JPH0247548A - Measuring method of impurity in nuclear fuel substance - Google Patents
Measuring method of impurity in nuclear fuel substanceInfo
- Publication number
- JPH0247548A JPH0247548A JP63198723A JP19872388A JPH0247548A JP H0247548 A JPH0247548 A JP H0247548A JP 63198723 A JP63198723 A JP 63198723A JP 19872388 A JP19872388 A JP 19872388A JP H0247548 A JPH0247548 A JP H0247548A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- nuclear fuel
- uranium
- measuring
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003758 nuclear fuel Substances 0.000 title claims abstract description 27
- 239000012535 impurity Substances 0.000 title claims abstract description 26
- 239000000126 substance Substances 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title claims description 15
- 239000000463 material Substances 0.000 claims abstract description 24
- 239000000446 fuel Substances 0.000 claims abstract description 17
- 150000002500 ions Chemical class 0.000 claims abstract description 15
- 229910052770 Uranium Inorganic materials 0.000 claims abstract description 10
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000843 powder Substances 0.000 claims abstract description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052778 Plutonium Inorganic materials 0.000 claims abstract description 8
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 7
- 239000010439 graphite Substances 0.000 claims abstract description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052737 gold Inorganic materials 0.000 claims abstract description 5
- 239000010931 gold Substances 0.000 claims abstract description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 4
- OOAWCECZEHPMBX-UHFFFAOYSA-N oxygen(2-);uranium(4+) Chemical compound [O-2].[O-2].[U+4] OOAWCECZEHPMBX-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052709 silver Inorganic materials 0.000 claims abstract description 4
- 239000004332 silver Substances 0.000 claims abstract description 4
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 239000004020 conductor Substances 0.000 claims description 4
- 239000013067 intermediate product Substances 0.000 claims description 4
- 239000000047 product Substances 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- PONLSTWIGVAHBQ-UHFFFAOYSA-N azane plutonium Chemical compound N.[Pu] PONLSTWIGVAHBQ-UHFFFAOYSA-N 0.000 claims description 2
- WJWSFWHDKPKKES-UHFFFAOYSA-N plutonium uranium Chemical compound [U].[Pu] WJWSFWHDKPKKES-UHFFFAOYSA-N 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims description 2
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 claims description 2
- 229910003452 thorium oxide Inorganic materials 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 20
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 35
- 238000010586 diagram Methods 0.000 description 14
- 229910052761 rare earth metal Inorganic materials 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000004993 emission spectroscopy Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001036 glow-discharge mass spectrometry Methods 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000012468 concentrated sample Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- IJHFIVUWUURYJD-UHFFFAOYSA-M lanthanum(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[La+3] IJHFIVUWUURYJD-UHFFFAOYSA-M 0.000 description 1
- 238000001748 luminescence spectrum Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- -1 roots Chemical compound 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は2酸化ウラン燃料、プルトニウムウラン混合酸
化物燃料、トリウム酸化物燃料、ウラン又はプルトニウ
ムの炭化物燃料およびウラン又はプルトニウムの窒化物
燃料等の原料粉末、回収品、中間製品、または製品中の
金属不純物等の測定方法に関するものである。Detailed Description of the Invention [Field of Industrial Application] The present invention is applicable to uranium dioxide fuel, plutonium-uranium mixed oxide fuel, thorium oxide fuel, uranium or plutonium carbide fuel, uranium or plutonium nitride fuel, etc. This relates to methods for measuring metal impurities in raw material powders, recovered products, intermediate products, or products.
核燃料物質中の不純物含有量は燃料の燃焼率や寿命等に
影響を与える重要な管理項目であるため、各種の管理項
目を定め、不純物含有量を規定するようにしている。Since the impurity content in nuclear fuel materials is an important control item that affects the combustion rate and life of the fuel, various control items are established and the impurity content is regulated.
このような核燃料物質中の不純物含有量についての測定
は、主として発光分光分析法によっている。次に、従来
の発光分光分析法について第5図、第6図を参照し′て
説明する。The impurity content in such nuclear fuel materials is mainly measured by emission spectrometry. Next, a conventional emission spectroscopic analysis method will be explained with reference to FIGS. 5 and 6.
第6図は従来の発光分光分析による測定装置の一例の概
略構成を示す図であり、図中、43は上部電極、44は
下部電極、45は排気管、46はスリット、47はプリ
ズム、48は写真乾板である。FIG. 6 is a diagram showing a schematic configuration of an example of a conventional measurement device using emission spectroscopy. In the figure, 43 is an upper electrode, 44 is a lower electrode, 45 is an exhaust pipe, 46 is a slit, 47 is a prism, and 48 is a photographic plate.
図において、試料を44の下部電極に装填し、ガス雰囲
気中で直流アークを起こさせて試料を発光させ、スリッ
ト46により周囲光を除去してプリズム47により分光
し、光のスペクトルを写真乾板48に撮影してどのよう
な元素がどの程度含まれているかを置局べている。In the figure, a sample is loaded onto the lower electrode 44, a direct current arc is generated in a gas atmosphere to cause the sample to emit light, ambient light is removed through a slit 46, the light is separated by a prism 47, and the spectrum of light is displayed on a photographic plate 48. The images are taken to determine what elements are included and in what amounts.
次に、第5図を参照して従来の核燃料物質中の不純物含
有量の測定フローについて説明する。Next, a conventional flow for measuring the impurity content in nuclear fuel materials will be described with reference to FIG.
第5図(イ)は核燃料物質中に含まれる希土類元素の測
定フローを示す図である。FIG. 5(a) is a diagram showing a measurement flow of rare earth elements contained in nuclear fuel materials.
まず粉末試料、焼結体試料を受は入れ(工程101 1
02)、焼結体試料の場合はこれを粉砕しく工程103
)、これらの試料を硝酸+フッ化水素酸により溶解する
(工程104)。溶解した試料をりん酸トリーn−ブチ
ル(以下TBP)ドデカンにより抽出し、核燃料物質と
希土類元素を分離する。さらにイオン交換法により吸着
剤に残存核燃料物質を吸着させて希土類元素を1縮する
(工程105〜107)。濃縮した試料は黒鉛粉末と混
合して導電性を付与し、乾燥固化する(工程108,1
09)。次に乾燥固化した試料とフン化ナトリウムとを
混合して黒鉛電極に充填し、発光分光分析装置により酸
素−アルゴン混合ガス雰囲気中で発光させる(工程11
0〜112)。この発光強度を写真乾板に撮影して現像
しく工程113)、そのデータを解析してどの程度核燃
料物質中に希土類元素が含まれているかを解析測定する
(工程114.115)。First, a powder sample and a sintered body sample are received (Step 101 1)
02), in the case of a sintered compact sample, crush it in step 103
), these samples are dissolved with nitric acid + hydrofluoric acid (step 104). The dissolved sample is extracted with tri-n-butyl phosphate (TBP) dodecane to separate the nuclear fuel material and rare earth elements. Further, the residual nuclear fuel material is adsorbed onto the adsorbent by an ion exchange method to reduce the rare earth elements (steps 105 to 107). The concentrated sample is mixed with graphite powder to impart conductivity, and is dried and solidified (steps 108 and 1).
09). Next, the dried and solidified sample and sodium fluoride are mixed, filled into a graphite electrode, and emitted by an emission spectrometer in an oxygen-argon mixed gas atmosphere (step 11).
0-112). This luminescence intensity is photographed on a photographic plate and developed (step 113), and the data is analyzed to determine how much rare earth elements are contained in the nuclear fuel material (steps 114 and 115).
第5図(ロ)は核燃料物質に含まれている希土類元素以
外の金属不純物測定フローを示す図である。希土類元素
測定の場合と同様、粉末試料、或いは焼結体試料を受は
入れ、焼結体試料の場合は粉砕する(工程121〜12
3)。この試料を約850°Cの高温下において酸化さ
せ、フッ化リチウム+2酸化ランタンと混合させ、これ
を黒鉛電極に充填させる(工程124〜126)。次に
、発光分光分析装置により空気雰囲気中で発光させ、発
光強度を写真乾板に撮影して現像しく工程127 12
8)、データ解析して同様に核燃料中に含まれる金属不
純物の量を検出する(工程129130)。FIG. 5(b) is a diagram showing a flow for measuring metal impurities other than rare earth elements contained in nuclear fuel materials. As in the case of rare earth element measurement, a powder sample or a sintered sample is received, and if it is a sintered sample, it is crushed (steps 121 to 12).
3). This sample is oxidized at a high temperature of about 850° C., mixed with lithium fluoride + lanthanum dioxide, and filled into a graphite electrode (steps 124 to 126). Next, light is emitted in an air atmosphere using an emission spectrometer, and the intensity of the emitted light is photographed on a photographic plate and developed.
8) Analyze the data and similarly detect the amount of metal impurities contained in the nuclear fuel (step 129130).
しかしながら、このような従来の方法では、発光現象自
体が不安定であることと、写真撮影によって発光スペク
トルの強度データをとっているため、通常1回の発光で
1個のデータしかとれず、そのため分析に長時間を要し
、特に希土類元素の測定では前処理に時間を要するため
3日程度、それ以外の金属不純物の測定でも2日程度を
要するという問題がある。また希土類元素を測定する場
合、試料の前処理準備が複雑で、その処理に化学薬品を
使用するため扱いが難しく、希土類元素と他の金属元素
では放電の雰囲気ガスが異なるために同時測定ができな
いという問題がある。さらに発光分光分析であるために
検出精度が必ずしも充分ではなかった。However, in such conventional methods, the luminescence phenomenon itself is unstable, and the intensity data of the luminescence spectrum is obtained by taking photographs, so usually only one piece of data can be obtained from one luminescence. There is a problem in that the analysis requires a long time, particularly for the measurement of rare earth elements, which requires time for pretreatment, so it takes about three days, and for the measurement of other metal impurities, it takes about two days. In addition, when measuring rare earth elements, the pretreatment of the sample is complicated, and chemicals are used for the treatment, making it difficult to handle. Simultaneous measurement of rare earth elements and other metal elements is not possible because the atmospheric gas of the discharge is different. There is a problem. Furthermore, since it is an emission spectroscopic analysis, the detection accuracy is not necessarily sufficient.
本発明は上記問題点を解決するためのもので、測定能率
を向上させ、省力化を図ると共に、安全かつ正確な測定
を行うことが可能な核燃料物質中の金属不純物の測定方
法を提供することを目的とする。The present invention is intended to solve the above problems, and provides a method for measuring metal impurities in nuclear fuel materials that improves measurement efficiency, saves labor, and enables safe and accurate measurement. With the goal.
〔課題を解決するための手段]
そのために本発明は、核燃料物質中の不純物の含有率を
測定する方法において、核燃料物質に導電性物質を混合
し、グロー放電質量分析装置により不純物の含有率を測
定すること、核燃料物質としては2酸化ウラン燃料、プ
ルトニウムウラン混合酸化物燃料、トリウム酸化物燃料
、ウラン又はプルトニウムの炭化物燃料およびウラン又
はプルトニウムの窒化物燃料の原料粉末、回収粉末、中
間製品、または製品であること、導電性物質としては金
、根、グラファイト等からなること、核燃料物質に導電
性物質を混合し、加圧整形してタブレット状に試料調製
すること、またグロー放TL質量分析装置をグローブボ
ックス外に配置すると共に、分析装置のイオン源部にお
いてグローブボックスと結合し、分析装置の排気管をグ
ローブボックス内に戻すようにしたことを特徴とする。[Means for Solving the Problems] To this end, the present invention provides a method for measuring the impurity content in nuclear fuel material, in which a conductive substance is mixed with the nuclear fuel material and the impurity content is measured using a glow discharge mass spectrometer. The nuclear fuel materials to be measured include raw material powder, recovered powder, intermediate products, or The conductive material must be made of gold, roots, graphite, etc., the conductive material must be mixed with nuclear fuel material, and the sample must be prepared into a tablet shape by pressure shaping, and the glow emission TL mass spectrometer must be used. is arranged outside the glove box, coupled to the glove box at the ion source section of the analyzer, and the exhaust pipe of the analyzer is returned to the inside of the glove box.
本発明の核燃料物質中の不純物測定方法は、核燃料物質
に金、銀、グラファイト等の導電性物質を混合して導電
性を与え、グロー放電質量分析装置により不純物含有量
を測定するもので、測定能率を向上させると共に、試料
溶解、溶媒抽出等の化学処理が不要となるため、化学薬
品を使用することによる扱いの難しさを回避でき、希土
類元素と他の金属元素の同時測定が可能となり、作業能
率を大幅に向上させ、省力化を図り、しかも正確な測定
を行うことが可能となる。The method for measuring impurities in nuclear fuel materials of the present invention involves mixing nuclear fuel materials with conductive substances such as gold, silver, and graphite to give them conductivity, and measuring the impurity content using a glow discharge mass spectrometer. In addition to improving efficiency, it eliminates the need for chemical treatments such as sample dissolution and solvent extraction, which avoids the difficulties associated with handling chemicals and enables simultaneous measurement of rare earth elements and other metal elements. This greatly improves work efficiency, saves labor, and makes it possible to perform accurate measurements.
以下、実施例を図面を参照して説明する。 Examples will be described below with reference to the drawings.
第1図は本発明によるグロー放電型質量分析方法を実施
するための全体構成を示す図、第2図はグロー放電質量
分析装置の概略構成を示す図である。図中、10はグロ
ー放電型質量分析装置、11はイオン源部、12は分析
部、13はイオン検出部、14は真空排気システム、1
5は電源部、16はデータ処理・制御部、17は成型器
、I8は混合器、19は天秤、20はグローブボックス
、31は試料室、32.33は放電電極、34は加速電
極、35〜37はイオン、38は磁石、39は検出器で
ある。FIG. 1 is a diagram showing the overall configuration for carrying out the glow discharge mass spectrometry method according to the present invention, and FIG. 2 is a diagram showing the schematic configuration of a glow discharge mass spectrometer. In the figure, 10 is a glow discharge mass spectrometer, 11 is an ion source section, 12 is an analysis section, 13 is an ion detection section, 14 is a vacuum exhaust system, 1
5 is a power supply unit, 16 is a data processing/control unit, 17 is a molding device, I8 is a mixer, 19 is a balance, 20 is a glove box, 31 is a sample chamber, 32.33 is a discharge electrode, 34 is an acceleration electrode, 35 37 is an ion, 38 is a magnet, and 39 is a detector.
本実施例においてはプルトニウムの取扱いが可能なよう
に、グローブボックス20を設け、包蔵性を保つように
し、また保守性を考慮してグローブボックス20と分析
装置10との結合をイオン源部11とし、グローブボッ
クス20内に試料挿入部(図示せず)、成型器17、混
合器18を配置し、グローブボックス20の外側にグロ
ー放電型質量分析装置本体lO1電源部15、真空排気
システム14、データ処理部・制御部16を配置してい
る。そしてグロー放電型質量分析装置10からの排気配
管はグローブボックス20内に戻し、装置からの排気ガ
スを作業環境へ排出しないようにし、プルトニウムまた
はウランによる汚染防止を考慮している。In this embodiment, a glove box 20 is provided so that plutonium can be handled to maintain containment, and the glove box 20 and the analyzer 10 are connected to the ion source section 11 in consideration of maintainability. A sample insertion section (not shown), a molding device 17, and a mixer 18 are arranged inside the glove box 20, and the glow discharge mass spectrometer main body 1O1 power supply section 15, evacuation system 14, and data are arranged outside the glove box 20. A processing section/control section 16 is arranged. The exhaust piping from the glow discharge mass spectrometer 10 is returned to the glove box 20 to prevent exhaust gas from the device from being discharged into the working environment, and to prevent contamination with plutonium or uranium.
グロー放電質量分析装置10の一例の概略構成を第2図
により説明すると、試料室31内の試料をグロー放電に
よりイオン化し、該イオンを加速/T極34で加速して
磁場中を飛翔させ、検出器3つによりイオン電流を検出
する。この場合、設定した磁場の強さに対して’fff
f1の大きいイオンは37に示すように行路から外れ、
所定の質量のイオンが検出器39で検出される。こうし
て、順次磁石3日による磁場強度を変えることによりi
t分析を行う。この場合、10secオーダーで一回の
検出を行うことができるので、1つの元素に対して20
回測定を行ってもせいぜい3〜4分オーダーですむので
、最大、最小のデータを捨てて平均値をとるなどの処理
を行っても短時間で測定を行うことができる。こうして
、磁場強度を掃引することにより順次、各種の元素含有
量を測定することができる。A schematic configuration of an example of the glow discharge mass spectrometer 10 will be explained with reference to FIG. 2. A sample in the sample chamber 31 is ionized by glow discharge, the ions are accelerated by the acceleration/T pole 34, and made to fly in a magnetic field. Ion current is detected by three detectors. In this case, 'fff' for the set magnetic field strength
Ions with large f1 deviate from the path as shown in 37,
Ions of a predetermined mass are detected by the detector 39. In this way, by sequentially changing the magnetic field strength due to the magnet 3 days, i
Perform t-analysis. In this case, one detection can be performed on the order of 10 seconds, so 20
Even if the measurement is performed twice, it only takes about 3 to 4 minutes at most, so even if processing such as discarding the maximum and minimum data and taking the average value is performed, the measurement can be performed in a short time. In this way, the contents of various elements can be sequentially measured by sweeping the magnetic field strength.
次に本発明の試料調製および試料含有量測定方法につい
て説明する。Next, the sample preparation and sample content measuring method of the present invention will be explained.
第3回は本発明による試料調製フローを示す図である。The third diagram is a diagram showing the sample preparation flow according to the present invention.
まず粉末試料、或いは焼結体試料を受は入れ(工程20
1.202)、焼結体試料の場合は粉砕する(工程20
3)。次に試料を金、グラファイト、銀等の導電性物質
と混合して試料に導電性を与える(工程204)。そし
て10〜15トンの圧力で10〜15分間加圧成型し、
直径1〜3鴫、長さ10〜15mmのタブレット状に製
造する。First, a powder sample or a sintered body sample is received (step 20).
1.202), in the case of a sintered body sample, crush it (step 20
3). The sample is then mixed with a conductive material such as gold, graphite, silver, etc. to render the sample electrically conductive (step 204). Then, pressure molded for 10 to 15 minutes at a pressure of 10 to 15 tons,
Manufactured into tablets with a diameter of 1 to 3 mm and a length of 10 to 15 mm.
第4図はこうして作成した試料についての不純物含有量
の測定方法を示す図である。FIG. 4 is a diagram showing a method for measuring the impurity content of the sample thus prepared.
まず標準試料を測定対象と同じ形状に作成し、測定対象
元素を段階的に含む試料をグロー放電質量分析装置によ
り測定して検量線を作成する(工程210)。次に未知
試料を測定し、ベースとなる元素、2酸化ウラン燃料の
場合はウラン、プルトニウム・ウラン混合酸化物燃料の
場合はプルトニウム+ウランのイオン強度を測定対象元
素のイオン強度として求める(工程211)。こうして
求めたイオン強度から不純物含有量を換算して求める(
工程212)。First, a standard sample is created in the same shape as the measurement target, and a sample containing the measurement target element in stages is measured using a glow discharge mass spectrometer to create a calibration curve (step 210). Next, the unknown sample is measured, and the ionic strength of the base element, uranium in the case of uranium dioxide fuel, plutonium + uranium in the case of plutonium/uranium mixed oxide fuel, is determined as the ionic strength of the element to be measured (step 211 ). The impurity content is calculated from the ionic strength thus determined (
Step 212).
本発明においては、このように1個の試料で20個あま
りのデータを測定でき、そのデータを統計処理すること
ができるため正確さを向上させることができる。In the present invention, more than 20 pieces of data can be measured with one sample in this way, and the data can be statistically processed, so accuracy can be improved.
以上のように本発明によれば、従来の方法に比べ、大幅
な処理能力アップとなり、迅速に測定できるため、従来
1体当たり2〜3日要していた測定が短時間で終了し、
検査コストに占める人件費を大幅に低減化することがで
きる。さらに測定時間の短縮により燃料製造工程上の管
理点を増やすことができ、燃料製造工程中の中間製品で
の不純物管理が可能となると共に、製造技術の向上、製
造コスト低減化を図ることができる。また試料溶解、溶
媒抽出等の化学処理が不要となり、化学薬品による扱い
の困難さを回避することができ、さらにこれらの処理設
備が不要となることで設備費を大幅に低減化することが
可能となる。さらに希土類元素と他の元素の同時測定が
可能となるため、作業能率が大幅に向上し、省力化を図
ることができる。As described above, according to the present invention, compared to conventional methods, processing capacity is significantly increased and measurements can be made quickly, so measurements that conventionally required 2 to 3 days per animal can be completed in a short time.
It is possible to significantly reduce the labor cost that accounts for the inspection cost. Furthermore, by shortening the measurement time, the number of control points in the fuel manufacturing process can be increased, making it possible to control impurities in intermediate products during the fuel manufacturing process, improving manufacturing technology, and reducing manufacturing costs. . In addition, chemical treatments such as sample dissolution and solvent extraction are no longer required, which avoids the difficulty of handling chemicals.Furthermore, by eliminating the need for these processing equipment, equipment costs can be significantly reduced. becomes. Furthermore, since rare earth elements and other elements can be measured simultaneously, work efficiency can be greatly improved and labor savings can be achieved.
第1図は本発明によるグロー放電型質量分析方法を実施
するための全体構成を示す図、第2図はグロー放電型質
量分析装置を示す図、第3図は試料調製のフローを示す
図、第4図は試料測定フローを示す図、第5図は従来の
発光分光分析法を示す図、第6図は従来の発光分光分析
法による核燃料物質中の金属不純物測定フローを説明す
るための図である。
10・・・グロー放電型質量分析装置、11・・・イオ
ン源部、12・・・分析部、13・・・イオン検出部、
14・・・真空廃棄システム、15・・・電源部、16
・・・データ処理・制御部、17・・・成形器、18・
・・混合器、19・・・天秤、20・・・グローブボッ
クス、31・・・試料室、32.33・・・放電電極、
34・・・加速電極、35.36.37・・・イオン、
38・・・磁石、39・・・検出器。
第1図FIG. 1 is a diagram showing the overall configuration for carrying out the glow discharge mass spectrometry method according to the present invention, FIG. 2 is a diagram showing a glow discharge mass spectrometer, and FIG. 3 is a diagram showing the flow of sample preparation. Figure 4 is a diagram showing the sample measurement flow, Figure 5 is a diagram showing the conventional emission spectrometry, and Figure 6 is a diagram explaining the flow of measuring metal impurities in nuclear fuel materials by the conventional emission spectrometry. It is. DESCRIPTION OF SYMBOLS 10... Glow discharge mass spectrometer, 11... Ion source part, 12... Analysis part, 13... Ion detection part,
14... Vacuum disposal system, 15... Power supply section, 16
...Data processing/control unit, 17...Molder, 18.
...Mixer, 19... Balance, 20... Glove box, 31... Sample chamber, 32.33... Discharge electrode,
34... Accelerating electrode, 35.36.37... Ion,
38...Magnet, 39...Detector. Figure 1
Claims (5)
おいて、核燃料物質に導電性物質を混合し、グロー放電
質量分析装置により不純物の含有率を測定することを特
徴とする核燃料物質中の不純物測定方法。(1) A method for measuring the content of impurities in nuclear fuel material, which comprises mixing a conductive substance with the nuclear fuel material and measuring the content of impurities using a glow discharge mass spectrometer. Measuring method.
ラン混合酸化物燃料、トリウム酸化物燃料、ウラン又は
プルトニウムの炭化物燃料およびウラン又はプルトニウ
ムの窒化物燃料の原料粉末、回収粉末、中間製品、また
は製品である請求項1記載の核燃料物質中の不純物測定
方法。(2) Nuclear fuel materials are raw material powder, recovered powder, intermediate products, or products of uranium dioxide fuel, plutonium-uranium mixed oxide fuel, thorium oxide fuel, uranium or plutonium carbide fuel, and uranium or plutonium nitride fuel. A method for measuring impurities in nuclear fuel material according to claim 1.
求項1記載の核燃料物質中の不純物測定方法。(3) The method for measuring impurities in nuclear fuel material according to claim 1, wherein the conductive substance is composed of gold, silver, graphite, or the like.
タブレット状に試料調製する請求項1記載の核燃料物質
中の不純物測定方法。(4) The method for measuring impurities in nuclear fuel material according to claim 1, wherein a conductive material is mixed with the nuclear fuel material and the sample is prepared in the form of a tablet by pressure shaping.
配置すると共に、分析装置のイオン源部においてグロー
ブボックスと結合し、分析装置の排気管をグローブボッ
クス内に戻すようにした請求項1記載の核燃料物質中の
不純物測定方法。(5) The nuclear fuel according to claim 1, wherein the glow discharge mass spectrometer is disposed outside the glove box, is coupled to the glove box at the ion source section of the analyzer, and the exhaust pipe of the analyzer is returned to the inside of the glove box. A method for measuring impurities in substances.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63198723A JPH0247548A (en) | 1988-08-09 | 1988-08-09 | Measuring method of impurity in nuclear fuel substance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63198723A JPH0247548A (en) | 1988-08-09 | 1988-08-09 | Measuring method of impurity in nuclear fuel substance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0247548A true JPH0247548A (en) | 1990-02-16 |
Family
ID=16395925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63198723A Pending JPH0247548A (en) | 1988-08-09 | 1988-08-09 | Measuring method of impurity in nuclear fuel substance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0247548A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113514534A (en) * | 2021-07-06 | 2021-10-19 | 国合通用测试评价认证股份公司 | Method for analyzing small-size conductive and non-conductive materials by glow discharge mass spectrometry |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63954A (en) * | 1986-06-11 | 1988-01-05 | フィソンズ パブリック リミテッド カンパニー | Glow discharge mass spectrometer |
JPH01296557A (en) * | 1988-05-25 | 1989-11-29 | Sumitomo Chem Co Ltd | Glow discharge mass spectrometry for insulator material |
-
1988
- 1988-08-09 JP JP63198723A patent/JPH0247548A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63954A (en) * | 1986-06-11 | 1988-01-05 | フィソンズ パブリック リミテッド カンパニー | Glow discharge mass spectrometer |
JPH01296557A (en) * | 1988-05-25 | 1989-11-29 | Sumitomo Chem Co Ltd | Glow discharge mass spectrometry for insulator material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113514534A (en) * | 2021-07-06 | 2021-10-19 | 国合通用测试评价认证股份公司 | Method for analyzing small-size conductive and non-conductive materials by glow discharge mass spectrometry |
CN113514534B (en) * | 2021-07-06 | 2024-05-24 | 国合通用测试评价认证股份公司 | Method for analyzing small-size conductive and non-conductive materials by glow discharge mass spectrometry |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | An improved dual-stage protocol to pre-concentrate mercury from airborne particles for precise isotopic measurement | |
Walder et al. | Communication. Isotope ratio measurement by inductively coupled plasma multiple collector mass spectrometry incorporating a high efficiency nebulization system | |
Boulyga et al. | Isotope ratio measurements of spent reactor uranium in environmental samples by using inductively coupled plasma mass spectrometry | |
Lichte et al. | Emission spectrometric determination of arsenic | |
Suzuki et al. | Precise Re isotope ratio measurements by negative thermal ionization mass spectrometry (NTI-MS) using total evaporation technique | |
Betti et al. | Glow discharge spectrometry for the characterization of nuclear and radioactively contaminated environmental samples | |
Date et al. | Studies in the determination of lead isotope ratios by inductively coupled plasma mass spectrometry | |
Wang et al. | Multi-element analysis of airborne particulate matter by inductively coupled plasma atomic emission spectrometry | |
Chartier et al. | Determination of erbium in nuclear fuels by isotope dilution thermal ionization mass spectrometry and glow discharge mass spectrometry | |
Durrant | Multi-elemental analysis of environmental matrices by laser ablation inductively coupled plasma mass spectrometry | |
Durrant et al. | Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for the multielemental analysis of biological materials: a feasibility study | |
Neil | Analysis of biological standard reference materials by laser ablation inductively coupled plasma mass spectrometry | |
Shao et al. | High-precision cerium isotope analysis by thermal ionization mass spectrometry using the Ce+ technique | |
JPH0247548A (en) | Measuring method of impurity in nuclear fuel substance | |
Lin et al. | Determination of trace Cr, Mo, Pd, Cd, Pt and Pb in drug tablets by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry | |
Dafydd | Adaptation of a glow discharge mass spectrometer in a glove-box for the analysis of nuclear materials | |
Duckworth et al. | Direct measurement of uranium isotopic ratios in soils by glow discharge mass spectrometry | |
Wyse et al. | Radionuclide bioassay by inductively coupled plasma mass spectrometry (ICP/MS) | |
Garcia Alonso et al. | Applications of a glove-box ICP-MS for the analysis of nuclear materials | |
Goleb et al. | The analysis of uranium alloys using a hollow cathode | |
Walker et al. | Determination of Antimony, Iron, and Molybdenum in Nickel or Uranium by atomic absorption spectroscopy | |
Seltzer | Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils | |
CN217688707U (en) | Dry method inductively coupled plasma mass spectrometry combined analyzer | |
Betti et al. | Glow discharge mass spectrometry in nuclear research | |
Husáková et al. | Simultaneous Determination of 11 Elements in Fly Ash by Inductively Coupled Plasma Orthogonal Acceleration Time-of-Flight Mass Spectrometry After Closed-Vessel Microwave-Assisted Extraction with Ammonium Fluoride |