JPH01296557A - Glow discharge mass spectrometry for insulator material - Google Patents

Glow discharge mass spectrometry for insulator material

Info

Publication number
JPH01296557A
JPH01296557A JP63127288A JP12728888A JPH01296557A JP H01296557 A JPH01296557 A JP H01296557A JP 63127288 A JP63127288 A JP 63127288A JP 12728888 A JP12728888 A JP 12728888A JP H01296557 A JPH01296557 A JP H01296557A
Authority
JP
Japan
Prior art keywords
gallium
powder
insulator material
mass spectrometry
glow discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63127288A
Other languages
Japanese (ja)
Inventor
Yukikazu Kamimura
上村 幸和
Yoichi Umada
馬田 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63127288A priority Critical patent/JPH01296557A/en
Publication of JPH01296557A publication Critical patent/JPH01296557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To quickly and concurrently analyze many elements of impurities in an insulator material with high sensitivity by mixing high-purity gallium and the powder of an insulator material and pressurizing and molding the mixture to form an electrode for use. CONSTITUTION:High-purity gallium of 5N or above is used. High-purity gallium is mixed with the powder of an insulator material, the mixture is put in a container and slowly stirred and mixed with a stirring bar, then gallium is stuck on the surface of the insulator and liquid gallium is decreased. The mixing ratio is generally set to the range of 30-200wt.%. The sample powder thus obtained is filled in a molding die. It is then pressurized and molded to manufacture a firm bar-shaped electrode.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は絶縁物材料のグロー放電質量分析法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to glow discharge mass spectrometry of insulating materials.

〈従来の技術〉 近年、ファインセラミック、また電子材料などの分野で
高純度の絶縁物材料が使用され、またそれに伴いこれら
の絶縁物材料中に含まれる微量の不純物の同定、定量を
迅速に行う分析法の確立が要望されている。
<Conventional technology> In recent years, high-purity insulating materials have been used in fields such as fine ceramics and electronic materials, and with this, it has become necessary to quickly identify and quantify minute amounts of impurities contained in these insulating materials. There is a need to establish an analytical method.

絶縁物材料中の不純物の分析法としては、発光法、原子
吸光法などが知られているが、発光法ではppm以下の
不純物の分析が困難であり、また原子吸光法では分析試
料の分解等の前処理に時間がかかり、多元素の迅速な分
析法とはいえない。
Luminescence method, atomic absorption method, etc. are known as methods for analyzing impurities in insulating materials, but it is difficult to analyze impurities of ppm or less with the luminescence method, and atomic absorption method requires decomposition of the sample to be analyzed. It takes time to pre-process, so it cannot be said to be a rapid analysis method for multiple elements.

これらの方法に代わってより微量でかつ多元素を迅速に
分析する方法として近年グロー放電質量分析法(Glo
w Discharge Mass Spectrom
etry:以下GDMS法と呼称する。)が用いられる
ようになってきた。
Glow discharge mass spectrometry (Glo
w Discharge Mass Spectrum
etry: Hereinafter referred to as GDMS method. ) has come into use.

〈発明が解決しようとする課題〉 しかしながら、このGDMS法は導電性を有する金属や
半導体材料については非常に有効な分析法であるが、絶
縁物材料については材料自身に電場がかけられず、放電
を継続することが困難で測定は難しいとされてきた。こ
の問題に対しては試料を粉末とし、金、銀などの高純度
金属粉やグラファイト粉と混合して導電性を与えて分析
する方法が知られているが、成型した棒状電極の強度が
不足することや高純度の導電粉を得ることが困難なため
、用いた導電粉に含まれる不純物濃度によって検出下限
が左右され、固体質量分析法本来の分折性能を得ること
が困難であった。
<Problems to be Solved by the Invention> However, although this GDMS method is a very effective analysis method for conductive metals and semiconductor materials, it is difficult to apply an electric field to the material itself for insulating materials, causing discharge. It has been considered difficult to continue and difficult to measure. To solve this problem, it is known to analyze the sample by making it into powder and mixing it with high-purity metal powder such as gold or silver or graphite powder to give it conductivity, but the strength of the molded rod-shaped electrode is insufficient. Because it is difficult to obtain high-purity conductive powder, the lower limit of detection depends on the concentration of impurities contained in the conductive powder used, making it difficult to obtain the spectroscopic performance inherent to solid-state mass spectrometry.

本発明の目的は上記問題のない絶縁物材料のグロー放電
質量分析法を提供することにある。
An object of the present invention is to provide a glow discharge mass spectrometry method for insulating materials that does not have the above-mentioned problems.

く課題を解決するための手段〉 すなわち、本発明は、高純度ガリウムと絶縁物材料の粉
末を混合し、その混合物を加圧成型し″ζ作成した電極
をグロー放重質量分析にかけ絶縁物材料を分析すること
を特徴とする絶縁物材料のグロー放電質量分析法を提供
するものである。
Means for Solving the Problems> That is, the present invention mixes high-purity gallium and powder of an insulating material, press-molds the mixture, subjects the resulting electrode to glow mass spectrometry, and analyzes the insulating material. The present invention provides a glow discharge mass spectrometry method for insulating materials, which is characterized by analyzing.

本発明は」1記の実情に鑑み鋭意研究の結果、近年入手
が容易になった高純度でかつ低融点のガリウム(Ga)
を絶縁材料と混合、ついで成型することにより充分な強
度を存し、導電材料と同様にしてGDMS法による分析
ができることを見出したことにある。
The present invention is based on the results of intensive research in view of the circumstances described in 1.
It has been discovered that by mixing it with an insulating material and then molding it, it has sufficient strength and can be analyzed using the GDMS method in the same way as conductive materials.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用されるガリウムは高純度のもので5N以」
−が好ましく、最近6Nあるいは7Nと極めて高純度の
ものも市販されているのでこれらを使用するのがより好
ましい。ガリウムは融点が30°Cと低いため融解操作
が容易であり、操作中に汚染される恐れが少ないという
長所がある。
The gallium used in the present invention is of high purity and is 5N or higher.
- is preferable, and it is more preferable to use 6N or 7N, as extremely high purity ones have recently been commercially available. Since gallium has a low melting point of 30° C., it is easy to melt and has the advantage of being less likely to be contaminated during the operation.

分析の対象となる絶縁物試料としては特に限定されるも
のではないが、八1203.Zr0z、Tl0z、Ta
z05、Y2O3等の金属や稀土類酸化物、AIN 、
5IJ4等の窒化物、SiC等の炭化物などの無機絶縁
体化合物が好適である。
The insulator sample to be analyzed is not particularly limited, but 81203. Zr0z, Tl0z, Ta
Metals and rare earth oxides such as z05, Y2O3, AIN,
Inorganic insulating compounds such as nitrides such as 5IJ4 and carbides such as SiC are suitable.

GDMS分析においては分析する絶縁物材料の粉末と上
記ガリウムを混合、加圧成型し、棒状の電極にして使用
する。
In GDMS analysis, the powder of the insulating material to be analyzed and the above-mentioned gallium are mixed, pressure-molded, and used as a rod-shaped electrode.

該電極は以下のようにして作製する。The electrode is produced as follows.

絶縁物試料粉末と融解させた高純度ガリウムを容器にと
り、ついで撹拌棒でゆっくりと撹拌・混合していくと絶
縁物表面にガリウムが付着して液体ガリウムが減少して
いく。混合比率は特に限定されないが、充分混合を行っ
たときに液体ガリウムが見えなくなる程度が好ましく、
通常試料に対し重量比30〜200χの範囲で適宜法め
ればよいが、ガリウムが少ない方が感度的には有利であ
る。このようにして得られた試料粉末を成型用鋳型に充
填するが、この際、試料表面に(=j着していたガリウ
ムが再び液体ガリウムとして出て(る場合があるので、
その場合は液体ガリウムを取り除きながら充填する。こ
れを加圧成型することにより強固な棒状電極を作製する
ことができる。
When the insulator sample powder and molten high-purity gallium are placed in a container and then slowly stirred and mixed with a stirring rod, the gallium adheres to the surface of the insulator and the amount of liquid gallium decreases. The mixing ratio is not particularly limited, but it is preferable that liquid gallium is no longer visible when sufficiently mixed.
Normally, the weight ratio of the sample to the sample may be adjusted as appropriate within the range of 30 to 200χ, but the smaller the amount of gallium, the more advantageous it is in terms of sensitivity. The sample powder obtained in this way is filled into a mold for molding, but at this time, the gallium that had been deposited on the sample surface may come out as liquid gallium again.
In that case, fill while removing liquid gallium. By press-molding this, a strong rod-shaped electrode can be produced.

成型時に鋳型からの汚染が避りられないため、従来の銀
、金粉末などを導電粉末として用いた場合は分析前に予
備放電を長時間行って試料表面の汚染を取り除く工程が
必要であったが、本発明で作製された電極は強固である
ため、試料電極の先端を切ったり、表面を若干削るなと
の操作により迅速に表面汚染部を除去することかできる
利点を有している。また、カリウム単独では測定中に融
解して冷却なしでは測定できないが、このようにして作
製した棒状電極は室温でも測定か可能であり、通常の条
件で何ら支障なく測定できる。
Contamination from the mold is unavoidable during molding, so when conventional silver, gold powder, etc. are used as conductive powder, it is necessary to conduct a preliminary discharge for a long time to remove contamination from the sample surface before analysis. However, since the electrode produced according to the present invention is strong, it has the advantage that surface contamination can be quickly removed by cutting the tip of the sample electrode or slightly scraping the surface. Further, although potassium alone melts during measurement and cannot be measured without cooling, the rod-shaped electrode prepared in this way can be measured even at room temperature and can be measured under normal conditions without any problems.

〈発明の効果〉 本発明によれば従来の方法に比較して迅速、高感度に絶
縁物材料中の不純物の多元素を同時に分析することがで
きる。
<Effects of the Invention> According to the present invention, multiple elements of impurities in an insulating material can be simultaneously analyzed quickly and with high sensitivity compared to conventional methods.

〈実施例〉 以上本発明を実施例によってさらに詳細に説明するが本
発明はこれら実施例によって何ら限定されるものではな
い。
<Examples> The present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 100m lのポリテトラフルオロエチレン製(以下P
TFE)容器中に融解した7Nガリウム(住人化学工業
■製)Igと高純度アルミナ粉末1g(粒径0.4〜0
.6 μm)を加えた。PTFE製棒でこれをゆっくり
と混合し、アルミナ表面にガリウムを付着させ、均一な
粉末とした。この粉末をポリエチレン製鋳型を用いて約
300Kg/cm2の圧力で加圧成型し、約2mmφX
 20mmの棒状電極を作製した。Ta製ナイフで棒状
電極の先端約1mmを切り、さらに電極表面を若干削っ
て表面汚染部を除去した。これをグロー放電質量分析装
置(VG l5otopes社製VG−9000型)イ
オン源に挿入して測定を行った。測定結果を第1表に示
す。
Example 1 100 ml of polytetrafluoroethylene (hereinafter referred to as P)
TFE) molten 7N gallium (manufactured by Sumitomo Chemical Co., Ltd.) Ig and 1 g of high-purity alumina powder (particle size 0.4-0
.. 6 μm) was added. This was mixed slowly with a PTFE rod to adhere gallium to the alumina surface and form a uniform powder. This powder was pressure molded using a polyethylene mold at a pressure of about 300 kg/cm2, and
A 20 mm rod-shaped electrode was produced. Approximately 1 mm of the tip of the rod-shaped electrode was cut with a Ta knife, and the surface of the electrode was slightly scraped to remove surface contamination. This was inserted into an ion source of a glow discharge mass spectrometer (model VG-9000 manufactured by VG 15otopes) and measured. The measurement results are shown in Table 1.

なお、測定条件はグロー放電電流は2mA 、電圧IK
V、分解能4000、放電ガス:アルゴン、加速電=6
− 圧8KVである。
The measurement conditions are: glow discharge current is 2 mA, voltage IK
V, resolution 4000, discharge gas: argon, accelerating current = 6
- Pressure is 8KV.

第    1    表Chapter 1 Table

Claims (1)

【特許請求の範囲】[Claims] 高純度ガリウムと絶縁物材料の粉末を混合し、その混合
物を加圧成型して作成した電極をグロー放電質量分析に
かけ絶縁物材料を分析することを特徴とする絶縁物材料
のグロー放電質量分析法
A glow discharge mass spectrometry method for insulating materials characterized by mixing high-purity gallium and insulating material powder and applying an electrode made by pressure molding the mixture to glow discharge mass spectrometry to analyze the insulating material.
JP63127288A 1988-05-25 1988-05-25 Glow discharge mass spectrometry for insulator material Pending JPH01296557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127288A JPH01296557A (en) 1988-05-25 1988-05-25 Glow discharge mass spectrometry for insulator material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127288A JPH01296557A (en) 1988-05-25 1988-05-25 Glow discharge mass spectrometry for insulator material

Publications (1)

Publication Number Publication Date
JPH01296557A true JPH01296557A (en) 1989-11-29

Family

ID=14956260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127288A Pending JPH01296557A (en) 1988-05-25 1988-05-25 Glow discharge mass spectrometry for insulator material

Country Status (1)

Country Link
JP (1) JPH01296557A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247548A (en) * 1988-08-09 1990-02-16 Power Reactor & Nuclear Fuel Dev Corp Measuring method of impurity in nuclear fuel substance
JP2008179898A (en) * 2008-02-14 2008-08-07 Dowa Holdings Co Ltd Gallium raw material for forming compound semiconductor
CN113533493A (en) * 2021-05-11 2021-10-22 宣城开盛新能源科技有限公司 Glow discharge mass spectrum high-purity gallium testing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247548A (en) * 1988-08-09 1990-02-16 Power Reactor & Nuclear Fuel Dev Corp Measuring method of impurity in nuclear fuel substance
JP2008179898A (en) * 2008-02-14 2008-08-07 Dowa Holdings Co Ltd Gallium raw material for forming compound semiconductor
CN113533493A (en) * 2021-05-11 2021-10-22 宣城开盛新能源科技有限公司 Glow discharge mass spectrum high-purity gallium testing method

Similar Documents

Publication Publication Date Title
Weightman et al. The Pd Auger spectra of Mg75Pd25, Al80Pd20 and Pd and their dependence on band structure
CA1325194C (en) Process for the preparation of iron and neodymium alloys using oxygentated salt electrolysis in a melted fluoride medium
Aldrich et al. Microstructural characterisation of interpenetrating nickel/alumina composites
Gendt et al. Quantitative analysis of iron-rich and other oxide-based samples by means of glow discharge mass spectrometry
FR2487716A1 (en) CARBON-BASED ELECTRODE-TOOL FOR ELECTRIC DISCHARGE MACHINING AND METHOD OF MACHINING AN ELECTRO-CONDUCTIVE PIECE USING SUCH AN ELECTRODE
JPH01296557A (en) Glow discharge mass spectrometry for insulator material
Woo et al. Analysis of aluminium oxide powder by glow discharge mass spectrometry with low mass resolution
CN110749645B (en) Cage-shaped sample introduction device for glow discharge mass spectrometry and sample testing method
JP3943488B2 (en) Analytical method of composition and / or particle size of nonmetallic inclusions in steel samples
JP4756498B2 (en) Sample preparation for glow discharge mass spectrometry
Jung et al. Effects of sulfur on interfacial energy between Fe-C melt and graphite
Battagliarin et al. An innovative sample preparation procedure for trace and ultra-trace analysis on non-conducting powders by direct current glow discharge mass spectrometry
RU2193183C2 (en) Method of determination of admixtures in nickel, copper, cobalt and in their powders by means of standard synthetic oxide specimens
CN108982561A (en) The preparation method of ferroalloy XRF analysis sheet glass based on demolding aids
RU2111630C1 (en) Carbon-less electric heater for containers for high pressure and temperature
US6170556B1 (en) Equipment and process for the preparation of electric conducting composite samples for the direct instrumental analysis of powders
JPH0713634B2 (en) Method for measuring oxygen in oxide ceramics
RU2228237C1 (en) Method for making charge of contacts of argentum-graphite compositions
SU929316A1 (en) Method of producing metallic calibration specimens
Allegre et al. Gallium analysis: problem of impurity distribution in the analytical sample
JPH07167847A (en) Crucible for analysis
Lee et al. The influence of carrier gas in the analysis of alumina by laser ablation inductively coupled plasma mass spectrometry
Deki et al. The Electrical Conductivity of Solid/Melt Coexisting Systems
Wang et al. Effect of SnO2 content on properties and microstructure of Ag/SnO2 electric contact materials
Okamoto et al. Electrothermal vaporisation system including in situ digestion for the direct determination of lead in botanical samples by inductively coupled plasma atomic emission spectrometry