-24 2014-08-06 国家电网公司 Dynamic characteristic analyzer for dual-grounding circuit breaker
CN104764993A (en) * 2014-01-07 2015-07-08 国家电网公司 Detection method and device for high-voltage circuit breaker
CN106249140A (en) * 2016-09-29 2016-12-21 北京慧智神光科技有限公司 A kind of method and device for detecting breaker actuation time and speed of action

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130257438A1 (en) * 2012-03-27 2013-10-03 Douglas Hogg Testing a circuit assembly that contains a piezoelectric switch
CN202512214U (en) * 2012-04-19 2012-10-31 黄彦 Breaker operation time detecting device
CN104764993A (en) * 2014-01-07 2015-07-08 国家电网公司 Detection method and device for high-voltage circuit breaker
CN103969576A (en) * 2014-04-24 2014-08-06 国家电网公司 Dynamic characteristic analyzer for dual-grounding circuit breaker
CN106249140A (en) * 2016-09-29 2016-12-21 北京慧智神光科技有限公司 A kind of method and device for detecting breaker actuation time and speed of action

Also Published As

Publication number Publication date
EP4330693A1 (en) 2024-03-06
CN116711048A (en) 2023-09-05

Similar Documents

Publication Publication Date Title
US6263170B1 (en) Consumable component identification and detection
US10401395B2 (en) Monitoring a linear variable differential transformer sensor
US11404223B2 (en) Method and device for diagnosing wear of an electrical switching unit, and electrical unit comprising such a device
US20130342950A1 (en) Systems and Methods for Determining Actuation Duration of a Relay
CN102903395A (en) Reliability testing method for memories
CN109307795B (en) Waveform point detection method and device
CN105203892A (en) Reed switch characteristic testing method and reed switch characteristic tester
WO2022227047A1 (en) Method for managing a breaker and controller of a breaker
KR20180075700A (en) Electrical path length determination
CN116893358A (en) Storage battery type determination system, storage battery type determination method, and storage medium
CN103076494B (en) Power consumption measuring device and method
US7957924B2 (en) System and method for distortion analysis
KR101762356B1 (en) Apparatus for partial dishcarge detection to power equipment
KR100996091B1 (en) Semiconductor memory device for outputting internal detection signals in test mode
JP5672783B2 (en) Measuring apparatus, measuring program and measuring method
Qerkini et al. Lifetime characterization of partial discharge properties of insulation material exposed to voltage pulse stress
US7228475B2 (en) Program, test apparatus and testing method
CN113450866B (en) Memory test method
Qerkini et al. Identification of stator insulation material partial discharge parameters during lifetime
US11513090B2 (en) Apparatus and method for evaluating the quality of at least one solder joint between a printed circuit board and a current sensor
KR102468870B1 (en) Refresh time detecting circuit and semiconductor device including the same
CN115728583A (en) Method and system for detecting charging system state of electric vehicle
CN115524597A (en) Method and device for testing chip failure
SU1471157A1 (en) Method of assessing reliability of electronic devices
Duplessis et al. A smart way to minimize test time for transformer dielectric measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938521

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180090424.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021938521

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021938521

Country of ref document: EP

Effective date: 20231130

NENP Non-entry into the national phase

Ref country code: DE