JPS62125273A - Heat pump device - Google Patents
Heat pump deviceInfo
- Publication number
- JPS62125273A JPS62125273A JP60266984A JP26698485A JPS62125273A JP S62125273 A JPS62125273 A JP S62125273A JP 60266984 A JP60266984 A JP 60266984A JP 26698485 A JP26698485 A JP 26698485A JP S62125273 A JPS62125273 A JP S62125273A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchanger
- valve
- heating
- heat pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/274—Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は冷媒の流れ方向を逆転させることにより冷暖房
を行うヒートポンプ装置に関し、さらに詳細には、複数
の室内側熱交換器を有する同装置における暖房能力の向
上に関する。その用途は特に限定されないが例えば、前
後席にそれぞれ熱交換器を有する自動車用の空調装置等
として用いられて有効なものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat pump device that performs air conditioning and heating by reversing the flow direction of a refrigerant, and more particularly relates to a heat pump device that performs air conditioning and heating by reversing the flow direction of a refrigerant. Regarding improving heating capacity. Although its use is not particularly limited, it is effective for use as an air conditioner for automobiles having heat exchangers in each of the front and rear seats, for example.
従来この種のヒートポンプ装置は、例えば自動車用とし
て、エンジン始動後、エンジン冷却水が温まるまでのい
わゆる即効暖房、あるいはエンジン冷却水による暖房の
みでは暖房能力が不足する場合の補助暖房用として用い
られるものであって、とりわけディーゼルエンジン搭載
の1ボソクスカ−等のエンジン排気量が小さい割には車
室内空間が広い車両に有効である。ところでいわゆる1
ボツクスカーにおいては、第6図に示すように室内側熱
交換器として前席用と後席用の2台の熱交換器6,7(
以後簡単のためF HE (Eront 1leat
Ex−changer)、 RHE (fLear j
ieat旦xchanger)と略す)が設けられてお
り、冷房時は圧縮機1から圧縮吐出された高温高圧のガ
ス冷媒は配管A−四方弁3− 配vH−コンデンサ4−
配’IF−レシーバ12−配管E−電磁弁14.15=
膨張弁8.9−FHE6およびRWE7−配管B−四方
弁3−配管l−圧縮機1と流れて車室内冷房を行う。ま
た暖房時には四方弁3により流路を切換えて圧縮機1−
配管A−四方弁3−配管B−FHE6およびRWE7−
配管り、D’(逆止弁17a、17b)−レシーバ12
−配管G−膨張弁1)−コンデンサ4−配管H−四方弁
3−配管■−圧縮機1と流れて車室内暖房を行う。Conventionally, this type of heat pump device is used, for example, in automobiles, for so-called immediate heating after the engine starts until the engine cooling water warms up, or for auxiliary heating when heating capacity is insufficient with engine cooling water alone. This is particularly effective for vehicles with a large interior space despite their small engine displacement, such as single-engine cars equipped with a diesel engine. By the way, the so-called 1
As shown in Fig. 6, the boxcar has two heat exchangers 6, 7 (one for the front seats and one for the rear seats) as indoor heat exchangers.
From now on, for simplicity, F HE (Eront 1leat
Ex-changer), RHE (fLear j
During cooling, the high-temperature, high-pressure gas refrigerant compressed and discharged from the compressor 1 is routed through piping A - four-way valve 3 - distribution vH - condenser 4 -.
Distribution 'IF-Receiver 12-Piping E-Solenoid valve 14.15=
It flows through the expansion valve 8.9 - FHE6 and RWE7 - piping B - four-way valve 3 - piping l - compressor 1 to cool the vehicle interior. Also, during heating, the four-way valve 3 switches the flow path to the compressor 1-
Piping A-Four-way valve 3-Piping B-FHE6 and RWE7-
Piping, D' (check valves 17a, 17b) - receiver 12
- Piping G - Expansion valve 1) - Condenser 4 - Piping H - Four-way valve 3 - Piping ■ - Compressor 1 to heat the vehicle interior.
ところで上記従来のヒートポンプ装置においては、冷房
時には前席側と後席側の冷房負荷に応じて膨張弁8.9
あるいは電磁弁14.15の開度を調節し冷房能力を調
節することができるが、暖房時にはこれらの手段では能
力の調節が行えない。By the way, in the above-mentioned conventional heat pump device, during cooling, the expansion valve 8.9
Alternatively, the cooling capacity can be adjusted by adjusting the opening degree of the solenoid valves 14 and 15, but the capacity cannot be adjusted by these means during heating.
一般に前記1ボツクスカー等にあっては、暖房にあたっ
て前席側は窓ガラスの曇り防止のため外気導入による暖
房が行われるのに対して、後席側では内気循環であるた
め、前席側と後席側の熱交換器に流入する空気には非常
に大きな温度差ができることになる。従って冷媒の蒸発
に著しいアンバランスが生じ効果的な暖房が行われない
という問題があった。Generally speaking, in the above-mentioned 1-box cars, the front seat side is heated by introducing outside air to prevent the window glass from fogging up, while the rear seat side uses internal air circulation, so the front seat side and the rear seat side are heated. This creates a very large temperature difference in the air flowing into the seat-side heat exchanger. Therefore, there was a problem in that there was a significant imbalance in the evaporation of the refrigerant, and effective heating was not performed.
そこで本発明はかかる従来技術の問題点を解消するため
に、少なくとも圧縮機、四方弁、室内側熱交換器、減圧
装置、および室外側熱交換器を有し、前記四方弁により
冷媒の流れ方向を逆転させることにより、冷暖房を行う
ヒートポンプ装置において、
前記室内側熱交換器は複数で構成され、冷房時には複数
の室内側熱交換器に並列に冷媒を分配通過させるととも
に、暖房時には前記複数の室内側熱交換器に直列に冷媒
を通過させるヒートポンプ装置を採用するものである。Therefore, in order to solve the problems of the prior art, the present invention includes at least a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger, and the four-way valve controls the refrigerant flow direction. In a heat pump device that performs air conditioning and heating, the indoor heat exchanger is composed of a plurality of indoor heat exchangers, and the refrigerant is distributed and passed through the plurality of indoor heat exchangers in parallel during cooling, and the refrigerant is passed through the plurality of indoor heat exchangers in parallel during heating. It employs a heat pump device that passes refrigerant in series through an inner heat exchanger.
上記手段においては、暖房時に複数の室内側熱交換器に
冷媒を直列に通過させるように構成されているので、複
数の室内側熱交換器に導入される空気温度に温度差があ
っても、すべての冷媒が室内側熱交換器を順次通過する
ために導入空気温度差にかかわらず熱交換器内を通過す
る冷媒温がほぼ一定となり、効率的な暖房が行われる。In the above means, since the refrigerant is configured to pass through the plurality of indoor heat exchangers in series during heating, even if there is a temperature difference in the temperature of the air introduced into the plurality of indoor heat exchangers, Since all the refrigerant passes through the indoor heat exchanger in sequence, the temperature of the refrigerant passing through the heat exchanger remains almost constant regardless of the temperature difference of the introduced air, and efficient heating is performed.
以下本発明を図に示す実施例に基づいて詳細に説明する
。第1図は本発明の自動車用ヒートポンプ装置の構成を
説明する系統図で、1は図示しないエンジンの駆動力を
電磁クラッチ2を介して伝えることにより回転駆動され
、低温低圧の気相冷媒を吸入口1aより吸入し、吐出口
1bより高温高圧の気相冷媒として吐出する圧縮機、3
は図示しない電磁コイルへの通電を制御することにより
流路を切換え冷媒の流れ方向を逆転させ冷暖房の切換え
を行う四方弁、4は図示しない自動車ラジェータに並列
に配設された本発明の第1室外側熱交換器としてのコン
デンサで高’IL&圧ガス冷媒を冷却液化させる。The present invention will be explained in detail below based on embodiments shown in the drawings. FIG. 1 is a system diagram illustrating the configuration of the automobile heat pump device of the present invention, in which 1 is rotationally driven by transmitting the driving force of an engine (not shown) through an electromagnetic clutch 2, and sucks a low-temperature, low-pressure gas phase refrigerant. a compressor that sucks in through a port 1a and discharges high-temperature, high-pressure gas phase refrigerant from a discharge port 1b; 3;
Reference numeral 4 indicates a four-way valve that switches the flow path and reverses the flow direction of the refrigerant by controlling the energization of an electromagnetic coil (not shown) to switch between air conditioning and heating, and 4 indicates a first valve of the present invention which is arranged in parallel with an automobile radiator (not shown). A condenser serving as an outdoor heat exchanger cools and liquefies high IL & pressure gas refrigerant.
6および7は冷房時には蒸発器、暖房時には凝縮器とし
て働く前席用熱交換器(FHE)および後席用熱交換器
(RWE)で、図示しないが、FHE6は自動車運転席
前方の前席用空調ケーシング内に配設され、RWE7は
後部座席の後方に取付けられた後席用空調ケーシング内
に配設され、それぞれ送風機により独立に送風量が制御
される。6 and 7 are a front seat heat exchanger (FHE) and a rear seat heat exchanger (RWE) that function as an evaporator during cooling and a condenser during heating; although not shown, FHE 6 is for the front seat in front of the driver's seat. The RWE 7 is disposed within the air conditioning casing, and the RWE 7 is disposed within the rear seat air conditioning casing attached to the rear of the rear seat, and the amount of air blown is independently controlled by each blower.
なお前席用空調ケーシング内には内外気切換ダンパが設
けられ、内外気が切換え導入されるのに対して後席側は
内気取入口のみを有する。8および9はFHE6および
RHE7に液冷媒を減圧して供給する膨張弁である。An inside/outside air switching damper is provided in the front air conditioning casing, and inside/outside air is selectively introduced, whereas the rear seat side only has an inside air intake port. 8 and 9 are expansion valves that reduce the pressure and supply liquid refrigerant to the FHE 6 and RHE 7.
10は暖房時に液冷媒の蒸発を効率的に行うためのエン
ジン冷却水を熱源とする本発明の第2室外側熱交換器と
しての温水熱交換器でエンジンルーム内等の適宜の場所
に取付けられている。この温水熱交換器10にはエンジ
ン冷却水送水管の出入口管10a、10bが接続されて
いる。なお1)はこの温水熱交換器10に液冷媒を減圧
して供給する膨張弁である。また12は凝縮された冷媒
の気液分離を行うとともに液相冷媒の貯蔵を行うレシー
バである。Reference numeral 10 denotes a hot water heat exchanger as a second outdoor heat exchanger of the present invention, which uses engine cooling water as a heat source to efficiently evaporate liquid refrigerant during heating, and is installed at an appropriate location such as in the engine room. ing. The hot water heat exchanger 10 is connected to inlet and outlet pipes 10a and 10b of engine cooling water supply pipes. Note that 1) is an expansion valve that reduces the pressure and supplies liquid refrigerant to the hot water heat exchanger 10. Further, 12 is a receiver that performs gas-liquid separation of the condensed refrigerant and stores the liquid phase refrigerant.
配管A−1は以上の構成部品によりヒートポンプサイク
ルが形成されるように配設された冷媒配管で、適宜電磁
弁13.14.15逆止弁16゜17.1B、19.2
0を介している。それぞれの電磁弁および逆止弁の働き
は後述する本発明の作動により明らかとなる。ここで配
管Cは、本発明において暖房時FHE6とRHE7を直
列に接続するために設けられたもので逆止弁19を介し
ている。Piping A-1 is a refrigerant pipe arranged so that a heat pump cycle is formed by the above-mentioned components, and is equipped with solenoid valves 13, 14, 15, check valves 16° 17.1B, 19.2 as appropriate.
via 0. The functions of each electromagnetic valve and check valve will become clear from the operation of the present invention described later. Here, the pipe C is provided to connect the FHE 6 and the RHE 7 in series during heating in the present invention, and is provided through a check valve 19.
次に以上のように構成されたヒートポンプ装面の作動に
ついて冷房時と暖房時に分けて説明する。Next, the operation of the heat pump system configured as described above will be explained separately during cooling and heating.
まず冷房時には、電磁弁13,14.15がすべて開か
れ、第1図において実線矢印で示す方向に冷媒が流れ車
室内の冷房を行う。すなわち、圧縮機lで圧縮吐出され
た高温高圧のガス冷媒は配管A−四方弁3−配管H(電
磁弁13)−コンデンサ4と流れコンデンサ内で冷却さ
れて気液混合冷媒となる。気液混合冷媒は逆止弁16を
経て逆止弁17により配管りへの流入を阻止されてすべ
てレシーバ12に流入する。ここで気液分離された後液
冷媒は配管G内の圧力が逆止弁20を境にして配管H内
の圧力よりも低くなっているので、配管G側へは流入せ
ず配管Eにはいり分岐点Jで分配され、電磁弁14,1
5、膨張弁8.9を経て減圧され、並列にFHE6.R
HET内を流れて蒸発し、このときの気化潜熱により冷
房を行う。First, during cooling, all of the solenoid valves 13, 14, and 15 are opened, and refrigerant flows in the direction shown by the solid arrow in FIG. 1 to cool the interior of the vehicle. That is, the high-temperature, high-pressure gas refrigerant compressed and discharged by the compressor 1 flows through the pipe A, the four-way valve 3, the pipe H (electromagnetic valve 13), and the condenser 4, and is cooled in the condenser to become a gas-liquid mixed refrigerant. The gas-liquid mixed refrigerant passes through the check valve 16 and is prevented from flowing into the piping by the check valve 17, and all flows into the receiver 12. After the gas-liquid separation, the liquid refrigerant does not flow into the pipe G side but enters the pipe E because the pressure in the pipe G is lower than the pressure in the pipe H across the check valve 20. It is distributed at the branch point J, and the solenoid valve 14,1
5, the pressure is reduced through the expansion valve 8.9, and the FHE6. R
It flows through the HET and evaporates, and the latent heat of vaporization at this time performs cooling.
なお膨張弁8で減圧された冷媒は逆止弁19により配管
Cへは流入せず、膨張弁9で減圧された冷媒は低圧であ
るため配管りへは流入しない。FHE6.RHE7で気
化したガス冷媒は合流点にで合流し四方弁3、配管■を
経て圧縮機1に戻る。Note that the refrigerant whose pressure has been reduced by the expansion valve 8 does not flow into the piping C due to the check valve 19, and the refrigerant whose pressure has been reduced by the expansion valve 9 has a low pressure and therefore does not flow into the piping. FHE6. The gas refrigerant vaporized in the RHE 7 joins at the confluence point and returns to the compressor 1 via the four-way valve 3 and the pipe ①.
次に暖房時には電磁弁13,14.15がすべて閉じら
れ第1図において破線矢印に示す方向に冷媒が流れ暖房
を行う。すなわち圧縮機1で圧縮された高温高圧のガス
冷媒は、配管へ−四方弁3と流れ、次に逆止弁18によ
り配管Bへの流入を阻止されて配管Cに流入する。その
後電磁弁14が閉じられているため、逆止弁19−FH
E6−RHE7へと直列に流れこのとき2つの熱交換器
内で高温高圧の気相冷媒が凝縮し暖房が行われる。Next, during heating, all the solenoid valves 13, 14, and 15 are closed, and the refrigerant flows in the direction shown by the broken line arrow in FIG. 1 to perform heating. That is, the high-temperature, high-pressure gas refrigerant compressed by the compressor 1 flows into the pipe through the four-way valve 3, and then flows into the pipe C after being prevented from flowing into the pipe B by the check valve 18. After that, since the solenoid valve 14 is closed, the check valve 19-FH
The refrigerant flows in series from E6 to RHE7, and at this time, the high temperature and high pressure gas phase refrigerant is condensed within the two heat exchangers to perform heating.
RHE7を出た液冷媒は、電磁弁15が閉じられている
ため配9Dへ流入し逆止弁17から逆止弁16に阻止さ
れてレシーバ12に流入する。レシーバ12で分離され
た液冷媒は配管G−膨張弁1)−温水熱交換器10と流
れ、この温水熱交換器で気化する。そして逆止弁2〇−
配管H−四方弁3−配管■を経て圧縮itに戻る。Since the electromagnetic valve 15 is closed, the liquid refrigerant that has exited the RHE 7 flows into the pipe 9D, is blocked by the check valve 17 and the check valve 16, and flows into the receiver 12. The liquid refrigerant separated by the receiver 12 flows through the pipe G, the expansion valve 1), and the hot water heat exchanger 10, and is vaporized in this hot water heat exchanger. And check valve 20-
Return to compression IT via piping H - four-way valve 3 - piping ■.
ところで第6図に示す従来の構成にあっては、FHE6
とRHE7へ分配供給される冷媒量が分岐点にで適切に
分配されている状態から、たとえば後席用空調装置の風
量を、乗員がその好みに応じて低下させるよう調節する
と、第2図(alO熱交換器のガス容量と液容量を示す
模式図のようになり、RHE7へは必要以上の冷媒が流
れることとなり、過熱ガス域が増加するとともに一部の
ガス冷媒は凝縮しきれずRHE7の出口においても飽和
蒸気のまま流出する。第2図(bl、(C)はFHE6
とRHE7の冷媒流れ方向の冷媒温度を示したものであ
る。この出口の状態は第3図に示すモリエル線図上では
A点となる。一方、このレシーバサイクルでは、蒸発器
として働く温水熱交換器10の出口の冷媒過熱度を一定
に保つよう制御する膨張弁1)と、凝縮器として働<F
HE6.RHE7の出口の冷媒を飽和液状態に制御する
レシーバ7とにより冷凍サイクルが制御される。すなわ
ち、レシーバ12はFHE6とRHE7を出て合流した
冷媒を飽和液(モリエル線図上の0点)として膨張弁1
)に供給するよう制御するため、RWE7の出口のガス
冷媒を凝縮できる熱量分だけ、FHE6の出口の液冷媒
は過冷却度をもたされることとなり、この状態はモリエ
ル線図上ではB点の状態となる。このようなアンバラン
スはFHE6、RHE7の総数熱量を最適時と同じとし
た場合、効率の悪い運転となるばかりか、最適に分配さ
れている状態に比較し、RHE7では温度の高い過熱蒸
気域が増加し、FHE6では温度が低く熱交換効率も悪
い液域が増加するため、それぞれの吹出空気温度差は大
きくなる方向となる。ただし、RHElの流入風量を下
げることは全体として暖房負荷を下げることになるので
、一般には凝縮圧力が上昇し、FHE6の吹出温度も上
昇するが、RHE7の上昇の方が大きい。このため、こ
こでRHE7の吹出温度を下げるよう能力制御すると、
FHE6側の吹出温度は必要以上に低下してしまうこと
となる。By the way, in the conventional configuration shown in FIG.
If the amount of refrigerant distributed and supplied to the RHE7 is appropriately distributed at the branch point, for example, if the passenger adjusts the air volume of the rear seat air conditioner to reduce it according to his/her preference, the result will be as shown in Figure 2 ( As shown in the schematic diagram showing the gas capacity and liquid capacity of the alO heat exchanger, more refrigerant than necessary flows into RHE7, the superheated gas area increases, and some gas refrigerant cannot be fully condensed and the outlet of RHE7 Even in the case of FHE6, it flows out as saturated steam.
and shows the refrigerant temperature in the refrigerant flow direction of RHE7. This exit state becomes point A on the Mollier diagram shown in FIG. On the other hand, in this receiver cycle, an expansion valve 1) that controls the degree of superheating of the refrigerant at the outlet of the hot water heat exchanger 10, which functions as an evaporator, is kept constant, and an expansion valve 1), which functions as a condenser, and a
HE6. The refrigeration cycle is controlled by a receiver 7 that controls the refrigerant at the outlet of the RHE 7 to a saturated liquid state. That is, the receiver 12 converts the refrigerant that has exited FHE6 and RHE7 into saturated liquid (point 0 on the Mollier diagram) to the expansion valve 1.
), the liquid refrigerant at the outlet of FHE6 is brought to a degree of supercooling by the amount of heat that can condense the gas refrigerant at the outlet of RWE7, and this state corresponds to point B on the Mollier diagram. The state will be as follows. If the total number of heat values of FHE6 and RHE7 is the same as in the optimal state, such an imbalance will not only lead to inefficient operation, but also cause the RHE7 to have a higher temperature superheated steam region compared to an optimally distributed state. In FHE6, the liquid region where the temperature is low and the heat exchange efficiency is poor increases, so the temperature difference between the respective blown airs tends to increase. However, since lowering the inflow air volume of RHEl will lower the heating load as a whole, the condensing pressure will generally rise and the blowout temperature of FHE6 will also rise, but the rise in RHE7 is greater. Therefore, if we control the capacity to lower the blowout temperature of RHE7,
The blowing temperature on the FHE6 side will drop more than necessary.
これに対して上記第1の実施例では、FHE6およびR
HE7に直列に冷媒が流れるよう構成されているので、
第4図(alに示すように下流側であるRHE7の出口
でガス冷媒が凝縮し終るよう制御されるため、第4図(
blに示すようにRHE6の入口付近の過熱ガス域を除
いて、側熱交換器内の冷媒温度はほぼ一定となる。この
ためFHE6゜RHE7はともに最適に使用されること
となる。On the other hand, in the first embodiment, FHE6 and R
Since it is configured so that the refrigerant flows in series with HE7,
As shown in Fig. 4(al), the gas refrigerant is controlled to finish condensing at the outlet of RHE7 on the downstream side.
As shown in bl, the temperature of the refrigerant in the side heat exchanger is almost constant except for the superheated gas area near the inlet of the RHE 6. Therefore, both FHE6 and RHE7 are optimally used.
また第1図の本発明の実施例と第6図の従来のものとの
系統図を比較してみると明らかなように本発明では従来
の配管D′と逆止弁17bを廃し、そのかわりに配管C
と逆止弁19,18を追加しており、逆止弁は一個増加
するものの、従来と比べて大幅な部品の追加はなく大巾
な価格上昇ともならない。なお逆止弁18.19はそれ
ぞれ電磁弁でおきかえてもよく、また18と19を廃し
、分岐点Mに三方弁を設けてもよい。Furthermore, as is clear from comparing the system diagrams of the embodiment of the present invention in FIG. 1 and the conventional system diagram in FIG. 6, the present invention eliminates the conventional piping D' and check valve 17b, Piping C
and check valves 19 and 18 are added, and although the number of check valves is increased by one, there is no significant addition of parts compared to the conventional model, and there is no significant increase in price. Note that each of the check valves 18 and 19 may be replaced with a solenoid valve, or 18 and 19 may be omitted and a three-way valve may be provided at the branch point M.
次に本発明第2の実施例について第5図に基づいて説明
する。この実施例においては、前記第1の実施例の配管
Cおよび逆止弁19を廃し、FHE6と膨張弁8との間
から分岐し、RHE7と配管Bの分岐点にとの間に合流
する配管C′を設け、この配管C′上に電磁弁5を設け
る構成となる他は第1の実施例と同じである。なお逆止
弁18は分岐点にの反対側に移動させている。Next, a second embodiment of the present invention will be described based on FIG. 5. In this embodiment, the pipe C and check valve 19 of the first embodiment are eliminated, and a pipe branches from between the FHE 6 and the expansion valve 8 and joins between the RHE 7 and the branch point of the pipe B. The second embodiment is the same as the first embodiment except that a solenoid valve 5 is provided on the pipe C'. Note that the check valve 18 is moved to the side opposite to the branch point.
この実施例においては、暖房時に高温高圧のガス冷媒は
逆止弁18に阻止されてFHE6→配管C’ (電磁
弁5は暖房時間冷房時閉と作動する)−RHE7へと直
列に流れ第1の実施例と同じ暖房効果をもたらす。ここ
で電磁弁5は第1の実施例の逆止弁19と同様に冷房時
膨張弁8で膨張した冷媒が、そのまま圧縮機l側へ吸引
されるのを防ぐ目的で設置するものであるが、暖房時と
冷房時の冷媒流れ方向が同じであるため電磁弁等の開閉
弁を用いる必要がある。In this embodiment, during heating, the high-temperature, high-pressure gas refrigerant is blocked by the check valve 18 and flows in series from FHE6 to pipe C' (the solenoid valve 5 is closed during heating and cooling) to RHE7. provides the same heating effect as the embodiment. Here, the solenoid valve 5 is installed for the purpose of preventing the refrigerant expanded by the expansion valve 8 during cooling from being sucked directly into the compressor l side, similar to the check valve 19 of the first embodiment. Since the refrigerant flows in the same direction during heating and cooling, it is necessary to use an on-off valve such as a solenoid valve.
ま、た本発明のヒートポンプ装置は上記実施例の1ボツ
クスカー用の他に、通常の乗用車、商用車等にも応用す
ることはもちろん可能であり、また自動車用に限らず複
数の室内熱交換器を有する住宅用としても適用可能であ
る。Furthermore, the heat pump device of the present invention can of course be applied not only to the one-box car in the above embodiment, but also to ordinary passenger cars, commercial vehicles, etc., and can also be applied to multiple indoor heat exchangers, not just for automobiles. It is also applicable for residential use.
以上述べたように本発明のヒートポンプ装置においては
、暖房時に複数の室内側熱交換器に直列に冷媒を通過さ
せるように構成したので、前記複数の室内側熱交換器に
流入する空気の温度に差がある場合でも全体として効率
的に暖房を行うことができるというきわめて実用的なヒ
ートポンプ装置を提供できる。As described above, in the heat pump device of the present invention, since the refrigerant is configured to pass through the plurality of indoor heat exchangers in series during heating, the temperature of the air flowing into the plurality of indoor heat exchangers can be adjusted. It is possible to provide an extremely practical heat pump device that can perform heating efficiently as a whole even when there are differences.
第1図は本発明のヒートポンプ装置の第1の実施例の構
成を示す系統図、第2図(al、(b)、(c)は並列
に冷媒を流したときの気液冷媒の割合と冷媒温度を説明
する模式図および特性図、第3図は冷凍サイクルの冷凍
仕事を説明するモリエル線図、第4図(a)、(b)は
直列に冷媒を流したときの気液冷媒と冷媒温度を説明す
る模式図および特性図、第5図は本発明の第2の実施例
の構成を示す系統図、第6図は従来のヒートポンプ装置
の構成を示す系統図である。
■・・・圧縮機、3・・・四方弁、4・・・コンデンサ
、6・・・前席用熱交換器、7・・・後席用熱交換器、
8,9゜1)・・・膨張弁、10・・・温水熱交換器。Fig. 1 is a system diagram showing the configuration of the first embodiment of the heat pump device of the present invention, and Fig. 2 (al, (b), (c) shows the ratio of gas-liquid refrigerant when refrigerant is flowed in parallel. A schematic diagram and a characteristic diagram to explain the refrigerant temperature, Figure 3 is a Mollier diagram to explain the refrigeration work of the refrigeration cycle, and Figures 4 (a) and (b) show the gas-liquid refrigerant when the refrigerant is passed in series. A schematic diagram and a characteristic diagram explaining the refrigerant temperature, FIG. 5 is a system diagram showing the configuration of the second embodiment of the present invention, and FIG. 6 is a system diagram showing the configuration of a conventional heat pump device.・Compressor, 3... Four-way valve, 4... Condenser, 6... Heat exchanger for front seats, 7... Heat exchanger for rear seats,
8,9゜1)...Expansion valve, 10...Hot water heat exchanger.
Claims (2)
圧装置、および室外側熱交換器を有し、前記四方弁によ
り冷媒の流れ方向を逆転させることにより、冷暖房を行
うヒートポンプ装置において、前記室内側熱交換器は複
数で構成され、冷房時には複数の室内側熱交換器に並列
に冷媒を分配通過させるとともに、暖房時には前記複数
の室内側熱交換器に直列に冷媒を通過させることを特徴
とするヒートポンプ装置。(1) A heat pump device that includes at least a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger, and performs heating and cooling by reversing the flow direction of refrigerant using the four-way valve, The indoor heat exchanger is composed of a plurality of units, and during cooling, the refrigerant is distributed and passed through the plurality of indoor heat exchangers in parallel, and during heating, the refrigerant is passed through the plurality of indoor heat exchangers in series. Features of heat pump equipment.
よりガス冷媒の液化を行う第1室外側熱交換器と、暖房
時エンジン冷却水との熱交換により液冷媒のガス化を行
う第2室外側熱交換器とよりなることを特徴とする特許
請求の範囲第1項記載のヒートポンプ装置。(2) The outdoor heat exchanger includes a first outdoor heat exchanger that liquefies the gas refrigerant by heat exchange with outside air during cooling, and a first outdoor heat exchanger that liquefies the gas refrigerant by exchanging heat with the engine cooling water during heating. 2. The heat pump device according to claim 1, further comprising a second outdoor heat exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60266984A JPS62125273A (en) | 1985-11-26 | 1985-11-26 | Heat pump device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60266984A JPS62125273A (en) | 1985-11-26 | 1985-11-26 | Heat pump device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62125273A true JPS62125273A (en) | 1987-06-06 |
Family
ID=17438438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60266984A Pending JPS62125273A (en) | 1985-11-26 | 1985-11-26 | Heat pump device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62125273A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006133447A (en) * | 2004-11-05 | 2006-05-25 | Seiko Epson Corp | Device module, positioning structure therefor, and electronic device |
JP2014112031A (en) * | 2009-10-22 | 2014-06-19 | Daikin Ind Ltd | Air conditioner |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS608671A (en) * | 1983-06-28 | 1985-01-17 | ダイキン工業株式会社 | Heat pump multi-type air conditioner |
-
1985
- 1985-11-26 JP JP60266984A patent/JPS62125273A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS608671A (en) * | 1983-06-28 | 1985-01-17 | ダイキン工業株式会社 | Heat pump multi-type air conditioner |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006133447A (en) * | 2004-11-05 | 2006-05-25 | Seiko Epson Corp | Device module, positioning structure therefor, and electronic device |
JP2014112031A (en) * | 2009-10-22 | 2014-06-19 | Daikin Ind Ltd | Air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6634160B2 (en) | Heat pump system for vehicles | |
JP3781147B2 (en) | Heat pump type automotive air conditioner | |
US6293123B1 (en) | Refrigeration cycle device | |
US4384608A (en) | Reverse cycle air conditioner system | |
CN112428768A (en) | Thermal management system | |
JP2009257748A (en) | Heating and air-conditioning unit for automobile | |
KR20160087001A (en) | Heat pump system for vehicle | |
JP3939445B2 (en) | Air conditioner for automobile | |
CN112092566A (en) | Thermal management system | |
US5709102A (en) | Heat pump cooling-heating-dehumidifying system for electric vehicle | |
KR20180112681A (en) | Device for distributing the coolant in an air-conditioning system of a motor vehicle | |
CN109982877B (en) | Vehicle heat pump system | |
US12065016B2 (en) | Heat pump system | |
CN111251809B (en) | Thermal management system of vehicle and vehicle | |
JP2011225174A (en) | Vehicular air conditioner | |
JP6537928B2 (en) | Heat exchanger and heat pump system | |
JPH0478613A (en) | Heat pump type air conditioner | |
JPS62125273A (en) | Heat pump device | |
JP3830242B2 (en) | Heat pump type automotive air conditioner | |
JPH06347111A (en) | Cooling and heating cycle of air conditioner for vehicle | |
JPH1053022A (en) | Air-conditioning device for vehicle | |
CN111251816A (en) | Vehicle, vehicle-mounted air conditioning system and control method thereof | |
JPH0241917A (en) | Heat pump type air conditioning device for vehicle | |
KR0163826B1 (en) | Cooling/heating airconditioner for an automobile | |
JP2002301929A (en) | Heat pump type air conditioner for vehicle |