JPH01294840A - Wear-resistant aluminum alloy - Google Patents

Wear-resistant aluminum alloy

Info

Publication number
JPH01294840A
JPH01294840A JP12556688A JP12556688A JPH01294840A JP H01294840 A JPH01294840 A JP H01294840A JP 12556688 A JP12556688 A JP 12556688A JP 12556688 A JP12556688 A JP 12556688A JP H01294840 A JPH01294840 A JP H01294840A
Authority
JP
Japan
Prior art keywords
alloy
wear
less
eutectic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12556688A
Other languages
Japanese (ja)
Inventor
Yoji Kanbe
洋史 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12556688A priority Critical patent/JPH01294840A/en
Publication of JPH01294840A publication Critical patent/JPH01294840A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the manufacture of sliding parts by specifying respective contents of Si, Fe, Mn, P, Na, Sr and Sb in an Al alloy and also forming a coarse eutectic Si structure so as to improve wear resistance and castability. CONSTITUTION:Additive elements in a wear-resistant Al alloy are constituted so that Si, Fe, Mn, P, Na Sr and Sb contents are controlled to 9-13% by weight, <0.3%, <0.3%, <0.001%, <0.002%, <0.03% and <0.04%, respectively, and, if necessary, 0.3-0.6% Mg is added. At the time of casting this Al alloy into the prescribed parts shape, the structure of this Al alloy is formed into a coarse eutectic Si structure, e.g., by controlling the cooling rate to about 0.1-1 deg.C/sec. Since this Al alloy has superior castability, sliding parts, etc., can be easily manufactured. Further, this Al alloy has excellent wear resistance, by which the seizure load of sliding parts, etc., is increased and wear loss can be reduced.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) この発明は、自動車部品、産業機械部品などの各種機構
構造物用部品において、とくに摺動部品の素材として利
用するのに適した耐摩耗性アルミニウム合金に関するも
のである。 (従来の技術) 従来、例えば、摺動部品の素材としては、鋳鉄が多く用
いられてきたが、このような鉄鋼系の材料は比重が大き
いため、重量の増大をきたすことが難点となっている。 一方、アルミニウム系の材料を用いた摺動部品では、比
重が鉄鋼系の材料に比べてかなり低いため、重量の軽減
に寄与する場合が多く、摺動部品の素材としてアルミニ
ウム合金の適用も拡大している。 従来、アルミニウム合金鋳物としては、Al−Cu−5
i系合金(例えば、Al−4%Cu−5%Si、JIS
  AC2A、AC2B;ラウタル)や、AfL−5i
系合金(例えば、Al−12%Siの共晶合金、JIS
  AC3A、シルミン)や、AM−3i−Mg系合金
(例えば、JIS  AC4A、AC4C’; γシル
ミン)や、AJI−Si−Cu系合金(例えば、JIS
AC4B;含銅シルミン)や、An−Si−Cu−Mg
系合金(例えば、Al−5%5t−1,3%Cu−0,
5%Mg、JIS  AC4D)や、AlAl1−3t
−Cu−Ni−系合金(例えば、Al−12%5t−1
%Cu−2%Ni−1%Mg、JIS  AC8A、A
C8B;ローエックスや、これからNiを除いたAC8
C)などが知られており、とくに摺動部品の素材として
使用される耐摩耗性アルミニウム合金には、過共晶Al
−3i系 Fe,Mn,Ni.Mg等を添加した共晶Al−5i系
合金であって冷却速度を大きくすることにより微細なS
iを晶出させた合金(第三元素の添加および凝固条件の
選択によって共晶の微細組織を得るようにしたkl−3
i系合金としては、特開昭57−108239号公報に
より開示されたものがある.)などがあった。 (発明が解決しようとする課題) しかしながら、上記したような従来の摺動部品の素材に
使用される#摩耗性アルミニウム合金のうち、前者の過
共品AJI−5t系合金にあっては、耐摩耗性に影響を
及ぼす初晶Siの大きさおよび分布の制御がむつかしく
、また、溶解争鋳造温度が高いために溶解炉および鋳造
用金型等の寿命が短くなるという課題があり、後者の共
晶Al−5t系 元素を添加するためにスラッジの発生が多く、溶解炉お
よび製品に悪影響を及ぼすことがあり、またSiを微細
にするために冷却速度を大きくせねばならないことから
大型の鋳造製品の製作がむつかしいという課題があった
。 (発明の目的) この発明は、このような従来の課題にかんがみてなされ
たもので、鋳造性が良好であって摺動部品の製造が容易
であるとともに#摩耗性が良好であって摺動部品の摩耗
量を少なくすることが可能であり、従来の過共晶An−
Si系合金のような初晶Siの分布が問題とならず、ま
た過共晶AJI−Si系合金に比較して溶解・鋳造温度
がより低い共晶An−5i系合金を用いているため溶解
炉および鋳造用金型等の寿命低下を防止することができ
、さらにはFe,Mn等のスラッジの発生しやすい元素
を添加しないためスラッジによる溶解炉および製品等へ
の悪影響を防ぐことが可能である#摩耗性アルミニウム
合金を提供することを目的としている。
(Industrial Field of Application) The present invention relates to a wear-resistant aluminum alloy particularly suitable for use as a material for sliding parts in parts for various mechanical structures such as automobile parts and industrial machine parts. (Prior art) Conventionally, for example, cast iron has often been used as a material for sliding parts, but since such steel-based materials have a high specific gravity, they have the disadvantage of increasing weight. There is. On the other hand, the specific gravity of sliding parts made of aluminum-based materials is considerably lower than that of steel-based materials, which often contributes to weight reduction, and the use of aluminum alloys as a material for sliding parts is also expanding. ing. Conventionally, aluminum alloy castings include Al-Cu-5.
i-based alloy (e.g. Al-4%Cu-5%Si, JIS
AC2A, AC2B; Rautal), AfL-5i
system alloy (e.g. Al-12%Si eutectic alloy, JIS
AC3A, Sirumin), AM-3i-Mg alloys (e.g., JIS AC4A, AC4C'; γ Sirumin), AJI-Si-Cu alloys (e.g., JIS
AC4B; copper-containing silmine), An-Si-Cu-Mg
alloys (e.g. Al-5%5t-1, 3%Cu-0,
5%Mg, JIS AC4D), AlAl1-3t
-Cu-Ni-based alloy (e.g. Al-12%5t-1
%Cu-2%Ni-1%Mg, JIS AC8A, A
C8B: Low-X or AC8 with Ni removed from this
C) are known, and in particular, wear-resistant aluminum alloys used as materials for sliding parts include hypereutectic Al
-3i-based Fe, Mn, Ni. It is a eutectic Al-5i alloy containing Mg, etc., and by increasing the cooling rate, fine S
(kl-3, in which a eutectic microstructure is obtained by adding a third element and selecting solidification conditions)
Examples of i-based alloys include those disclosed in JP-A-57-108239. ) etc. (Problem to be Solved by the Invention) However, among the abrasive aluminum alloys used as materials for conventional sliding parts as described above, the former AJI-5t alloy has a high resistance to wear. It is difficult to control the size and distribution of primary Si, which affects wearability, and the life of melting furnaces and casting molds is shortened due to high melting and competitive casting temperatures. Due to the addition of crystalline Al-5t elements, a large amount of sludge is generated, which can have a negative impact on the melting furnace and the product.Also, the cooling rate must be increased to make the Si finer, so large casting products are not suitable. The problem was that it was difficult to manufacture. (Objective of the Invention) The present invention was made in view of the above-mentioned problems in the prior art. It is possible to reduce the amount of wear on parts, and the conventional hypereutectic An-
Unlike Si-based alloys, the distribution of primary Si is not a problem, and the eutectic An-5i alloy has lower melting and casting temperatures than hypereutectic AJI-Si alloys, making it easier to melt. It is possible to prevent the lifespan of the furnace and casting molds from being shortened, and since it does not contain elements that tend to generate sludge, such as Fe and Mn, it is possible to prevent the adverse effects of sludge on the melting furnace and products. Aims to provide #wearable aluminum alloy.

【発明の構!f,] (課題を解決するための手段) この発明に係る耐摩耗性アルミニウム合金は、Siを9
〜13重量%含有し、Feを0.3重量%未満、Mnを
0.3重量%未満、Pをo.ooIB1%未満、Naを
0.002重量%未満、Srを0.03重量%未満、S
bを0、04重量%未満に規制し、必要によりMgを0
、3〜0.6重量%含有するアルミニウム合金であって
、粗大な共晶Si組織を有していることを特徴としてお
り、このような組成および組織を有する#摩耗性アルミ
ニウム合金の構成を上述した従来の課題を解決するため
の手段としたことを特徴としているものである。 この発明に係る#摩耗性アルミニウム合金の組成(重量
%)を上記のように限定した理由について説明する。 まず、Siは#摩耗性を得るのに有効な元素である.そ
して、共晶組成(Si含有量約12.7%)で融点(液
相線温度)が約577℃と最も低くなるが、これよりも
Si含有量が少なくなっても、またこれよりも多くなっ
ても融点は上昇し、溶解・鋳造温度が高くなるために、
溶解炉および鋳造用金型等の寿命を低下させるようにな
ることから、Si含有量は9〜13%の範囲とした。 次に、Feは金型への焼付き防止効果はあるが、不純物
元素であり、FeAl3,AリーFe−3iなどの金属
間化合物を形成し、靭性低下および耐食性劣化をもたら
すa M nは高温強度を向上させると共にFe含有量
の多い合金に添加することにより、有害なAl−Fe−
3iの金属間化合物の晶出を抑える.しかし、これら元
素の含有量が多すぎるとスラッジを発生しやすくなり、
溶解炉や製品に悪影響を及ぼしたり、鋳造装置のストー
クに詰まりを生じさせたりするので、Fe。 Mnはそれぞれ0.3%未満に規制した。 また、P、Na、Sr、Sbは初晶オヨび共晶Siの微
細化に有効な元素であるため、Pは0.001%未満、
Naは0.002%未満。 Srは0.03%未満、Sbは0.04%未満に規制し
た。 そのほか、Mgは熱処理によりMg2Siの析出硬化が
得られるようにするのに有効な元素であるので、Mgを
0.3〜0.6%の範囲で必要に応じて添加するのもよ
い。 また、熱処理性を良好なものにして強度の向上をはかる
ためにCuを2〜5%の範囲で必要に応じて添加するの
もよく、耐熱性を改善するためにNiを0.1〜1.5
%の範囲で必要に応じて添加するのもよい。 この発明に係る耐摩耗性アルミニウム合金は上記の組成
を有し、粗大な共晶Si組織を有しているものとするこ
とによって耐摩耗性を向上させたものである。 このような粗大な共晶Si組織は、上記組成のアルミニ
ウム合金を所定の部品形状に鋳造する際にその冷却速度
を0.1〜!”C/secの範囲に制御することにより
得られる。 この場合、冷却速度が0.1℃ 、’ s e cより
も遅いと鋳込み後の凝固に時間がかかるため、生産性が
低下するので好ましくなく、冷却速度が1’Q  / 
S e Gよりも速いと共晶Siは微細化し、耐摩耗性
は悪くなるので好ましくない。 そして、鋳造後には450〜520℃に0,5〜8時間
程度保持する熱処理を施すことによって、上記粗大な共
晶Si組織のエツジを丸くするようにし、強度をさらに
向上させるようにすることも必要に応じて望ましい、こ
の場合の熱処理条件は合金成分によっても異なるが、低
温度であると溶体化に時間がかかり、高温度であると一
部溶融する可能性があるので、450〜520℃程度の
範囲の温度を選定することが望ましい、また、溶体化時
間も合金成分によって異なるが、0.5時間よりも短い
と十分に溶体化されず、また粗大な共晶Siのエツジも
丸くならないので好ましくなく、8時間を超える溶体化
は強度に影響しないので経済的でない。 (発明の作用) A交−3i系合金において、その#摩耗性はSi粒子の
大きさおよび分布に大きく影響され、亜共晶合金では、
共晶Si粒子の大きさが大きいほど耐摩耗性は良好なも
のとなる。 この発明に係るアルミニウム合金は、共晶Al−5i系
合金であり、液相線温度の低い領域のものであって、共
晶Siの微細化に効果のあるP、Na、Sr、Sb等の
第三元素は添加しておらず、鋳造の際の冷却速度を0.
1−1”o  /SeCに制御することにより、粗大な
共晶Si(長さ100ルm程度〕組織が得られるように
しており、これによって耐摩耗性が付与されうるように
している。 そして、必要に応じて450〜520℃に0.5〜8時
間程度保持する熱処理、例えばT6処理(溶体化処理:
510±5℃×2時間1人工時効:170±5℃×5時
間)を施すことにより、共晶Si組織のエツジが丸くな
るようにすれば1強度はさらに増加したものとなる。 (実施例) 及ム践に1 第1表に示すSi含有量でかつFe量を0.3%未満、
Mn量を0.3%未満、Pgをo、ooi%未満、Na
量を0.002%未満、Sr量を0.03%未満、Sb
量を0.04%未満にしたAn−5i系合金を用い、同
じく第1表に示す冷却速度で冷却する鋳造を行ったのち
、Si含有量が13%であるものの一部およびSi含有
量が11%、9%であるものに対して同じく第1表に示
すように熱処理としてT6処理(溶体化処理:510℃
×2時間9人工時効:170℃×5時間)を行って、試
験片(本発明実施例No。 1.2.3)を作製し、Si含有量が13%であるもの
の他部は鋳造のまま(第1表の記号F)として試験片(
本発明実施例No、 4)を得た。 次いで、各試験片の引張強さを測定したところ、同じく
第1表に示す結果であった。 また、ピン−ディスクタイプの摩耗試験機を用いて摩耗
試験を行うことによって焼付荷重および摩耗量を測定し
た。これらのうち、焼付荷重の測定は、摩擦速度:5m
/sec、温度:80℃。 潤滑:油で行い、摩耗量の測定は、摩擦速度:3m/s
ee、面圧: 50Kgf/cm2.温度:80℃、潤
滑二油で行い、1100K摩擦後の試験片から測定を行
った。なお、相手材には硬質Crめっきを施した球状黒
鉛鋳鉄を用いた。この結果を同じく第1表に示す。 さらに、本発明実施例合金No、 2の金属組織を調べ
たところ、図面代用写真である第1図に示すように、粗
大な共晶Si組織を有し、熱処理によって共晶Si組織
のエツジが丸くなっているものであることが認められた
。 ル蚊璽」 第1表に示すSi含有量の過共晶A1−3t合金(A3
90相当合金)を用い、冷却速度のコントロールを行う
ことなく鋳造を行ったのち、同じく第1表に示す熱処理
を行って試験片を作製した。 次いで、上記試験片の引張強さを測定したところ、同じ
く第1表に示す結果であった。 また、ビン−ディスクタイプの摩耗試験機を用いて前記
実施例と同様にして焼付荷重および摩耗量を測定した。 この結果を同じ〈第1表に示す。 比較例2 第1表に示すSi含有量で且つ共晶Siの微細化元素と
してNaiを0.005%とした共晶An−51合金を
用い、同じく第1表に示す冷却速度で冷却する鋳造を行
ったのち、同じく第1表に示す熱処理を行って、試験片
を作製した。 次いで、上記試験片の引張強さを測定したところ、同じ
く第1表に示す結果であった。 また、ピン−ディスクタイプの摩耗試験機を用いて前記
実施例と同様にして焼イづ荷重および摩耗量を測定した
。この結果を同じく第1表に示す。 第1表に示すように、本発明実施例合金No、  1〜
4では、比較例合金No、1 (A390相当合金)と
ほぼ同等の焼付荷重および摩耗量を有しており、耐摩耗
性に優れているものであることが認められた。そして1
本発明実施例合金No、  1〜4では液相線温度が5
0℃以上も高い比較例合金No、 1に比べて溶解炉お
よび鋳造用金型等の寿命をかなり向上させうるものであ
った。 また、本発明実施例合金No、 3はSi含有量が9%
であり、Si含有量が13%である本発明実施例合金N
o、  l 、 4に比べSi含有量が低いために焼付
荷重が低くかつまた摩耗量が多くなっているが、それで
も共晶Siを微細化した比較例合金No、 2に比べる
と焼付荷重はかなり大きく摩耗量もかなり少ないものと
なっている。 また1本発明実施例合金No、  1〜4ではスラッジ
を発生しゃすいFe、Mn等の含有量を規制したため、
スラッジが発生しにくいものとなっており、溶解炉を損
傷させず、かつまた製品に悪影響を及ぼさないものとす
ることができた。 さらに、熱処理を施していない鋳造まま(記号F)の本
発明実施例合金N024では、Si含有量が等しくかつ
熱処理としてT6処理を施した本発明実施例合金No、
  1に比べて、焼付荷重および摩耗量は同じ位となっ
ているが、引張強さは共晶S+のエツジが角張っている
ため、若干低い値となっていることが認められた。 次に、本発明実施例合金N081と比較例合金No、 
 1とに対してフライス加工を行い、プライス加工時の
チップ摩耗量を調べた。このフライス加工条件は、切削
速度: 1200m/mi n 、切込i:0.5mm
とし、DC工具を用いて乾式で行った。この結果を第2
図に示す。 第2図に示すように、本発明実施例合金No、  1は
、比較例合金N011と比較して、切削性がかなり改善
されていることが認められた。 【発明の効果】 この発明に係る耐摩耗性アルミニウム合金は。 Siを9〜13重量%含有し、Feを0.3重量%未満
、Mnを0.3重量%未満、Pを0.001重量%未満
、Naを0.002重量%未満、Srを0.03重量%
未満、Sbを0.04重量%未満に規制し、必要により
Mgを0.3〜0.6重量%含有するアルミニウム合金
であって、粗大な共晶Si組織を有しているものである
から、鋳造性が著しく良好であって、例えば摺動部品等
の製造が容易であるとともに耐摩耗性も良好であって例
えば摺動部品等の焼付荷重を大きなものとし且つまた摩
耗量を少ないものとすることが可能であり、従来の過共
晶An−3i系合金のような初晶Siの分布が問題とな
らず、また過共晶A文−3i系合金に比較して溶解骨鋳
造温度がより低い共晶A文−3t系合金を用いているた
め溶解炉および鋳造用金型等の寿命を長いものとするこ
とができ、さらにはFe、Mn等のスラッジを生じやす
い元素を添加していないため、スラッジの発生により溶
解炉および製品等に悪影響が及ぶのを防止することが可
能であり、とくに耐摩耗性の優れた摺動部品を生産性良
く低価格で提供することが可能であるという著大なる効
果がもたらされる。
[Structure of invention! f, ] (Means for solving the problem) The wear-resistant aluminum alloy according to the present invention has Si of 9
~13% by weight, less than 0.3% Fe, less than 0.3% Mn, and o. ooIB less than 1%, Na less than 0.002% by weight, Sr less than 0.03% by weight, S
b is regulated to less than 0.04% by weight, and Mg is reduced to 0 if necessary.
It is an aluminum alloy containing 3 to 0.6% by weight, and is characterized by having a coarse eutectic Si structure. It is characterized by being a means to solve the conventional problems. The reason why the composition (weight %) of the #wearable aluminum alloy according to the present invention is limited as described above will be explained. First, Si is an effective element for achieving wear resistance. The melting point (liquidus temperature) is the lowest at approximately 577°C with a eutectic composition (Si content of approximately 12.7%), but even if the Si content is lower than this, it is still higher than this. However, the melting point increases and the melting and casting temperatures become higher.
Since the life of the melting furnace, casting mold, etc. is reduced, the Si content is set in the range of 9 to 13%. Next, although Fe has the effect of preventing seizure on the mold, it is an impurity element and forms intermetallic compounds such as FeAl3, A-Fe-3i, etc., resulting in a decrease in toughness and corrosion resistance. By adding it to alloys with high Fe content and improving strength, harmful Al-Fe-
Suppresses the crystallization of 3i intermetallic compounds. However, if the content of these elements is too high, sludge is likely to be generated.
Fe is harmful to the melting furnace and products, and can clog the stalk of the casting equipment. Mn was regulated to less than 0.3%. In addition, since P, Na, Sr, and Sb are effective elements for refining primary crystals and eutectic Si, P is less than 0.001%.
Na content is less than 0.002%. Sr was regulated to less than 0.03%, and Sb was regulated to less than 0.04%. In addition, since Mg is an effective element for obtaining precipitation hardening of Mg2Si by heat treatment, Mg may be added as necessary in the range of 0.3 to 0.6%. Additionally, in order to improve heat treatability and improve strength, Cu may be added in an amount of 2 to 5% as needed, and Ni may be added in an amount of 0.1 to 1% to improve heat resistance. .5
It may be added as necessary within a range of %. The wear-resistant aluminum alloy according to the present invention has the above composition and has a coarse eutectic Si structure, thereby improving wear resistance. Such a coarse eutectic Si structure requires a cooling rate of 0.1~! when casting an aluminum alloy with the above composition into a predetermined part shape. In this case, if the cooling rate is slower than 0.1°C, it takes time to solidify after casting, which reduces productivity, so it is preferable. and the cooling rate is 1'Q/
If it is faster than S e G, the eutectic Si becomes finer and the wear resistance deteriorates, which is not preferable. After casting, the edges of the coarse eutectic Si structure can be rounded by performing heat treatment at 450 to 520°C for about 0.5 to 8 hours, thereby further improving the strength. The heat treatment conditions in this case, which are desirable depending on necessity, will vary depending on the alloy components, but if it is low temperature, it will take time to melt, and if it is high temperature, it may partially melt, so 450 to 520 ° C. It is desirable to select a temperature within a certain range, and the solution time also varies depending on the alloy components, but if it is shorter than 0.5 hours, the solution will not be sufficient and the edges of the coarse eutectic Si will not be rounded. Therefore, solution treatment for more than 8 hours is not economical because it does not affect the strength. (Function of the invention) In the A-3i alloy, its wear resistance is greatly influenced by the size and distribution of Si particles, and in the hypoeutectic alloy,
The larger the size of the eutectic Si particles, the better the wear resistance. The aluminum alloy according to the present invention is a eutectic Al-5i alloy, which has a low liquidus temperature, and contains P, Na, Sr, Sb, etc., which are effective in refining eutectic Si. No third element was added, and the cooling rate during casting was set to 0.
By controlling it to 1-1"o/SeC, a coarse eutectic Si (about 100 lumen in length) structure can be obtained, which can provide wear resistance. , if necessary, heat treatment held at 450 to 520°C for about 0.5 to 8 hours, such as T6 treatment (solution treatment:
If the edges of the eutectic Si structure are rounded by applying artificial aging (510±5°C x 2 hours 1: 170±5°C x 5 hours), the strength will further increase. (Example) In practice 1, the Si content shown in Table 1 and the Fe amount of less than 0.3%,
Mn amount less than 0.3%, Pg less than o, ooi%, Na
amount less than 0.002%, Sr amount less than 0.03%, Sb
After casting using an An-5i alloy with a Si content of less than 0.04% and cooling at the cooling rate shown in Table 1, a part of the alloy with a Si content of 13% and a part with an Si content of 11% and 9%, T6 treatment (solution treatment: 510°C) was performed as heat treatment as shown in Table 1.
× 2 hours 9 Artificial aging: 170°C × 5 hours) to prepare a test piece (Example No. 1.2.3 of the present invention), and although the Si content was 13%, the other part was cast. Test piece (symbol F in Table 1)
Example No. 4) of the present invention was obtained. Next, the tensile strength of each test piece was measured, and the results were also shown in Table 1. In addition, a wear test was conducted using a pin-disk type wear tester to measure the seizure load and amount of wear. Among these, the measurement of seizure load is based on friction speed: 5 m
/sec, temperature: 80°C. Lubrication: oil, measurement of wear amount: friction speed: 3 m/s
ee, surface pressure: 50Kgf/cm2. Temperature: 80° C., with two lubricating oils, and measurements were taken from test pieces after 1100K friction. Note that spheroidal graphite cast iron with hard Cr plating was used as the mating material. The results are also shown in Table 1. Furthermore, when the metal structure of Inventive Example Alloy No. 2 was investigated, it was found that it had a coarse eutectic Si structure, as shown in FIG. It was recognized that it was round. Hypereutectic A1-3t alloy (A3
90 equivalent alloy) without controlling the cooling rate, and then subjected to the heat treatment shown in Table 1 to prepare test pieces. Next, the tensile strength of the above test piece was measured, and the results were also shown in Table 1. In addition, the seizure load and the amount of wear were measured using a bottle-disc type wear tester in the same manner as in the above examples. The results are shown in Table 1. Comparative Example 2 Casting using a eutectic An-51 alloy with the Si content shown in Table 1 and 0.005% Nai as the eutectic Si refinement element, and cooling at the cooling rate also shown in Table 1. After that, the same heat treatment shown in Table 1 was performed to prepare a test piece. Next, the tensile strength of the above test piece was measured, and the results were also shown in Table 1. In addition, the baking load and the amount of wear were measured using a pin-disc type wear tester in the same manner as in the above examples. The results are also shown in Table 1. As shown in Table 1, the invention example alloy No. 1~
Comparative Example Alloy No. 4 had approximately the same seizure load and wear amount as Comparative Example Alloy No. 1 (alloy equivalent to A390), and was recognized to have excellent wear resistance. and 1
Inventive example alloy Nos. 1 to 4, the liquidus temperature was 5.
Compared to Comparative Example Alloy No. 1, which had a temperature higher than 0°C, the life of the melting furnace, casting mold, etc. could be considerably improved. In addition, the Si content of Inventive Example Alloy No. 3 is 9%.
The alloy N according to the present invention has a Si content of 13%.
The seizure load is lower and the amount of wear is higher due to the lower Si content compared to O, I, and 4, but the seizure load is still considerably lower than Comparative Example Alloys No. and 2, which have finer eutectic Si. It is large and the amount of wear is quite small. In addition, in the alloy Nos. 1 to 4 according to the present invention, the content of Fe, Mn, etc., which tend to generate sludge, was regulated.
Sludge is less likely to be generated, and the melting furnace is not damaged and the product is not adversely affected. Furthermore, the present invention example alloy No. 024 which is as cast without heat treatment (symbol F) has the same Si content and the present invention example alloy No. which has been subjected to T6 treatment as heat treatment.
Compared to No. 1, the seizure load and wear amount were about the same, but the tensile strength was found to be slightly lower because the edges of the eutectic S+ were angular. Next, the present invention example alloy No. 081 and the comparative example alloy No.
Milling was performed on No. 1 and the amount of chip wear during plying was examined. The milling conditions are: cutting speed: 1200 m/min, depth of cut: 0.5 mm
It was carried out dry using a DC tool. This result is the second
As shown in the figure. As shown in FIG. 2, it was observed that the machinability of Inventive Example Alloy No. 1 was considerably improved compared to Comparative Example Alloy No. 11. [Effects of the Invention] The wear-resistant aluminum alloy according to the present invention is as follows. Contains 9 to 13% by weight of Si, less than 0.3% by weight of Fe, less than 0.3% by weight of Mn, less than 0.001% by weight of P, less than 0.002% by weight of Na, and 0.0% of Sr. 03% by weight
It is an aluminum alloy containing 0.3 to 0.6% by weight of Mg, with Sb being regulated to less than 0.04% by weight, if necessary, and having a coarse eutectic Si structure. , has extremely good castability, for example, makes it easy to manufacture sliding parts, etc., and has good wear resistance, so that, for example, the seizing load of sliding parts, etc. can be increased and the amount of wear is small. The distribution of primary Si crystals is not a problem as in conventional hypereutectic An-3i alloys, and the melting bone casting temperature is lower than that of hypereutectic An-3i alloys. Because it uses a lower eutectic A-3t alloy, it can extend the life of melting furnaces and casting molds, and it also does not contain elements that tend to generate sludge, such as Fe and Mn. Because there is no sludge, it is possible to prevent the generation of sludge from having a negative impact on the melting furnace and products, etc., and it is possible to provide sliding parts with particularly excellent wear resistance at a low price with good productivity. This brings about a significant effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例合金(No、 2)の凝固金属組
織を示す図面代用金属組織顕微鏡写真(50倍)、第2
図はフライス加工を行った際のチップ摩耗量を測定した
結果を例示するグラフである。 特許出願人  日産自動車株式会社
Figure 1 is a metallographic micrograph (50x) showing the solidified metallographic structure of the example alloy (No. 2) of the present invention;
The figure is a graph illustrating the results of measuring the amount of chip wear during milling. Patent applicant Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)Siを9〜13重量%含有し、Feを0.3重量
%未満、Mnを0.3重量%未満、Pを0.001重量
%未満、Naを0.002重量%未満、Srを0.03
重量%未満、Sbを0.04重量%未満に規制し、必要
によりMgを0.3〜0.6重量%含有するアルミニウ
ム合金であって、粗大な共晶Si組織を有していること
を特徴とする耐摩耗性アルミニウム合金。
(1) Contains 9 to 13% by weight of Si, less than 0.3% by weight of Fe, less than 0.3% by weight of Mn, less than 0.001% of P, less than 0.002% of Na, Sr 0.03
% by weight, Sb is regulated to less than 0.04% by weight, and if necessary contains Mg from 0.3 to 0.6% by weight, and has a coarse eutectic Si structure. Features wear-resistant aluminum alloy.
JP12556688A 1988-05-23 1988-05-23 Wear-resistant aluminum alloy Pending JPH01294840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12556688A JPH01294840A (en) 1988-05-23 1988-05-23 Wear-resistant aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12556688A JPH01294840A (en) 1988-05-23 1988-05-23 Wear-resistant aluminum alloy

Publications (1)

Publication Number Publication Date
JPH01294840A true JPH01294840A (en) 1989-11-28

Family

ID=14913365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12556688A Pending JPH01294840A (en) 1988-05-23 1988-05-23 Wear-resistant aluminum alloy

Country Status (1)

Country Link
JP (1) JPH01294840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194051A (en) * 2013-03-28 2014-10-09 Kobe Steel Ltd Aluminum alloy brazing material and brazing sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194051A (en) * 2013-03-28 2014-10-09 Kobe Steel Ltd Aluminum alloy brazing material and brazing sheet

Similar Documents

Publication Publication Date Title
JP5898819B1 (en) Aluminum alloy for die casting and aluminum alloy die casting using the same
US5762728A (en) Wear-resistant cast aluminum alloy process of producing the same
KR100199362B1 (en) Aluminum alloy for die casting and ball joint using the same
EP3031569B1 (en) Cu-added ni-cr-fe-based alloy brazing material
KR101756016B1 (en) Aluminum alloy for die casting and Method for heat treatment of manufacturing aluminum alloy using thereof
JP2738999B2 (en) High wear-resistant aluminum bronze casting alloy, sliding member using the alloy
JPH0137464B2 (en)
Jorstad Influence of aluminum casting alloy metallurgical factors on machinability
JP2004256873A (en) Aluminum alloy for casting having excellent high temperature strength
RU2329321C2 (en) Antifriction alloy on aluminium base
JPH09296245A (en) Aluminum alloy for casting
JPH01294840A (en) Wear-resistant aluminum alloy
JPH06306521A (en) Hyper-eutectic al-si series alloy for casting and casting method
JP3328356B2 (en) Aluminum alloy material for casting
JP3389000B2 (en) Hypereutectic Al-Si alloy for die casting, hypereutectic Al-Si alloy die casting and method of using the same
US2290025A (en) Aluminum alloy
JPH0649572A (en) High strength zinc alloy for die casting and zinc alloy die-cast parts
JPS60243241A (en) Aluminum alloy with superior wear resistance
JP4357714B2 (en) Die-casting aluminum alloy with high strength and excellent corrosion resistance
JP7401080B1 (en) Manufacturing method of Al alloy for casting
JPS62127447A (en) Aluminum alloy for casting
JP3949557B2 (en) Wear-resistant aluminum alloy for casting and cast aluminum alloy
JPS60204843A (en) Manufacture of wear-resistant and lightweight rocker arm
RU2191843C2 (en) Nickel-base alloy and article made of thereof
JPH0213020B2 (en)