JPH01296057A - Heat-pump type air conditioner - Google Patents

Heat-pump type air conditioner

Info

Publication number
JPH01296057A
JPH01296057A JP12279688A JP12279688A JPH01296057A JP H01296057 A JPH01296057 A JP H01296057A JP 12279688 A JP12279688 A JP 12279688A JP 12279688 A JP12279688 A JP 12279688A JP H01296057 A JPH01296057 A JP H01296057A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
communication port
port
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12279688A
Other languages
Japanese (ja)
Inventor
Mitsuru Kimata
充 木全
Hiroshi Inazu
稲津 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP12279688A priority Critical patent/JPH01296057A/en
Publication of JPH01296057A publication Critical patent/JPH01296057A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent a refrigerant or an oil from stagnating, by providing a valve casing which comprises a first communicating port for communicating with a water- refrigerant heat exchanger at one end thereof, a second communicating port for communicating with a passage-switching means at the other end thereof, and a third communicating port for communicating with a suction port at an intermediate position thereof, and a shuttle valve. CONSTITUTION:A four-way valve 6, which is a passage-switching means, is turned OFF at the time of a cooling operation, and is turned ON at the time of a heating operation. At the time of cooling, a refrigerant fed from the four-way valve 6 is led through second and third communicating ports 19, 20 of a shuttle valve 16 to a suction port, and a first communication port 18 is closed by a valve body 22. At the time of heating, the refrigerant fed from a water-refrigerant heat exchanger 15 is led through the first and third communicating ports 18, 20 to the suction port 3, and the second communicating port 19 is closed by a second valve head 26. As a result, it is possible to prevent the refrigerant or an oil from stagnating in a refrigerant pipe 5 for conducting the refrigerant from the four-way valve 6, between the position at which a refrigerant pipe for conducting the refrigerant from the heat exchanger 15 and the refrigerant pipe 5 are joined and the four-way valve 6.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷媒圧縮機の吐出した冷媒の流れ方向を変更
して冷房運転と暖房運転とを行うし−トポンプ式冷暖房
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pump type air-conditioning and heating system that performs cooling operation and heating operation by changing the flow direction of refrigerant discharged from a refrigerant compressor.

[従来の技術] 冷房運転時に室外熱交換器で室外空気と冷媒とを熱交換
させることによって冷媒を凝縮し、室内熱交換器で室内
へ吹き出す空気と冷媒とを熱交換させる事によって冷媒
を蒸発させて室内を冷房し、一方、暖房運転時に室内熱
交換器で室内へ吹き出す空気と冷媒とを熱交換して冷媒
を凝縮し、水冷媒熱交換器で温水と冷媒とを熱交換して
冷媒を蒸発させて室内を暖房するし−トボンプ式冷暖房
装置が知られている。このヒートポンプ式冷暖房装置は
、室内熱交換器から冷媒圧縮機へ冷媒を導く冷媒流路と
、水冷媒熱交換器から冷媒圧縮機へ冷媒を導く冷媒流路
とが合流する箇所が生じる。
[Conventional technology] During cooling operation, the refrigerant is condensed by exchanging heat between outdoor air and refrigerant using an outdoor heat exchanger, and the refrigerant is evaporated by exchanging heat between the refrigerant and the air blown indoors using an indoor heat exchanger. On the other hand, during heating operation, an indoor heat exchanger exchanges heat between the air blown into the room and the refrigerant to condense the refrigerant, and a water-refrigerant heat exchanger exchanges heat between hot water and refrigerant to cool the refrigerant. There is a well-known air-conditioning system that heats the room by evaporating the air. In this heat pump air conditioning system, there is a point where a refrigerant flow path that leads refrigerant from the indoor heat exchanger to the refrigerant compressor and a refrigerant flow path that leads refrigerant from the water-refrigerant heat exchanger to the refrigerant compressor merge.

[発明が解決しようとする課題] 上記の冷媒が合流する箇所では、第6図に示すように、
冷房運転時に室内熱交換器へ通じる冷媒流路101から
冷媒圧縮機の吸入口へ通じる冷媒流路102へ冷媒が流
れると、水冷媒熱交換器へ通じる冷媒流路103に冷媒
中に含まれるオイルが溜まる。すると、サイクル中の冷
媒が不足したり、オイルが不足する場合がある。
[Problems to be Solved by the Invention] At the location where the above refrigerants meet, as shown in FIG.
During cooling operation, when the refrigerant flows from the refrigerant flow path 101 leading to the indoor heat exchanger to the refrigerant flow path 102 leading to the suction port of the refrigerant compressor, the oil contained in the refrigerant flows into the refrigerant flow path 103 leading to the water-refrigerant heat exchanger. accumulates. This may result in a lack of refrigerant or oil in the cycle.

同様に、暖房運転時は、冷媒流路103から冷媒流路1
02へ冷媒が流れると、冷媒流路101に液化した冷媒
や、冷媒中に含まれるオイルが溜まる。
Similarly, during heating operation, from the refrigerant flow path 103 to the refrigerant flow path 1
When the refrigerant flows to 02, liquefied refrigerant and oil contained in the refrigerant accumulate in the refrigerant flow path 101.

すると、サイクル中の冷媒や、オイルが不足する場合が
ある。
This may cause a shortage of refrigerant or oil during the cycle.

この冷媒やオイルの不足を解決すべく、冷媒流路101
と103のそれぞれに一方向弁を設けることが考えられ
たが、部品点数が増加したり、一方向弁と合流箇所との
間に、冷媒やオイルが溜まるスペースができる問題点を
備えていた。
In order to solve this shortage of refrigerant and oil, the refrigerant flow path 101
It has been considered to provide a one-way valve for each of the valves and 103, but this has the problems of increasing the number of parts and creating a space between the one-way valve and the merging point where refrigerant or oil can accumulate.

本発明は、上記事情に鑑みてなされたもので、その目的
は、室内熱交換器からの冷媒と水冷媒熱交換器からの冷
媒との合流箇所における冷媒やオイルの溜まりを防ぐこ
とのできるヒートポンプ式冷暖房装置の提供にある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat pump that can prevent refrigerant and oil from accumulating at the confluence point of the refrigerant from the indoor heat exchanger and the refrigerant from the water-refrigerant heat exchanger. The purpose is to provide air-conditioning and heating equipment.

[課題を解決するための手段] 本発明は上記目的を達成するために、吸入口より冷媒を
吸入し、圧縮して吐出口より吐出する冷媒圧縮機と、車
室外の空気と冷媒とを熱交換する室外熱交換器と、車室
内へ吹き出す空気と冷媒とを熱交換する室内熱交換器と
、温水と冷媒とを熱交換する水冷媒熱交換器と、冷房運
転時に前記吐出口より吐出した冷媒を前記室外熱交換器
へ導き、前記室内熱交換器の流出した冷媒を前記吸入口
へ導くとともに、暖房運転時に前記吐出口より吐出した
冷媒を前記室内熱交換器へ導く流路切換手段とを具備し
、冷房運転時に前記吐出口より吐出した冷媒を、前記流
路切換手段、前記室外熱交換器、前記室内熱交換器、前
記流路切換手段を介して前記吸入口へ導き、暖房運転時
に前記吐出口より吐出した冷媒を、前記流路切換手段、
前記室内熱交換器、前記水冷媒熱交換器を介して前記吸
入口へ導くし−トボンプ式冷暖房装置において、前記水
冷媒熱交換器から前記吸入口へ冷媒を導く冷媒流路と、
前記流路切換手段から前記吸入口へ冷媒を導く冷媒流路
との合流位置には、一端に前記水冷媒熱交換器と連通ず
る第1連通口、他端に前記流路切換手段と連通ずる第2
連通口、中間位置に前記吸入口と連通する第3連通口を
備えた弁ケースと、該弁ケース内で冷媒の流れにより移
動可能に配され、一方に位置する際前記第1連通口を塞
いで前記第2連通口と前記第3連通口とを連通し、他方
に位置する際前記第2連通口を塞いで前記第1連通口と
前記第3連通口とを連通する弁体と、該弁体を前記第1
連遥口へ向けて付勢する付勢手段とからなるシャトル弁
が設けられたことを技術的手段とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a refrigerant compressor that sucks refrigerant from an inlet, compresses it, and discharges it from an outlet, and heats the air outside the vehicle and the refrigerant. an indoor heat exchanger that exchanges heat between air blown into the vehicle interior and refrigerant; a water-refrigerant heat exchanger that exchanges heat between hot water and refrigerant; flow path switching means for guiding refrigerant to the outdoor heat exchanger, guiding refrigerant flowing out of the indoor heat exchanger to the suction port, and guiding refrigerant discharged from the discharge port during heating operation to the indoor heat exchanger; The refrigerant discharged from the discharge port during cooling operation is guided to the suction port via the flow path switching means, the outdoor heat exchanger, the indoor heat exchanger, and the flow path switching means, and the refrigerant is guided to the suction port during heating operation. At the same time, the refrigerant discharged from the discharge port is transferred to the flow path switching means,
A refrigerant flow path that guides the refrigerant from the water-refrigerant heat exchanger to the suction port in the air-conditioning device, which leads the refrigerant to the suction port via the indoor heat exchanger and the water-refrigerant heat exchanger;
A first communication port communicating with the water-refrigerant heat exchanger at one end and communicating with the flow path switching means at the other end at a confluence position with the refrigerant flow path that guides the refrigerant from the flow path switching means to the suction port. Second
a valve case having a communication port and a third communication port communicating with the suction port at an intermediate position; and a valve case disposed so as to be movable by the flow of refrigerant within the valve case, and blocking the first communication port when located on one side. a valve body that connects the second communication port and the third communication port, and when located on the other side, blocks the second communication port and communicates the first communication port and the third communication port; the first valve body
The technical means is that a shuttle valve comprising a biasing means for biasing toward the continuous port is provided.

[作用] 冷房運転時、冷媒圧縮機の吐出口より吐出された冷媒は
、流路切換手段、室外熱交換器、室内熱交換器、流路切
換手段、シャトル弁を介して吸入口へ導かれる。このと
き、水冷媒熱交換器内に冷媒が残っていると、温水によ
って水冷媒熱交換器内の冷媒が膨張し、圧力が上昇する
。水冷媒熱交換器内の圧力が上昇すると、その圧力が第
1連通口へ導かれ、弁体を第2連通口側へ付勢し、第1
連通口を開く力となる。しかるに、弁体は、付勢手段に
よって第1連通口を塞ぐ方向へ付勢されている。このた
め、冷房運転時、水冷媒熱交換器内の圧力上昇によって
弁体を第2連通口ヘ付勢し、第1連通口を開こうとする
力が、付勢手段によって打ち消される。そして、流路切
換手段から第2連通口へ導かれた冷媒の流れによって弁
体が第1連通口側へ移動し、第1連通口が塞がれて第2
連通口と第3連通口とが連通ずる。
[Function] During cooling operation, the refrigerant discharged from the discharge port of the refrigerant compressor is guided to the suction port via the flow path switching means, outdoor heat exchanger, indoor heat exchanger, flow path switching means, and shuttle valve. . At this time, if refrigerant remains in the water-refrigerant heat exchanger, the refrigerant in the water-refrigerant heat exchanger expands due to the hot water, and its pressure increases. When the pressure inside the water-refrigerant heat exchanger increases, the pressure is guided to the first communication port, urges the valve body toward the second communication port, and
It becomes the force that opens the communication port. However, the valve body is biased by the biasing means in a direction to close the first communication port. Therefore, during cooling operation, the force that tends to bias the valve body toward the second communication port and open the first communication port due to the pressure increase in the water-refrigerant heat exchanger is canceled by the biasing means. Then, the valve body moves toward the first communication port due to the flow of refrigerant guided from the flow path switching means to the second communication port, and the first communication port is closed and the second communication port is closed.
The communication port and the third communication port communicate with each other.

これにより、冷房運転時に、流路切換手段から送られた
冷媒は、シャトル弁の第2連通口から第3連通口を介し
て吸入口へ導かれるとともに、第1連通口が弁体によっ
て塞がれる。
As a result, during cooling operation, the refrigerant sent from the flow path switching means is guided from the second communication port of the shuttle valve to the suction port via the third communication port, and the first communication port is blocked by the valve body. It will be done.

暖房運転時、冷媒圧縮機の吐出口より吐出された冷媒は
、流路切換手段、室内熱交換器、水冷媒熱交換器、シャ
トル弁を介して吸入口へ導かれる。
During heating operation, the refrigerant discharged from the discharge port of the refrigerant compressor is guided to the suction port via the flow path switching means, the indoor heat exchanger, the water-refrigerant heat exchanger, and the shuttle valve.

このとき、水冷媒熱交換器から第1連通口へ導かれた冷
媒の流れによって、付勢手段の付勢力に抗して弁体を第
2連通口側へ移動し、第2連通口が塞がれて第1連通口
と第3連通口が連通する。
At this time, the flow of refrigerant guided from the water-refrigerant heat exchanger to the first communication port moves the valve body toward the second communication port against the urging force of the urging means, and the second communication port is closed. The first communication port and the third communication port communicate with each other.

これにより、暖房運転時に、水冷媒熱交換器から送られ
た冷媒は、シャトル弁の第1連通口から第3連通口を介
して吸入口へ導かれるとともに、第2連通口が弁体によ
って塞がれる。
As a result, during heating operation, the refrigerant sent from the water-refrigerant heat exchanger is guided from the first communication port of the shuttle valve to the suction port via the third communication port, and the second communication port is blocked by the valve body. I can escape.

[発明の効果] 本発明によれば、冷房運転時に、流路切換手段から送ら
れた冷媒は、シャトル弁によって吸入口へ導かれるとと
もに、第1連通口が塞がれ、合流箇所と水冷媒熱交換器
との間に、オイルが溜まるのを防ぐことができる。
[Effects of the Invention] According to the present invention, during cooling operation, the refrigerant sent from the flow path switching means is guided to the suction port by the shuttle valve, the first communication port is closed, and the refrigerant is connected to the confluence point and water refrigerant. This prevents oil from accumulating between the heat exchanger and the heat exchanger.

また、暖房運転時に、水冷媒熱交換器から送られた冷媒
は、シャトル弁によって吸入口へ導かれるとともに、第
2連通口が塞がれ、合流箇所と室内熱交換器との間に、
冷媒やオイルが溜まるのを防ぐことができる。
In addition, during heating operation, the refrigerant sent from the water-refrigerant heat exchanger is guided to the suction port by the shuttle valve, and the second communication port is closed, so that the refrigerant is placed between the confluence point and the indoor heat exchanger.
Prevents refrigerant and oil from accumulating.

[実施例] 次に、本発明のヒートポどプ式冷暖房装置を図に示す一
実施例に基づき説明する。
[Example] Next, a heat pump type air-conditioning device of the present invention will be described based on an example shown in the drawings.

第1図および第2図にヒートポンプ式冷暖房装置の冷媒
回路図を示す0本実施例の冷媒回路1は自動車に搭載さ
れるもので、この冷媒回路1の冷媒圧縮機2は、図示し
ない車載エンジンの回転がクラッチを介して断続的に伝
達され、吸入口3より吸引した冷媒を圧縮して吐出口4
より吐出するものである。吐出口4より吐出された冷媒
は、冷媒流路を形成する冷媒配管5を介して四方弁6へ
導かれる。この四方弁6は、本発明の流路切換手段で、
冷房運転時にOFFされ、四方弁6へ導かれた冷媒を冷
媒配管5を介して室外熱交換器7へ導くとともに、室内
熱交換器8から冷媒配管5によって四方弁6へ導かれた
冷媒を冷媒配管5を介して吸入口3へ導く、また、暖房
運転時にはONされ、四方弁6へ導かれた冷媒を冷媒配
管5を介して室内熱交換器8へ導くものである。
1 and 2 show refrigerant circuit diagrams of a heat pump air-conditioning and heating system. The refrigerant circuit 1 of this embodiment is installed in an automobile, and the refrigerant compressor 2 of this refrigerant circuit 1 is connected to an engine mounted on the vehicle (not shown). The rotation of
It discharges more. The refrigerant discharged from the discharge port 4 is guided to the four-way valve 6 via a refrigerant pipe 5 that forms a refrigerant flow path. This four-way valve 6 is the flow path switching means of the present invention,
During cooling operation, the refrigerant turned OFF and led to the four-way valve 6 is led to the outdoor heat exchanger 7 via the refrigerant pipe 5, and the refrigerant led from the indoor heat exchanger 8 to the four-way valve 6 by the refrigerant pipe 5 is refrigerant. The refrigerant is guided to the suction port 3 via the pipe 5, and is turned on during heating operation to guide the refrigerant guided to the four-way valve 6 to the indoor heat exchanger 8 via the refrigerant pipe 5.

室外熱交換器7は、車両ラジェター前部など、室外空気
(外気)の流入が容易な位置に取り付けられ、冷房運転
時に四方弁6より送られてきた冷媒を外気と熱交換し、
冷媒を凝縮、液化するものである。そして、室外熱交換
器7で液化した冷媒は冷媒配管5、第1一方向弁9、レ
シーバ1G、第1減圧装置11を介して室内熱交換器8
へ導かれる。
The outdoor heat exchanger 7 is installed in a position where outdoor air (outside air) can easily flow in, such as at the front of a vehicle radiator, and exchanges heat with the outside air with the refrigerant sent from the four-way valve 6 during cooling operation.
It condenses and liquefies refrigerant. The refrigerant liquefied in the outdoor heat exchanger 7 then passes through the refrigerant pipe 5, the first one-way valve 9, the receiver 1G, and the first pressure reducing device 11 to the indoor heat exchanger 8.
be led to.

なお、第1一方向弁9は、暖房運転時に冷媒が室外熱交
換器7へ流入するのを防ぐものである。
Note that the first one-way valve 9 prevents the refrigerant from flowing into the outdoor heat exchanger 7 during heating operation.

室内熱交換器8は、車室内へ向かって空気を吹き出す空
気調和装置のダクト(図示しない)内に配設され、車室
内に吹き出される空気と冷媒とを熱交換するものである
The indoor heat exchanger 8 is disposed within a duct (not shown) of an air conditioner that blows air into the vehicle interior, and exchanges heat between the air blown into the vehicle interior and a refrigerant.

一方、暖房運転時に四方弁6を介して室内熱交換器8へ
導かれた冷媒は、室内へ導かれる空気と熱交換されて液
化凝縮し、冷媒配管5によって第1減圧装置11をバイ
パスし、第2一方向弁12、レシーバ10、電磁弁13
、第2減圧装ff14を介し、水冷媒熱交換器15に導
かれる。なお、第2一方向弁12は冷房運転時に冷媒が
第1減圧装r!111をバイパスするのを防ぐものであ
る。また、電磁弁13は、冷房運転時にOFF してレ
シーバ10の流出した冷媒が水冷媒熱交換器15へ流入
するのを防ぐものである。
On the other hand, during heating operation, the refrigerant led to the indoor heat exchanger 8 via the four-way valve 6 exchanges heat with the air led indoors, liquefies and condenses, bypasses the first pressure reducing device 11 through the refrigerant pipe 5, Second one-way valve 12, receiver 10, solenoid valve 13
, is guided to the water/refrigerant heat exchanger 15 via the second pressure reducing device ff14. Note that the second one-way valve 12 allows the refrigerant to be supplied to the first pressure reducing device r! during cooling operation. 111 is prevented from being bypassed. Further, the solenoid valve 13 is turned off during cooling operation to prevent the refrigerant flowing out of the receiver 10 from flowing into the water-refrigerant heat exchanger 15.

水冷媒熱交換器15は、水冷式エンジンの冷却水(温水
)と冷媒とを熱交換させるものである。
The water-refrigerant heat exchanger 15 exchanges heat between the cooling water (warm water) of the water-cooled engine and the refrigerant.

冷房運転時に室内熱交換器8を流出し、四方弁6へ導か
れた冷媒は、冷媒配管5を介して冷媒圧縮機2の吸入口
3へ導かれる。また、暖房運転時に水冷媒熱交換器15
を流出した冷媒は、冷媒配管5を介して冷媒圧縮機2の
吸入口3へ導かれる。
During cooling operation, the refrigerant that flows out of the indoor heat exchanger 8 and is guided to the four-way valve 6 is guided to the suction port 3 of the refrigerant compressor 2 via the refrigerant pipe 5. Also, during heating operation, the water refrigerant heat exchanger 15
The refrigerant that has flowed out is guided to the suction port 3 of the refrigerant compressor 2 via the refrigerant pipe 5.

このため、四方弁6から吸入口3へ冷媒を導く冷媒配管
5と水冷媒熱交換器15から吸入口3へ冷媒を導く冷媒
配管5とは、吸入口3の上流で合流する。
Therefore, the refrigerant pipe 5 that leads the refrigerant from the four-way valve 6 to the suction port 3 and the refrigerant pipe 5 that leads the refrigerant from the water-refrigerant heat exchanger 15 to the suction port 3 join upstream of the suction port 3.

この合流位置には、シャトル弁16が取り付けられてい
る。このシャトル弁16の構造を第3図ないし第5図に
示す。
A shuttle valve 16 is attached to this merging position. The structure of this shuttle valve 16 is shown in FIGS. 3 to 5.

シャトル弁16は、弁ケース17を備える。この弁ケー
ス17は、一方の端に水冷媒熱交換器15へ連通する冷
媒配管5を接続する第1連通口18を備え、他方の端に
室内熱交換器8へ連通する冷媒配管5を接続する第2連
通口19を備え、中間位置に冷媒圧縮機2の吸入口ぺ連
通する冷媒配管5を接続する第3連通口20を備える。
The shuttle valve 16 includes a valve case 17. This valve case 17 has a first communication port 18 connecting the refrigerant pipe 5 communicating with the water-refrigerant heat exchanger 15 at one end, and connects the refrigerant pipe 5 communicating with the indoor heat exchanger 8 at the other end. A third communication port 20 is provided at an intermediate position to connect the refrigerant pipe 5 which communicates with the suction port of the refrigerant compressor 2.

そして弁ケース17の内部には、両端が円錐状に窄まっ
た円筒状の室21が形成され、その室21内に弁体22
が配設されている。
Inside the valve case 17, a cylindrical chamber 21 with conical ends is formed, and a valve body 22 is placed inside the chamber 21.
is installed.

この弁体22は、両端の周囲に室21内に摺接する複数
のフランジ23.24が放射状に設けられている。
The valve body 22 has a plurality of flanges 23 and 24 radially provided around both ends thereof so as to slide into the chamber 21 .

また、弁体22の7ランジ23の端には、弁体22が第
1連通口18側に位置する際(一方に位置する際)、第
1連通口18を塞ぐ第1弁傘25が設けられている。
Further, a first valve umbrella 25 is provided at the end of the seven flange 23 of the valve body 22 to close the first communication port 18 when the valve body 22 is located on the first communication port 18 side (positioned on one side). It is being

また、弁体22のフランジ24の端には、弁体22が第
2連通口19側に位置する際(他方に位置する際)、第
2連通口19を塞ぐ第2弁傘26が設けられている。
Further, a second valve umbrella 26 is provided at the end of the flange 24 of the valve body 22 to close the second communication port 19 when the valve body 22 is located on the second communication port 19 side (when located on the other side). ing.

なお、第1弁傘25および第2弁傘26には、0−リン
グ27.28が装着され、第1弁傘25が第1連通口1
8を塞ぐ際、あるいは第2弁傘26が第2連通口19を
嶌ぐ際のシール性を向上させている。
Note that O-rings 27 and 28 are attached to the first valve umbrella 25 and the second valve umbrella 26, and the first valve umbrella 25 is connected to the first communication port 1.
8 or when the second valve umbrella 26 fits into the second communication port 19.

また、弁体22は、弁ケース17によって一端が支持さ
れた圧縮コイルばね29によって、常に第1連通口18
側へ付勢されている。この圧縮コイルばね29は本発明
の付勢手段で、冷房運転時に水冷媒熱交換器15内に残
った冷媒が冷却水によって膨脹し、圧力が」・、昇した
際、この圧力が弁体22を第2連通口19方向へ付勢し
、第1連通口を開く力を打ち消すものである。
Further, the valve body 22 is always connected to the first communication port 18 by a compression coil spring 29 whose one end is supported by the valve case 17.
Forced to the side. This compression coil spring 29 is a biasing means of the present invention, and when the refrigerant remaining in the water-refrigerant heat exchanger 15 expands with cooling water during cooling operation and the pressure rises, this pressure is applied to the valve body 22. The second communication port 19 is biased toward the second communication port 19, thereby canceling out the force that opens the first communication port.

次に上記し−トポンプ式冷暖房装置の作動を説明する。Next, the operation of the above-mentioned pump type air-conditioning system will be explained.

イ)冷房運転時(第1図書照) 車両乗員が図示しない操作パネルによって冷房運転を指
示すると、四方弁がOFFされるとともに、室内温度な
どに応じて冷媒圧縮機2のクラッチがONされる。クラ
ッチがONされた状態では、冷媒圧縮機2の吐出口4よ
り吐出された高温高圧の冷媒は、四方弁6によって室外
熱交換器7に導かれ、外気と熱交換されて液化凝縮する
。室外熱交換器7で液化した冷媒はレシーバ10へ流入
する。この冷房運転時では、水冷媒熱交換器15の上流
の電磁弁13がOFFされているため、レシーバ10内
へ流入した冷媒は第1減圧装置111を介して室内熱交
換器8へ流入する。高圧の液化冷媒は、第1減圧装置1
1を通過する際、断熱膨張し、低温低圧の霧状冷媒とな
り、室内熱交換器8内へ流入する。室内熱交換器8内へ
流入した冷媒は、空気調和装置のダクト内を流れる車室
内へ吹き出される空気から潜熱を奪って蒸発する。これ
により室内へ吹き出される空気が冷却されて、室内が冷
房される。蒸発が完了し、気化した冷媒は、四方弁6を
介してシャトル弁16の第2連通口19へ導かれる。
b) During cooling operation (see the first book) When a vehicle occupant instructs cooling operation using an operation panel (not shown), the four-way valve is turned off, and the clutch of the refrigerant compressor 2 is turned on depending on the indoor temperature and the like. When the clutch is in the ON state, the high-temperature, high-pressure refrigerant discharged from the discharge port 4 of the refrigerant compressor 2 is guided by the four-way valve 6 to the outdoor heat exchanger 7, where it exchanges heat with the outside air and is liquefied and condensed. The refrigerant liquefied in the outdoor heat exchanger 7 flows into the receiver 10 . During this cooling operation, the solenoid valve 13 upstream of the water-refrigerant heat exchanger 15 is turned off, so the refrigerant that has flowed into the receiver 10 flows into the indoor heat exchanger 8 via the first pressure reducing device 111. The high pressure liquefied refrigerant is transferred to the first pressure reducing device 1
1, the refrigerant expands adiabatically, becomes a low-temperature, low-pressure atomized refrigerant, and flows into the indoor heat exchanger 8. The refrigerant that has flowed into the indoor heat exchanger 8 removes latent heat from the air that flows through the duct of the air conditioner and is blown into the vehicle interior, and evaporates. This cools the air blown into the room, cooling the room. After the evaporation is completed, the vaporized refrigerant is guided to the second communication port 19 of the shuttle valve 16 via the four-way valve 6.

この冷房運転時に、水冷媒熱交換器15内に冷媒が残っ
ていると、冷却水によって水冷媒熱交換器15内の冷媒
が膨脹し、圧力が」−昇する。水冷媒熱交換器15内の
圧力は、冷媒配管5を介してシャトル弁16の第1連通
口18に導かれるため、水冷媒熱交換器15内の圧力の
上昇は、シャトル弁16の弁体22を第2連通口19方
向へ付勢し、第1連通口18を開く力となる。
During this cooling operation, if refrigerant remains in the water-refrigerant heat exchanger 15, the refrigerant in the water-refrigerant heat exchanger 15 expands due to the cooling water, and the pressure increases. Since the pressure inside the water-refrigerant heat exchanger 15 is guided to the first communication port 18 of the shuttle valve 16 via the refrigerant pipe 5, the increase in pressure inside the water-refrigerant heat exchanger 15 is caused by the valve body of the shuttle valve 16. 22 in the direction of the second communication port 19, and becomes a force that opens the first communication port 18.

しかるに、シャトル弁16の弁体22は、圧縮コイルば
ね29によって第1連通口18を塞ぐように付勢されて
いる。このため、冷房運転時、水冷媒熱交換器15内の
圧力上昇によって第1連通口18を開く力が、圧縮コイ
ルばね29によって打ち消される。
However, the valve body 22 of the shuttle valve 16 is urged by the compression coil spring 29 so as to close the first communication port 18 . Therefore, during cooling operation, the compression coil spring 29 cancels out the force that opens the first communication port 18 due to the rise in pressure within the water-refrigerant heat exchanger 15 .

そして、四方弁6から第2連通口19へ導かれた冷媒に
よって弁体22を第1連通口18側へ移動させ、第1弁
傘25が第1連通口18を塞ぎ、第2連通口19と第3
連通口20とが連通ずる。
Then, the refrigerant guided from the four-way valve 6 to the second communication port 19 moves the valve body 22 toward the first communication port 18, the first valve umbrella 25 closes the first communication port 18, and the second communication port 19 and third
It communicates with the communication port 20.

これにより、四方弁6から送られた冷媒は、シャトル弁
16の第2連通口19から第3連通口20を介して吸入
口へ導かれるとともに、第1連通口18が弁体22によ
って塞がれる。
As a result, the refrigerant sent from the four-way valve 6 is guided from the second communication port 19 of the shuttle valve 16 to the suction port via the third communication port 20, and the first communication port 18 is blocked by the valve body 22. It will be done.

本実施例によれば、四方弁6から送られた冷媒はシャト
ル弁16によって吸入口3へ導かれるとともに、第1連
通口18が第1弁傘25によって塞がれる。この結果、
四方弁6から冷媒を導く冷媒配管5と水冷媒熱交換器1
5から冷媒を導く冷媒配管5との合流位置と、水冷媒熱
交換器15との間の冷媒配管5にオイルが溜まるのを防
ぐことができる。
According to this embodiment, the refrigerant sent from the four-way valve 6 is guided to the suction port 3 by the shuttle valve 16, and the first communication port 18 is closed by the first valve umbrella 25. As a result,
Refrigerant piping 5 that leads refrigerant from four-way valve 6 and water-refrigerant heat exchanger 1
It is possible to prevent oil from accumulating in the refrigerant pipe 5 between the water-refrigerant heat exchanger 15 and the confluence position with the refrigerant pipe 5 that leads the refrigerant from the refrigerant pipe 5 .

口)暖房運転時(第2図参照) 車両乗員が図示しない操作パネルによって暖房運転を指
示すると、四方弁6がONされるとともに、室内温度な
どに応じて冷媒圧縮機2のクラッチがONされる。クラ
ッチがONされた状態では、冷媒圧縮112の吐出口4
より吐出された高温高圧の冷媒は四方弁6によって室内
熱交換器8内に導かれる。
(Note) During heating operation (see Figure 2) When a vehicle occupant instructs heating operation using an operation panel (not shown), the four-way valve 6 is turned on, and the clutch of the refrigerant compressor 2 is turned on depending on the indoor temperature, etc. . When the clutch is ON, the discharge port 4 of the refrigerant compression 112
The high-temperature, high-pressure refrigerant discharged from the refrigerant is guided into the indoor heat exchanger 8 by the four-way valve 6.

室内熱交換器8内へ導かれた冷媒は、空気調和装置のダ
クト内を流れ、車室内へ吹き出される空気に潜熱を奪わ
れて液化凝縮する。そして、冷媒から潜熱を奪って加熱
された空気は室内へ吹き出され、室内を暖房する。
The refrigerant guided into the indoor heat exchanger 8 flows through the duct of the air conditioner, loses its latent heat to the air blown into the vehicle interior, and liquefies and condenses. The heated air is then blown out into the room by removing latent heat from the refrigerant, heating the room.

室内熱交換器8で液化した冷媒はレシーバ10へ流入す
る。この暖房運転時では、水冷媒熱交換器15の上流の
電磁弁13がONされ、レシーバ10内へ流入した冷媒
は電磁弁13、第2減圧装W14を介して水冷媒熱交換
器15内へ流入する。高圧の液化冷媒は、第2減圧装f
i14を通過する際、断熱膨張し、低温低圧の霧状冷媒
となり、水冷媒熱交換器15内へ流入する。水冷媒熱交
換器15内へ流入した冷媒は冷却水から潜熱を奪って蒸
発する。そして、蒸発が完了し、気化した冷媒は、シャ
トル弁16の第1連通口18へ導かれる。水冷媒熱交換
器15から第1連通口18へ冷媒が導かれると、冷媒の
流れによって、弁体22が圧縮コイルばね29の付勢力
に抗して第2連通口19側へ存動し、第2連通口19が
第2弁傘26に塞がれて第1連通口18と第3連通口2
0が連通する。
The refrigerant liquefied in the indoor heat exchanger 8 flows into the receiver 10. During this heating operation, the solenoid valve 13 upstream of the water-refrigerant heat exchanger 15 is turned on, and the refrigerant flowing into the receiver 10 flows into the water-refrigerant heat exchanger 15 via the solenoid valve 13 and the second pressure reducing device W14. Inflow. The high pressure liquefied refrigerant is transferred to the second pressure reducing device f
When passing through i14, the refrigerant expands adiabatically, becomes a low-temperature, low-pressure atomized refrigerant, and flows into the water-refrigerant heat exchanger 15. The refrigerant flowing into the water-refrigerant heat exchanger 15 absorbs latent heat from the cooling water and evaporates. Then, the evaporation is completed, and the vaporized refrigerant is guided to the first communication port 18 of the shuttle valve 16. When the refrigerant is introduced from the water-refrigerant heat exchanger 15 to the first communication port 18, the valve body 22 moves toward the second communication port 19 against the biasing force of the compression coil spring 29 due to the flow of the refrigerant. The second communication port 19 is blocked by the second valve umbrella 26, and the first communication port 18 and the third communication port 2 are closed.
0 is connected.

これにより、水冷媒熱交換器15から送られた冷媒は、
シャトル弁16の第1連通口18から第3連通口20を
介して吸入口3へ導かれるとともに、第2連通口19が
第2弁傘2Bによって塞がれる。
As a result, the refrigerant sent from the water-refrigerant heat exchanger 15 is
The air is guided from the first communication port 18 of the shuttle valve 16 to the suction port 3 via the third communication port 20, and the second communication port 19 is closed by the second valve umbrella 2B.

本実施例によれば、水冷媒熱交換器15から送られた冷
媒は、シャトル弁16によって吸入口3へ導かれるとと
もに、第2連通口19が第2弁傘26によって塞がれる
。この結果、水冷媒熱交換器15から冷媒を導く冷媒配
管と、四方弁6から冷媒を導く冷媒配管5との合流位置
と、四方弁6との間の冷媒配管5に、冷媒やオイルが溜
まるのを防ぐことができる。
According to this embodiment, the refrigerant sent from the water-refrigerant heat exchanger 15 is guided to the suction port 3 by the shuttle valve 16, and the second communication port 19 is closed by the second valve umbrella 26. As a result, refrigerant and oil accumulate in the refrigerant pipe 5 between the four-way valve 6 and the confluence position of the refrigerant pipe leading the refrigerant from the water-refrigerant heat exchanger 15 and the refrigerant pipe 5 leading the refrigerant from the four-way valve 6. can be prevented.

(変形例) 本発明を自動車の冷暖房装置に適用した例を示したが、
鉄道や船舶用の冷暖房装置、家庭用や商業用の冷暖房装
置に適用しても良い。
(Modified example) Although an example in which the present invention is applied to an automobile air conditioning system has been shown,
It may be applied to air-conditioning equipment for railways and ships, and air-conditioning equipment for home and commercial use.

流路切換手段に四方弁を用いた例を示したが、複数の電
磁弁により冷媒の流れ方向を切り替えても良い。
Although an example is shown in which a four-way valve is used as the flow path switching means, the flow direction of the refrigerant may be switched using a plurality of electromagnetic valves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヒートポンプ式冷暖房装置の冷房運転時を示す
冷媒回路図、第2図はヒートポンプ式冷暖房装置の暖房
運転時を示す冷媒回路図、第3図はシャトル弁の断面図
、第4図は弁体の断面図、第5図は弁体の平面図、第6
図は従来の冷媒流路の合流位置を示す断面図である。 図中 2・・・冷媒圧縮機 3・・・吸入口 4・・・
吐出口 5・・・冷媒配管(冷媒流路)  6・・・四
方弁(流路切換手段)  7・・・室外熱交換器 8・
・・室内熱交換器 15・・・水冷媒熱交換器 16・
・・シャトル弁 17・・・弁ケース 18・・・第1
連通口 19・・・第2連通口20・・・第3連通口 
22・・・弁体 29・・・圧縮コイルばね(付勢手段
Figure 1 is a refrigerant circuit diagram showing the heat pump type air conditioning system during cooling operation, Figure 2 is a refrigerant circuit diagram showing the heat pump type air conditioning system during heating operation, Figure 3 is a cross-sectional view of the shuttle valve, and Figure 4 is A cross-sectional view of the valve body, Figure 5 is a plan view of the valve body, and Figure 6 is a cross-sectional view of the valve body.
The figure is a sectional view showing a confluence position of conventional refrigerant flow paths. In the diagram 2... Refrigerant compressor 3... Suction port 4...
Discharge port 5... Refrigerant piping (refrigerant flow path) 6... Four-way valve (flow path switching means) 7... Outdoor heat exchanger 8.
・・Indoor heat exchanger 15・Water refrigerant heat exchanger 16・
...Shuttle valve 17...Valve case 18...1st
Communication port 19...Second communication port 20...Third communication port
22... Valve body 29... Compression coil spring (biasing means)

Claims (1)

【特許請求の範囲】 1)吸入口より冷媒を吸入し、圧縮して吐出口より吐出
する冷媒圧縮機と、車室外の空気と冷媒とを熱交換する
室外熱交換器と、車室内へ吹き出す空気と冷媒とを熱交
換する室内熱交換器と、温水と冷媒とを熱交換する水冷
媒熱交換器と、冷房運転時に前記吐出口より吐出した冷
媒を前記室外熱交換器へ導き、前記室内熱交換器の流出
した冷媒を前記吸入口ヘ導くとともに、暖房運転時に前
記吐出口より吐出した冷媒を前記室内熱交換器へ導く流
路切換手段とを具備し、冷房運転時に前記吐出口より吐
出した冷媒を、前記流路切換手段、前記室外熱交換器、
前記室内熱交換器、前記流路切換手段を介して前記吸入
口ヘ導き、暖房運転時に前記吐出口より吐出した冷媒を
、前記流路切換手段、前記室内熱交換器、前記水冷媒熱
交換器を介して前記吸入口ヘ導くヒートポンプ式冷暖房
装置において、 前記水冷媒熱交換器から前記吸入口ヘ冷媒を導く冷媒流
路と、前記流路切換手段から前記吸入口ヘ冷媒を導く冷
媒流路との合流位置には、 (a)一端に前記水冷媒熱交換器と連通する第1連通口
、他端に前記流路切換手段と連通する第2連通口、中間
位置に前記吸入口と連通する第3連通口を備えた弁ケー
スと、 (b)該弁ケース内で冷媒の流れにより移動可能に配さ
れ、一方に位置する際前記第1連通口を塞いで前記第2
連通口と前記第3連通口とを連通し、他方に位置する際
前記第2連通口を塞いで前記第1連通口と前記第3連通
口とを連通する弁体と、(c)該弁体を前記第1連通口
ヘ向けて付勢する付勢手段と からなるシャトル弁が設けられたことを特徴とするヒー
トポンプ式冷暖房装置。
[Scope of Claims] 1) A refrigerant compressor that sucks refrigerant through an intake port, compresses it, and discharges it from a discharge port, an outdoor heat exchanger that exchanges heat between the air outside the vehicle interior and the refrigerant, and blows the refrigerant into the vehicle interior. an indoor heat exchanger that exchanges heat between air and a refrigerant; a water-refrigerant heat exchanger that exchanges heat between hot water and a refrigerant; A flow path switching means for guiding the refrigerant flowing out of the heat exchanger to the suction port and for guiding the refrigerant discharged from the discharge port during heating operation to the indoor heat exchanger, the refrigerant being discharged from the discharge port during cooling operation. The refrigerant is transferred to the flow path switching means, the outdoor heat exchanger,
The refrigerant that is guided to the suction port through the indoor heat exchanger and the flow path switching means and discharged from the discharge port during heating operation is transferred to the flow path switching means, the indoor heat exchanger, and the water refrigerant heat exchanger. A heat pump type air-conditioning device that leads the refrigerant to the suction port via the water-refrigerant heat exchanger, and a refrigerant flow path that leads the refrigerant from the flow path switching means to the suction port. The merging position includes: (a) a first communication port communicating with the water-refrigerant heat exchanger at one end, a second communication port communicating with the flow path switching means at the other end, and a second communication port communicating with the suction port at an intermediate position; (b) a valve case provided with a third communication port;
(c) a valve body that communicates between the communication port and the third communication port, and when located on the other side, blocks the second communication port and communicates the first communication port and the third communication port; 1. A heat pump type air-conditioning/heating device, characterized in that a shuttle valve comprising a biasing means for biasing the body toward the first communication port is provided.
JP12279688A 1988-05-19 1988-05-19 Heat-pump type air conditioner Pending JPH01296057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12279688A JPH01296057A (en) 1988-05-19 1988-05-19 Heat-pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12279688A JPH01296057A (en) 1988-05-19 1988-05-19 Heat-pump type air conditioner

Publications (1)

Publication Number Publication Date
JPH01296057A true JPH01296057A (en) 1989-11-29

Family

ID=14844845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12279688A Pending JPH01296057A (en) 1988-05-19 1988-05-19 Heat-pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH01296057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277879A (en) * 2013-05-03 2013-09-04 广东美的暖通设备有限公司 Water source multi-split air conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277879A (en) * 2013-05-03 2013-09-04 广东美的暖通设备有限公司 Water source multi-split air conditioning system
CN103277879B (en) * 2013-05-03 2016-03-30 广东美的暖通设备有限公司 Water source multi-connection air conditioning

Similar Documents

Publication Publication Date Title
US7360372B2 (en) Refrigeration system
JP3781147B2 (en) Heat pump type automotive air conditioner
US5819551A (en) Air conditioning apparatus for a vehicle
JP3939445B2 (en) Air conditioner for automobile
CN113547956A (en) Vehicle thermal management system
GB2143017A (en) Reversible heat pump
KR102603497B1 (en) Air conditioner for vehicle
JPH01296057A (en) Heat-pump type air conditioner
JP2000161814A (en) Engine-driven heat pump type air conditioner
JPH0478613A (en) Heat pump type air conditioner
JP4240682B2 (en) Refrigeration cycle equipment for vehicles
JP3830242B2 (en) Heat pump type automotive air conditioner
JPH10119561A (en) Air conditioner for automobile
JP2871166B2 (en) Air conditioner
JPH0241917A (en) Heat pump type air conditioning device for vehicle
JPS62125273A (en) Heat pump device
JPS6036539B2 (en) Refrigeration equipment capable of cooling and dehumidifying
JPS583015Y2 (en) Separate type air conditioner/heater
JPS6015084Y2 (en) Refrigeration equipment
JPS6360305B2 (en)
JPS60598Y2 (en) Separate air conditioner/heater
JPH06337172A (en) Heat pump type air-conditioning machine
JPS6330929Y2 (en)
CN112797497A (en) Air conditioner indoor unit and air conditioner
CN112797496A (en) Air conditioner indoor unit, air conditioner and control method of air conditioner