JPH01293410A - Method for detecting obstacle of autonomous type moving vehicle - Google Patents

Method for detecting obstacle of autonomous type moving vehicle

Info

Publication number
JPH01293410A
JPH01293410A JP63124602A JP12460288A JPH01293410A JP H01293410 A JPH01293410 A JP H01293410A JP 63124602 A JP63124602 A JP 63124602A JP 12460288 A JP12460288 A JP 12460288A JP H01293410 A JPH01293410 A JP H01293410A
Authority
JP
Japan
Prior art keywords
obstacle
moving vehicle
sensor
rotating
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63124602A
Other languages
Japanese (ja)
Inventor
Daizo Takaoka
大造 高岡
Makoto Yamada
誠 山田
Naoto Tojo
直人 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63124602A priority Critical patent/JPH01293410A/en
Publication of JPH01293410A publication Critical patent/JPH01293410A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To surely detect an obstacle in the travelling channel of a moving vehicle by rotating a rotating stand provided at the upper part of the moving vehicle at the time of travelling, and sensing the circumference of the moving vehicle by an optical distance detecting sensor fitted to the rotating stand by inclining the detection direction in the direction lower than the horizontal surface. CONSTITUTION:Since the detection direction of an optical distance detecting sensor 12 fitted at a rotating stand 10 of the upper part of an autonomous type moving vehicle 1 is inclined in the lower direction, a light from the sensor 12 is also generated in the direction and an angle for a floor surface is held. By rotating the rotating stand 10, the floor surface of the circumference of the moving vehicle 1 is sensed to the sensor, and while the rotating stand 10 is rotated, the moving vehicle 1 is travelled and thus, the floor surface of the travelling direction forward direction of the moving vehicle 1 is successively sensed by the sensor 12. Thus, when an obstacle 13 exists in the forward area of the moving vehicle 1, the sensing position of the sensor 12 is moved in the upper direction in the sequence from the lower part of the obstacle 13, and therefore, the obstacle 13 is detected stereoscopically and three- dimensionally by the sensor 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一般建物内を走行しながら掃除作業を行う掃
除ロボットのような自律型移動車において、走行経路に
おける障害物を回避しながら自律的に走行するために該
障害物を検知する障害物検知方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an autonomous mobile vehicle such as a cleaning robot that performs cleaning work while traveling inside a general building. The present invention relates to an obstacle detection method for detecting obstacles in order to drive safely.

〔従来の技術〕[Conventional technology]

通常、この種自律型移動車においては、その走行経路に
直進走行を妨げる障害物が存在する場合に該障害物を回
避するために、障害物の位置を検知する光学的距離検知
センサが用いられ、たとえば雑誌「計測と制御」(第2
6巻第2号、昭和62〜110)に示されている。
Normally, this type of autonomous mobile vehicle uses an optical distance detection sensor to detect the position of the obstacle in order to avoid it when there is an obstacle in the travel route that prevents the vehicle from traveling straight. , for example, the magazine "Measurement and Control" (Part 2)
6, No. 2, 1984-110).

この距離検知センサによる障害物の検知方法は、発光ダ
イオード(LED)や半導体レーザのような光源から発
した光が対象物(障害物)に当ると乱反射するため、そ
の反射光を半導体装置検出素子(PSD)等の受光素子
で受光することにより対象物を検知する方法であり、乱
反射が発生した対象物までの距離を、乱反射した光が受
光素子上に当る位置が距離によ・つて異なることを利用
し、三角測量の原理によって求めるものである。
In this method of detecting obstacles using distance detection sensors, when light emitted from a light source such as a light emitting diode (LED) or a semiconductor laser hits an object (obstacle), it is diffusely reflected, so the reflected light is sent to a semiconductor device detection element. This is a method of detecting an object by receiving light with a light receiving element such as (PSD), and the distance to the object where the diffused reflection occurs varies depending on the distance where the diffusely reflected light hits the light receiving element. It is calculated using the principle of triangulation.

ところで、このような光学的距歴検知センサでは、前記
移動車に塔載する場合、光源と受光素子とを一体化して
構成することが通例であるが、このような場合、光が点
光源から発せられるので、−次元的な検知しか行えず、
移動車の走行方向である前方領域における障害物を検知
するためには、センサの検知方向を走査してセンシング
する必要がある。
By the way, when such an optical distance history detection sensor is mounted on the moving vehicle, it is customary to integrate the light source and the light receiving element. Since it is emitted, only -dimensional detection can be performed,
In order to detect an obstacle in the front area, which is the traveling direction of the moving vehicle, it is necessary to scan and sense the detection direction of the sensor.

このため、従来では、第7図及び第8図に示すように、
自律型移動車(A)の上部に回転台CB)を設け、該回
転台CB)に光学的路、雅検知センサ(C)を取付け、
回転台CB)を回転してセンサ(C)により移動車(A
)の回りをスキャンするようにしている。
For this reason, conventionally, as shown in FIGS. 7 and 8,
A turntable CB) is provided on the upper part of the autonomous mobile vehicle (A), an optical path and an elegance detection sensor (C) are attached to the turntable CB),
The moving vehicle (A) is detected by the sensor (C) by rotating the turntable CB).
).

この場合、移動車(1ンの前方領域に存在する障害物を
いち早く検知するために、センサ(C)の検知方向は水
平に設定されている。
In this case, the detection direction of the sensor (C) is set horizontally in order to quickly detect obstacles existing in the area in front of the moving vehicle (1).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来方法による障害物の検知では、センサ(
C)1ζよって得られる情報が、センサ(C)のスキャ
ンする一水平面(D)上fζ限られてしまい、第7図に
示すよう(ζ、この水平面CD)以外に存在する障害物
(E)は検知できなくなる重大な欠点を有している。
However, when detecting obstacles using conventional methods, sensors (
C) The information obtained by 1ζ is limited to fζ on one horizontal plane (D) scanned by the sensor (C), and as shown in FIG. has serious drawbacks that make it undetectable.

また、第8図に示すように、下部に広がりを有するよう
な障害物CF)の場合、センサ(C)のスキャンによっ
て障害物(F)の存在を検出できるが、移動車(A)か
ら障害物(F)までの距離の検出も前記水平面CD)上
における測距に限られてしまい、移動車(A)から障害
物(F)までの距g[xを検出したが実際にはそれより
かなり短い距離t2である場合が多く、移動車(A)の
走行制御の仕方によっては障害物CF)を回避できなく
なる場合が生じる。
Furthermore, as shown in Fig. 8, in the case of an obstacle (CF) that spreads out at the bottom, the presence of the obstacle (F) can be detected by scanning the sensor (C), but the obstacle cannot be detected from the moving vehicle (A). Detection of the distance to the object (F) is also limited to distance measurement on the horizontal plane CD), and the distance g[x from the moving vehicle (A) to the obstacle (F) is detected, but in reality it is In many cases, the distance t2 is quite short, and depending on how the moving vehicle (A) is controlled, it may not be possible to avoid the obstacle CF).

本発明は、従来の技術の有するこのような問題点に留意
してなされたものであり、その目的とするところは、光
学的距蔑検知センサにより障害物を三次元的に検知でき
る障害物検知方法を提供しようとするものである。
The present invention has been made in consideration of such problems of the conventional technology, and its purpose is to provide an obstacle detection system that can three-dimensionally detect obstacles using an optical distance detection sensor. It is intended to provide a method.

〔課題を解決′するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明による自律型移動車
の障害物検知方法lこおいては、自律型移動車の上部f
ζ鉛直方向の回転軸を有する回転台を設け、前記回転台
に光学的距離検知センサを該センサの検知方向が水平面
より下方に傾斜するよう取付け、前記回転台を回転しな
がら前記移動車を走行し、前記センサにより前記障害物
を三次元的tこ検知することを特徴としている。
In order to achieve the above object, in the obstacle detection method for an autonomous mobile vehicle according to the present invention, the upper part f of the autonomous mobile vehicle is
ζ A rotary table having a rotation axis in a vertical direction is provided, an optical distance detection sensor is attached to the rotary table so that the detection direction of the sensor is inclined downward from a horizontal plane, and the moving vehicle is run while rotating the rotary table. The present invention is characterized in that the sensor detects the obstacle three-dimensionally.

〔作用〕[Effect]

自律型移動車の上部の回転台に取付けられた光学的距離
検知センサは、その検知方向が下方に傾斜しているため
、センサからの光もこの方向に発せられ、床面に対し角
度を持つことになる。
The optical distance detection sensor installed on the rotating platform at the top of the autonomous vehicle is tilted downward in the detection direction, so the light from the sensor is also emitted in this direction, making it at an angle to the floor. It turns out.

そして、回転台を回転することにより、センサは移動車
の回りの床面をセンシングし、回転台を回転しながら移
動車を走行することにより、セユ/すにより移動車の走
行方向前方の床面が順次センシングされる。
By rotating the rotary table, the sensor senses the floor surface around the vehicle, and by rotating the rotary table and driving the vehicle, the sensor senses the floor surface in front of the vehicle in the traveling direction. are sensed sequentially.

したがって、移動車の前方領域に障害物が存在すると、
センサのセンシング位置が障害物の下部から順に上方へ
移動することになるので、障害物はセンサにより立体的
に、つまり三次元的に検知されることになる。
Therefore, if there is an obstacle in the area in front of the moving vehicle,
Since the sensing position of the sensor moves upward from the bottom of the obstacle, the obstacle is detected three-dimensionally, that is, three-dimensionally, by the sensor.

〔実施例〕〔Example〕

つぎに、本発明の実施例fこつき、第1図ないし第6図
を用いて説明する。
Next, an embodiment of the present invention will be explained using FIGS. 1 to 6.

まず、第1の実施例を示した第1図ないし第4図につい
て説明する。
First, FIGS. 1 to 4 showing a first embodiment will be explained.

第2図は自律型移動車(1)の概略構成を示しており、
車体(2)の前部下側fζおける左右に配置された動輪
(8a)、 (8b)と、車体(2)の後部下側におけ
る中央部に配置されたキャスタ(4)とにより、車体(
2) ヲ移動自在に支持する。
Figure 2 shows the schematic configuration of the autonomous mobile vehicle (1),
The vehicle body (
2) Support it so that it can be moved freely.

C(7)左右の動輪(3a)、 (3b)は個々fコ−
E: −9(5a)、(5b)tvより回転され、モー
タ(5a)、(5b) (7)回転軸にそれぞれ連結さ
れたエンコーダ(6a) + (6’)) +こより動
輪(3a)、(3b)の回転数を検知し、制御装置(7
)ニよりモー9 (5a)、(5b)を制御シテ動輪(
3a)。
C (7) The left and right driving wheels (3a) and (3b) are individual f-coats.
E: -9 (5a), (5b) Motors (5a), (5b) (7) Encoders (6a) + (6')) rotated by tv and connected to the rotating shafts (6') + Driving wheels (3a) , (3b) is detected, and the control device (7
) to control the driving wheels (5a) and (5b).
3a).

(3b)の回転数を制御することにより、走行制御する
構成である。
(3b) By controlling the number of rotations, the vehicle is configured to control travel.

ここで、動輪(3a)、(3b)の回転数を一致させれ
ば移動車(1)iよ直進し、それぞれの回転数fζ差を
与えれば移動車(1)は回転する0 (8)は車体(2)の上部中央に配設され鉛直方向の回
転軸(9)を具備してなるセンサ用モータ、QGは車体
(2)の上面に該上面を覆うように配設され回転軸(9
)に連結されて回転される頭載円錐形の回転台、0℃は
センサ用モータ(8)の回転位置、すなわち回転台(9
)の回転位置を検出する1こめのセニ/す用エンコーダ
である。
Here, if the rotational speeds of the driving wheels (3a) and (3b) are made the same, the moving vehicle (1) will move straight ahead, and if the rotational speed fζ of each is given, the moving vehicle (1) will rotate0 (8) QG is a sensor motor disposed at the center of the upper part of the vehicle body (2) and equipped with a vertical rotating shaft (9), and QG is disposed on the upper surface of the vehicle body (2) so as to cover the upper surface. 9
), and 0°C is the rotational position of the sensor motor (8), that is, the rotation position of the rotating table (9).
) is a single-use encoder that detects the rotational position of the motor.

(6)は回転台GOの円錐面上に検知方向を円錐面の傾
斜に沿って水平面より下方に傾斜させて取付けられた光
学的距離検知センサ、う)わゆる光センサであり、発光
素子と受光素子とを一体−ζ備えてなり、センサaυか
らの光が床面に対して鋭角の角度を持つように設定され
、回転台頭の回転(ζよって移動車(1ンの回りの床面
をスキャンする。
(6) is an optical distance detection sensor installed on the conical surface of the rotary table GO with the detection direction inclined downward from the horizontal plane along the inclination of the conical surface, and is a so-called optical sensor. The light receiving element is integrally equipped with -ζ, and the light from the sensor aυ is set to have an acute angle with respect to the floor surface, and the rotation of the rotating platform (ζ, therefore, the floor surface around the moving vehicle (1) is to scan.

そして、障害物の検知に際しては、回転台qCJを回転
しながら移動車(1)を走行して行なわれ、このとき、
エンコーダaυからの信号によって回転台OQの回転位
置、すなわち光センサ(6)のセンシング位置が制御装
置(7)において把握されているので、移動車(υの走
行方向前方の障害物の位置及び形状が制御装置(7)に
より正しく検出される。
Then, when detecting an obstacle, the moving vehicle (1) is run while rotating the turntable qCJ, and at this time,
Since the rotational position of the turntable OQ, that is, the sensing position of the optical sensor (6), is grasped by the signal from the encoder aυ in the control device (7), the position and shape of the obstacle in front of the moving vehicle (υ in the traveling direction) is determined by the control device (7). is correctly detected by the control device (7).

第3図は、移動車(1)の走行経路内に存在する障害物
(方形形状) C13の高さ方向の検知状況を示すもの
である。
FIG. 3 shows the state of detection in the height direction of an obstacle (rectangular shape) C13 existing within the traveling route of the mobile vehicle (1).

同図(a)のように、移動車(1)と障害物口との間め
距離が大きい時は、光センサ(2)からの光は障害物Q
3に到達せず床面04)に当り、反射光(2)が光セン
サ(2)に戻ってこないので、移動車(υは前方に障害
物Q3が存在しないことを判断する。
As shown in (a) of the same figure, when the distance between the moving vehicle (1) and the obstacle entrance is large, the light from the optical sensor (2) will pass through the obstacle Q.
3 and hits the floor surface 04), and the reflected light (2) does not return to the optical sensor (2), so the moving vehicle (υ) determines that there is no obstacle Q3 in front of it.

同図(b)は、移動車(υがその走行(こよって障害物
(131ζ接近し、光センサ(2)からの光が障害物口
の下部に到達した状態であり、障害物(13fこ当って
反射した光が光センサ□□□で受光され、障害物口の存
在と障害物口までの距離が検知される。
In the same figure (b), the moving vehicle (υ) approaches the obstacle (131ζ), and the light from the optical sensor (2) reaches the lower part of the obstacle opening, and the obstacle (13f) approaches the obstacle (131ζ). The reflected light is received by the optical sensor □□□, and the existence of the obstacle opening and the distance to the obstacle opening are detected.

同図(C)は、同図(b)の状態より移動車(1)がさ
らに障害物αJに接近した状態であり、光センサQのか
らの光は床面に対して常に一定角度になっているため、
光が障害物α1に当る位置は同図(b)の場合よりも高
くなり、このときの障害物口の存在と障害物C13まで
の距離とが検知される。
Figure (C) shows a state in which the moving vehicle (1) is closer to the obstacle αJ than in the state shown in Figure (b), and the light from the optical sensor Q is always at a constant angle with respect to the floor surface. Because
The position at which the light hits the obstacle α1 is higher than in the case shown in FIG. 3B, and the presence of the obstacle opening and the distance to the obstacle C13 at this time are detected.

同図(d)は、移動車(1)の走行がさらに進んで障害
物σJに接近した状態であり、光センサα2からの光が
障害物口を通り越してしまい、反射光が光センサa2t
こ戻らないため、これにより障害物σJの奥行がわかる
In the same figure (d), the moving vehicle (1) has further progressed and approached the obstacle σJ, and the light from the optical sensor α2 has passed through the obstacle opening, and the reflected light is reflected from the optical sensor a2t.
Since it does not return, the depth of the obstacle σJ can be determined from this.

このように、光センサ(イ)を取付けた回転台GOを回
転しながら移動車(1)を走行させることにより、障害
物σ4の存在とその高さ方向の情報及び移動車山から障
害物(13までの距離を検知できることになり、前記移
動車(1)は、同図(d)の状態より、検知された障害
物口を回避する動作に制御される。
In this way, by running the moving vehicle (1) while rotating the turntable GO on which the optical sensor (a) is attached, information on the existence of the obstacle σ4 and its height direction and the obstacle (13 The distance to the obstacle can be detected, and the moving vehicle (1) is controlled to avoid the detected obstacle opening from the state shown in FIG.

第4図は、前述した光センサ01こより障害物口の横方
向の検知状況を示すものである。
FIG. 4 shows how the optical sensor 01 described above detects the obstacle opening in the lateral direction.

これは、移動車(1ンの走行方向前方に移動車(1)と
の対向面が凸状をした障害物Q9が存在する場合であり
、斜線で示す(X)は光センサQ2からの光が床面に当
る位置を示し、(Y)は光センサ(12からの光が障害
物αつに当る位置を示している。
This is a case where there is an obstacle Q9 with a convex surface facing the moving vehicle (1) in front of the moving vehicle (1) in the traveling direction. indicates the position where the light hits the floor surface, and (Y) indicates the position where the light from the optical sensor (12) hits the obstacle α.

光センサqzは、障害物(19に当った光センサ(6)
からの光の反射光のみを受光するので、斜線(Y)の形
状、つまり障害物aつの移動車(1)(ζ対向する面の
形状が検知されることになる。
The optical sensor qz is the optical sensor (6) that hit the obstacle (19).
Since only the reflected light from the obstacle is received, the shape of the diagonal line (Y), that is, the shape of the surface facing the obstacle a (1) (ζ) is detected.

このことは、障害物09がどのような形状のものであっ
ても、その移動車(1)に対向する面の形状を把握でき
ることを示しており、前述した障害物め高さ方向の検知
とともに障害物を立体的、すなわち三次元的に検知でき
ること1ζなる。
This shows that no matter what shape the obstacle 09 has, it is possible to determine the shape of the surface facing the moving vehicle (1), and in addition to detecting the height of the obstacle as described above. 1ζ Being able to detect obstacles three-dimensionally, that is, three-dimensionally.

つぎに、第2及び第3の実施例をそれぞれ示した第5図
及び第6図tζついて説明了る。
Next, a description will be given of FIGS. 5 and 6 tζ showing the second and third embodiments, respectively.

まず、第5図1こ示す実施例は、自γを型移動車(1)
の車体(2)の上面に鉛直方向の回転軸(9)!こより
回転円錐面に光センサ(2)をその検知方向が円錐面の
傾斜に沿って水平面より下方に傾斜するようfこ取付け
Tこものである。
First, in the embodiment shown in FIG.
Vertical rotation axis (9) on the top of the car body (2)! Therefore, the optical sensor (2) is mounted on the rotating conical surface so that its detection direction is inclined downward from the horizontal surface along the inclination of the conical surface.

また、第6図に示す実施例は、車体(2)の上面に鉛直
方向の回転軸(9)により回転される水平方向の片上に
光センサ(6)をその検知方向が水平面より下方に傾斜
するよう取付けたものである。
In addition, in the embodiment shown in FIG. 6, an optical sensor (6) is mounted on the upper surface of the vehicle body (2) in a horizontal direction rotated by a vertical rotating shaft (9), and its detection direction is inclined downward from the horizontal plane. It was installed to do so.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の自律型移動車の障害物検
知方法によると、自イネ型移動車の走行時1こ移動車の
上部に設けた回転台を回転し、回転台fζ検知方向を水
平面より下方に傾斜させて取付けられた光学的距離検知
センサにより移動車の回りをセンシングするようにした
ので、移動車の走行経路中の障害物を確実に検知するこ
とができるうえ、この障害物を三次元的に検知でき、障
害物の位置、形状を正確に把握できるため、下部に広が
りを有するような障害物の場合でも、該障害物を確実に
回避しながら移動車を走行制御できるものである。
As explained above, according to the obstacle detection method for an autonomous mobile vehicle of the present invention, when the autonomous mobile vehicle is traveling, the rotating table provided at the top of the mobile vehicle is rotated, and the rotating table fζ detection direction is set. Since the optical distance detection sensor installed tilted downward from the horizontal plane senses the surroundings of the moving vehicle, it is possible to reliably detect obstacles in the moving route of the moving vehicle, and also to detect obstacles It is possible to detect obstacles three-dimensionally and accurately grasp the position and shape of obstacles, so even in the case of obstacles that spread out at the bottom, it is possible to control the movement of a moving vehicle while reliably avoiding the obstacles. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第6図は本発明による自律型移動車の障害
物検知方法の実施例を示し、第1図ないし第4図は第1
の実施例を示し、第1図及び第2図は移動車の概略側面
図及び平面図、第3図(a)〜(d)はそれぞれ障害物
の高さ方向の検知状況を説明するための異なる状態にお
ける側面図、第4図は障害物の横方向の検知状況を説明
するための平面図、第5図及び第6図はそれぞれ他の実
施例を示す移動車の概略側面図、第7図及び第8図はそ
れぞれ従来の検知方法を説明するための側面図である。 (1]・・・自律型移動車、(9)・・・回転軸、QG
 、 QO、GO・・・回転台、(2)・・・光センサ
、頭、09・・・障害物。
1 to 6 show an embodiment of the obstacle detection method for an autonomous mobile vehicle according to the present invention, and FIGS.
1 and 2 are schematic side views and plan views of a moving vehicle, and FIGS. 3(a) to 3(d) are diagrams for explaining the detection situation of obstacles in the height direction, respectively. 4 is a plan view for explaining the detection situation of obstacles in the lateral direction; FIGS. 5 and 6 are schematic side views of the mobile vehicle showing other embodiments; and FIG. 8 and 8 are side views for explaining the conventional detection method, respectively. (1)...autonomous mobile vehicle, (9)...rotation axis, QG
, QO, GO... Turntable, (2)... Light sensor, head, 09... Obstacle.

Claims (1)

【特許請求の範囲】[Claims] (1)走行経路における障害物の位置を光学的距離検知
センサにより検知して該障害物を回避しながら自律的に
走行する自律型移動車の障害物検知方法において、 前記移動車の上部に鉛直方向の回転軸を有する回転台を
設け、前記回転台に前記距離検知センサを該センサの検
知方向が水平面より下方に傾斜するよう取付け、前記回
転台を回転しながら前記移動車を走行し、前記センサに
より前記障害物を三次元的に検知することを特徴とする
自律型移動車の障害物検知方法。
(1) An obstacle detection method for an autonomous mobile vehicle that detects the position of an obstacle on a travel route using an optical distance detection sensor and autonomously travels while avoiding the obstacle, wherein a vertical line is placed above the mobile vehicle. a rotary table having a rotation axis in the direction, the distance detection sensor is mounted on the rotary table so that the detection direction of the sensor is inclined downward from a horizontal plane, the moving vehicle is run while rotating the rotary table, An obstacle detection method for an autonomous mobile vehicle, characterized in that the obstacle is detected three-dimensionally by a sensor.
JP63124602A 1988-05-20 1988-05-20 Method for detecting obstacle of autonomous type moving vehicle Pending JPH01293410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63124602A JPH01293410A (en) 1988-05-20 1988-05-20 Method for detecting obstacle of autonomous type moving vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63124602A JPH01293410A (en) 1988-05-20 1988-05-20 Method for detecting obstacle of autonomous type moving vehicle

Publications (1)

Publication Number Publication Date
JPH01293410A true JPH01293410A (en) 1989-11-27

Family

ID=14889503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63124602A Pending JPH01293410A (en) 1988-05-20 1988-05-20 Method for detecting obstacle of autonomous type moving vehicle

Country Status (1)

Country Link
JP (1) JPH01293410A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009927A (en) * 2006-06-30 2008-01-17 Secom Co Ltd Mobile robot
JP2008009929A (en) * 2006-06-30 2008-01-17 Secom Co Ltd Mobile robot
JP2008033633A (en) * 2006-07-28 2008-02-14 Secom Co Ltd Mobile robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009927A (en) * 2006-06-30 2008-01-17 Secom Co Ltd Mobile robot
JP2008009929A (en) * 2006-06-30 2008-01-17 Secom Co Ltd Mobile robot
JP4745149B2 (en) * 2006-06-30 2011-08-10 セコム株式会社 Mobile robot
JP2008033633A (en) * 2006-07-28 2008-02-14 Secom Co Ltd Mobile robot

Similar Documents

Publication Publication Date Title
CN107636546B (en) Autonomous moving system
US5377106A (en) Process for navigating an unmanned vehicle and a vehicle for the same
TWI684084B (en) Mobile device
US20160170412A1 (en) Autonomous mobile device and method for controlling same
JP2002366227A (en) Movable working robot
JPH01316808A (en) Steering controller for self-traveling vehicle
US11141860B2 (en) Method for operating an automatically moving cleaning device and cleaning device of this type
WO2020017236A1 (en) Self-propelled vacuum cleaner
JPH01293410A (en) Method for detecting obstacle of autonomous type moving vehicle
JPH02181806A (en) Steering position detector for self-travelling vehicle and reference point detector for above device
JP2662946B2 (en) Traveling control method for a vehicle running independently
JP3192964B2 (en) Obstacle detection device for self-propelled cleaning robot
JPS59153211A (en) Guiding method of unmanned carrier car
US20230225580A1 (en) Robot cleaner and robot cleaner control method
JP7002791B2 (en) Information processing equipment and mobile robots
CN217932086U (en) Laser radar sensor and autonomous mobile device
JP2602065B2 (en) Travel position control device for self-propelled vehicles
JP2515733B2 (en) How to guide an unmanned vehicle
JP3257845B2 (en) Tunnel construction material carrier
JP2021128806A (en) Autonomous mobile system
JPH03286310A (en) Steering controller for self-traveling vehicle
JPS61169909A (en) Guiding device of unmanned carrier car
JPH0716165Y2 (en) Vehicle position / speed detector
US20210282614A1 (en) Self-propelled vacuum cleaner
JP2696823B2 (en) Driverless vehicle guidance device