JPH01294861A - Ion beam mixing method - Google Patents

Ion beam mixing method

Info

Publication number
JPH01294861A
JPH01294861A JP12455588A JP12455588A JPH01294861A JP H01294861 A JPH01294861 A JP H01294861A JP 12455588 A JP12455588 A JP 12455588A JP 12455588 A JP12455588 A JP 12455588A JP H01294861 A JPH01294861 A JP H01294861A
Authority
JP
Japan
Prior art keywords
ion beam
ion
sample
thin film
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12455588A
Other languages
Japanese (ja)
Inventor
Nobuhiro Noto
能登 信博
Kintaro Mori
森 金太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP12455588A priority Critical patent/JPH01294861A/en
Publication of JPH01294861A publication Critical patent/JPH01294861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin film excellent in adhesive strength and practically free from peeling by forming a thin film while allowing the radiation direction of sputtered target grains and the radiation direction of an ion beam for ion implantation to intersect each other in the inner part of a turning hollow cylindrical specimen. CONSTITUTION:A hollow cylindrical specimen 9 is inserted into a rotating shaft 1 and fixed to this rotating shaft 1 and a rotary motion is provided by means of a driving device 3, and the inside of a vacuum chamber 8 is evacuated to high vacuum. An Ar ion beam is radiated from an ion gun 5 to a Ti target 7, and an N2 ion beam is radiated from another ion gun 6. Ti grains sputtered from the target 7 by means of the Ar ion beam are allowed to adhere to the internal surface of the specimen 9, and, when the part to which Ti is allowed to adhere rotates in a 180-degree arc by the turning of the specimen 9, ions are implanted by means of the N2 ion beam from the lower part. The part into which ions are implanted is further rotated in a 180-degree arc to undergo the adhesion of Ti, and then rotated in a 180-degree arc to undergo ion implantation again. As the result of performing ion beam mixing by alternately repeating the thin film coating with Ti grains and the ion implantation as mentioned above, a TiN film having superior adhesive strength can be formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜コーティングとイオン注入を同時操作して
中空円筒状の試料内面にイオンビームミキシングさせた
薄膜を形成するイオンビームミキシング法に関するもの
である。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an ion beam mixing method that simultaneously operates thin film coating and ion implantation to form a thin film by ion beam mixing on the inner surface of a hollow cylindrical sample. .

〔発明の背景〕[Background of the invention]

イオンビームミキシング法は、試料表面への薄膜コーテ
ィングとイオン注入を同時に、あるいは交互に行って薄
膜を形成する方法で、特に同時に行う方法は最近、金属
などの表面に高硬度・耐摩耗性などに優れたセラミック
薄膜のTiN・T i Cなどを生成するために使用さ
れている。従来、対向する2個のイオン銃を真空チャン
バに備えたイオンビームスパッタ装置において上記イオ
ンビームミキシング法を行うには、第3図と第4図の2
通りがある。なおイオンビームスパッタ装置には、真空
チャンバ8上下にイオン銃5.6、ターゲット7を取り
付けるターゲットホルダ4、試料9を取り付ける試料ホ
ルダ10が配置され、薄膜形成時真空チャンバ8内は高
真空状態におかれる。第3図は試料に同時照射を施す場
合で、TiN膜生成を例にすれば上部イオン銃5からア
ルゴンなどの不活性ガスのイオンビームをTiターゲッ
ト7に照射してTi粒子をたたき出し試料9の表面にT
iのコーティング層を形成する。同時に下部イオン銃6
から試料9面に活性な窒素イオンビームを照射してイオ
ンビームミキシングする。薄膜形成初期において、試料
表面に窒素イオンビームを照射するので窒素イオンが試
料9面に注入さ九、また同イオンが付着したTi粒子と
衝突して試料9内部にTi粒子を押し込む効果を発生す
るので試料9表面と薄膜との境界付近にミキシングがお
こりTi原子・窒素原子・試料原子の混在した新しい層
を形成する。この混合層が真空蒸着・イオンブレーティ
ング・スパッタリングなどで生成された薄膜に比べ、密
着性が数段向上した剥離し難い薄膜の形成を可能にして
いる。L、かじ、同方法ではターゲット粒子と注入イオ
ンが同じ場所に照射される必要があり、薄膜を形成でき
る試料形状が平面状に限定される。
The ion beam mixing method is a method in which thin film coating and ion implantation are performed simultaneously or alternately on the sample surface to form a thin film. It is used to produce excellent ceramic thin films such as TiN and TiC. Conventionally, in order to perform the above-mentioned ion beam mixing method in an ion beam sputtering apparatus equipped with two opposing ion guns in a vacuum chamber, the steps shown in FIGS.
There is a street. In the ion beam sputtering apparatus, an ion gun 5, 6, a target holder 4 to which a target 7 is attached, and a sample holder 10 to which a sample 9 is attached are arranged above and below a vacuum chamber 8, and the interior of the vacuum chamber 8 is kept in a high vacuum state during thin film formation. be placed. FIG. 3 shows a case in which samples are simultaneously irradiated. Taking TiN film formation as an example, the Ti target 7 is irradiated with an ion beam of inert gas such as argon from the upper ion gun 5 to knock out Ti particles and form a sample 9. T on the surface
Form a coating layer i. At the same time, lower ion gun 6
An active nitrogen ion beam is irradiated onto the surface of the sample 9 from the ion beam, and ion beam mixing is performed. At the initial stage of thin film formation, the surface of the sample is irradiated with a nitrogen ion beam, so nitrogen ions are injected into the surface of the sample 9, and the ions collide with the attached Ti particles, producing the effect of pushing the Ti particles into the interior of the sample 9. Therefore, mixing occurs near the boundary between the surface of the sample 9 and the thin film, forming a new layer in which Ti atoms, nitrogen atoms, and sample atoms are mixed. This mixed layer makes it possible to form a thin film that is difficult to peel off and has improved adhesion by several orders of magnitude compared to thin films produced by vacuum evaporation, ion blasting, sputtering, etc. In the same method, target particles and implanted ions need to be irradiated at the same location, and the sample shape in which a thin film can be formed is limited to a planar shape.

また、第4図は(A)図のコーティングと(B)図のイ
オン注入を交互に繰り返す場合で、イオンの注入角度に
おいて第3図の場合に比べ設定範囲を広くできるが、交
互照射のため試料作成時間が長くなるという欠点がある
In addition, Figure 4 shows a case in which the coating shown in Figure (A) and the ion implantation shown in Figure (B) are repeated alternately, and the setting range of the ion implantation angle can be wider than in the case of Figure 3, but because of the alternating irradiation, The disadvantage is that it takes a long time to prepare the sample.

従って、上記イオンビームスパッタ装置で従来法により
中空円筒状の試料内面にイオンビームミキシングさせた
薄膜を形成するには、第4図の方法を工夫して行わなけ
ればならない。
Therefore, in order to form a thin film by ion beam mixing on the inner surface of a hollow cylindrical sample using the conventional method using the above ion beam sputtering apparatus, the method shown in FIG. 4 must be devised.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくし、中
空円筒状の試料内面において薄膜コーティングとイオン
注入を同時操作してイオンビームミキシングされた薄膜
を形成する方法を提供することである。
An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a method for forming an ion beam mixed thin film by simultaneously operating thin film coating and ion implantation on the inner surface of a hollow cylindrical sample.

〔発明の概要〕[Summary of the invention]

本発明は、対向した2個のイオン銃を真空チャンバに備
えたイオンビームスパッタ装置において、中空円筒状の
試料内面に薄膜を形成する場合、試料を回転式試料ホル
ダに取り付けて回転させるとコーティングされる面が1
回転で1回イオン注入を行うイオン銃の方向に向くこと
に着目し、試料内面がコーティングとイオン注入が交差
して照射されるように試料の位置を設定し、コーティン
グとイオン注入される面は別々であるが、試料を回転さ
せているので回転数を速めれば、同時照射された場合と
同じイオンビームミキシングの効果を得られるという方
法である。
The present invention provides an ion beam sputtering device equipped with two opposing ion guns in a vacuum chamber, and when forming a thin film on the inner surface of a hollow cylindrical sample, the coating is formed by attaching the sample to a rotating sample holder and rotating it. 1 side
Focusing on the direction of the ion gun that performs one ion implantation by rotation, the position of the sample was set so that the inner surface of the sample was irradiated with the coating and ion implantation intersecting, and the surface to be coated and ion implanted was Although they are separate, since the sample is rotated, if the rotation speed is increased, the same ion beam mixing effect as simultaneous irradiation can be obtained.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図の試料ホルダを使用した場合で
以下に説明する。試料ホルダは、軸中央に凹形状の空間
と試料の取り付けに使用するネジ穴及び試料を回転させ
る叩動力を伝達する軸の取り付けに使用するネジ穴を有
した試料回転軸1と、試料回転軸1に回転力を伝える駆
動伝達軸2及び回転力を発生する回転運動駆動装置3よ
り構成されている。
An embodiment of the present invention will be described below using the sample holder shown in FIG. The sample holder consists of a sample rotation shaft 1, which has a concave space in the center of the axis, a screw hole used for attaching the sample, and a screw hole used for attaching the shaft that transmits the striking force that rotates the sample; It is comprised of a drive transmission shaft 2 that transmits rotational force to a motor 1 and a rotational movement drive device 3 that generates rotational force.

第2図は本発明の実施例を示すもので、対向した2個の
イオン銃5.6を真空チャンバ8に備えたイオンビーム
スパッタ装置に第1図の試料ホルダを使用して中空円筒
状の試料9の内面にセラミック薄膜のTiNを生成する
場合である。薄膜形成の場となる真空チャンバ8には、
上部に薄膜コーティングに使用するイオン銃5.下部に
はイオン注入を行うイオン銃6、薄膜材料となるターゲ
ット7を取り付けるターゲットホルダ4及び上記試料ホ
ルダが配置されている。試料9は、試料ホルダの試料回
転軸1に挿入後、ネジ止メされ、:iり膜形成中回転運
動駆動装置3により回転される。
FIG. 2 shows an embodiment of the present invention, in which the sample holder shown in FIG. This is a case where a ceramic thin film of TiN is formed on the inner surface of sample 9. The vacuum chamber 8 where the thin film is formed includes:
Ion gun used for thin film coating on top 5. At the bottom, an ion gun 6 for implanting ions, a target holder 4 for attaching a target 7 to be a thin film material, and the sample holder are arranged. After the sample 9 is inserted into the sample rotating shaft 1 of the sample holder, it is screwed and rotated by the rotational movement drive device 3 during film formation.

薄膜形成初期空チャンバ8内は高真空状態にされる。イ
オン銃5からはアルゴンインビーム、イオン銃6からは
窒素イオンビームを放射させ、ターゲット7にはTiを
使用する。試料9の位置を試料内面でターゲット粒子と
注入イオンが交差して照射される向きに設定する。
The interior of the empty chamber 8 at the initial stage of thin film formation is brought into a high vacuum state. The ion gun 5 emits an argon in-beam, the ion gun 6 emits a nitrogen ion beam, and the target 7 is made of Ti. The position of the sample 9 is set so that the target particles and the implanted ions intersect and are irradiated on the inner surface of the sample.

イオン銃5よりTiターゲット7にアルゴンイオンビー
ムを照射するとTi粒子がはじき出されて試料9の内面
に付着する。試料9は回転しているので、Tiの付着し
た部分は180°回転後下方からイオン銃6より窒素イ
オンビームを照射されイオン注入される。イオン注入さ
れた部分は18o°回転後Tiが付着し、更に180°
回転後再びイオン注入される。このように付着すなわち
薄膜コーティングとイオン注入を交互に繰り返しイオン
ビームミキシングされた結果、TiN膜が生成される。
When the Ti target 7 is irradiated with an argon ion beam from the ion gun 5, Ti particles are ejected and adhere to the inner surface of the sample 9. Since the sample 9 is rotating, the portion to which Ti is attached is rotated 180 degrees and then irradiated with a nitrogen ion beam from the ion gun 6 from below to be ion-implanted. After rotating the ion-implanted part by 18°, Ti is attached, and then rotated by 180°.
After rotation, ions are implanted again. A TiN film is produced as a result of ion beam mixing in which adhesion, that is, thin film coating and ion implantation are alternately repeated.

試料9は回転されているので、回転数を速くすれば薄膜
コーティングとイオン注入の照射サイクルが速くなるの
で上記2種類の処理を同時に行った場合と同じイオンビ
ームミキシング効果すなわち試料9と薄膜との間で混合
層を形成し密着性に優れた剥離し難い薄膜の生成が行え
る。
Since the sample 9 is being rotated, increasing the rotation speed will speed up the irradiation cycle for thin film coating and ion implantation, resulting in the same ion beam mixing effect as when the above two types of processing are performed simultaneously, that is, the interaction between the sample 9 and the thin film. By forming a mixed layer between the two, a thin film with excellent adhesion and difficult to peel off can be produced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、対向する2個のイオン銃を真空チャン
バに備えたイオンビームスパッタ装置において、回転す
る中空円筒状の試料内部でスパッタされたターゲット粒
子とイオン注入を行うイオンビームの照射方向を交差さ
せて薄膜を生成する方法を提供したので、薄膜コーティ
ングとイオン注入を同時操作して中空円筒試料内面にイ
オンビームミキシングされた薄膜をむらなく形成するこ
とができる。更に、同形状の試料として例えばすベリ軸
受の内表面に本発明によってTiNなどのセラミック薄
膜を形成するとTiNの低摩耗性により使用寿命が延長
するという効果を奏することができる。
According to the present invention, in an ion beam sputtering apparatus equipped with two opposing ion guns in a vacuum chamber, target particles sputtered inside a rotating hollow cylindrical sample and the irradiation direction of the ion beam for ion implantation are controlled. Since we have provided a method for producing a thin film by intersecting each other, it is possible to simultaneously operate thin film coating and ion implantation to uniformly form a thin film by ion beam mixing on the inner surface of a hollow cylindrical sample. Further, if a ceramic thin film such as TiN is formed on the inner surface of a slide bearing of the same shape according to the present invention, the service life can be extended due to the low abrasion properties of TiN.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施で使用する試料ホルダの断面図、
第2図は本発明の方法を実施するのに必要な装置例の基
本構成部を示す断面図、第3図及び第4図は従来法を実
施するのに必要な装置例の基本構成部を示す断面図であ
る。 図において、1は試料回転軸、2は駆動伝達軸、3は回
転運動腿動装置、4はターゲットホルダ、5はイオン銃
、6はイオン銃、7はターゲット、9は試料、10は試
料ホルダである。 特許出願人の名称 日立工機株式会社 ?/I!1 第2口 第3図 第41!1
FIG. 1 is a sectional view of a sample holder used in carrying out the present invention;
FIG. 2 is a sectional view showing the basic components of an example of equipment necessary to carry out the method of the present invention, and FIGS. 3 and 4 show the basic components of an example of equipment necessary to carry out the conventional method. FIG. In the figure, 1 is a sample rotation axis, 2 is a drive transmission axis, 3 is a rotary motion thigh movement device, 4 is a target holder, 5 is an ion gun, 6 is an ion gun, 7 is a target, 9 is a sample, and 10 is a sample holder. It is. Name of patent applicant Hitachi Koki Co., Ltd.? /I! 1 2nd mouth 3rd figure 41!1

Claims (1)

【特許請求の範囲】[Claims]  ターゲット粒子と注入イオンを試料表面で混合させて
薄膜を形成する、対向した2個のイオン銃を真空チャン
バに備えたイオンビームスパッタ装置において、中空円
筒状試料を試料ホルダに回転自在に保持して中空円筒試
料の内面にスパッタされたターゲット粒子を付着させ、
前記中空円筒試料を回転させながら付着させた位置に対
向した位置でイオンを注入させて薄膜を形成することを
特徴としたイオンビームミキシング法。
In an ion beam sputtering device equipped with two opposing ion guns in a vacuum chamber that mix target particles and implanted ions on the sample surface to form a thin film, a hollow cylindrical sample is rotatably held in a sample holder. Sputtered target particles are attached to the inner surface of a hollow cylindrical sample,
An ion beam mixing method characterized by forming a thin film by injecting ions at a position opposite to the position where the sample is deposited while rotating the hollow cylindrical sample.
JP12455588A 1988-05-20 1988-05-20 Ion beam mixing method Pending JPH01294861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12455588A JPH01294861A (en) 1988-05-20 1988-05-20 Ion beam mixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12455588A JPH01294861A (en) 1988-05-20 1988-05-20 Ion beam mixing method

Publications (1)

Publication Number Publication Date
JPH01294861A true JPH01294861A (en) 1989-11-28

Family

ID=14888379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12455588A Pending JPH01294861A (en) 1988-05-20 1988-05-20 Ion beam mixing method

Country Status (1)

Country Link
JP (1) JPH01294861A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189605A (en) * 1989-12-20 1991-08-19 Nippon Steel Corp Heat ray reflecting plate
US6337005B2 (en) * 1996-07-12 2002-01-08 RECHERCHE ET DéVELOPPEMENT DU GROUPE COCKERILL SAMBRE EN ABRéGé RD-CS Depositing device employing a depositing zone and reaction zone
US9028923B2 (en) 2006-05-27 2015-05-12 Korea Atomic Energy Research Institute Coating and ion beam mixing apparatus and method to enhance the corrosion resistance of the materials at the elevated temperature using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189605A (en) * 1989-12-20 1991-08-19 Nippon Steel Corp Heat ray reflecting plate
US6337005B2 (en) * 1996-07-12 2002-01-08 RECHERCHE ET DéVELOPPEMENT DU GROUPE COCKERILL SAMBRE EN ABRéGé RD-CS Depositing device employing a depositing zone and reaction zone
US9028923B2 (en) 2006-05-27 2015-05-12 Korea Atomic Energy Research Institute Coating and ion beam mixing apparatus and method to enhance the corrosion resistance of the materials at the elevated temperature using the same

Similar Documents

Publication Publication Date Title
JPH06136532A (en) Magnetron spattering method and device for uniformly spattering target with substance ion
JPH01294861A (en) Ion beam mixing method
JPH03130359A (en) Device for covering a flat surface with a uniformly thick layer
JP3281926B2 (en) Thin film forming equipment
JPH0726197B2 (en) Thin film forming method and apparatus
JP2637171B2 (en) Multi-source sputtering equipment
JP3439993B2 (en) Magnetron sputtering equipment
JPH0499173A (en) Sputtering system
JPS61159571A (en) Sputtering device
JPS63274766A (en) Sputtering device
KR100358760B1 (en) In-situ Physical Vapor Deposition Equipment
JP2590367B2 (en) Sputtering equipment
JPH02175868A (en) Sample holder of sputtering film forming device
JPS6229133A (en) Sputtering process and device thereof
JPH0213483Y2 (en)
JPH07180050A (en) Collimation chamber fitted with turnable pedestal
JPH02115365A (en) Sputtering device
JPH0314905B2 (en)
JPH0686872A (en) Manufacture of inner blade of electric razor
JPH06295702A (en) Arc discharge vacuum evaporation device
JP2003301254A (en) Evaporation source device and film forming device provided with the same
JP2771695B2 (en) Method of forming high hardness coating
JPS6320445A (en) Ion plating
JPS63255363A (en) Production of thin film
JPS63290261A (en) Shutter mechanism for film forming device