JPH01293196A - Treatment of organic sewage - Google Patents

Treatment of organic sewage

Info

Publication number
JPH01293196A
JPH01293196A JP63123920A JP12392088A JPH01293196A JP H01293196 A JPH01293196 A JP H01293196A JP 63123920 A JP63123920 A JP 63123920A JP 12392088 A JP12392088 A JP 12392088A JP H01293196 A JPH01293196 A JP H01293196A
Authority
JP
Japan
Prior art keywords
sewage
separated
slurry
membrane
flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63123920A
Other languages
Japanese (ja)
Other versions
JPH0431760B2 (en
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP63123920A priority Critical patent/JPH01293196A/en
Publication of JPH01293196A publication Critical patent/JPH01293196A/en
Publication of JPH0431760B2 publication Critical patent/JPH0431760B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To reduce the amt. of sludge produced and to carry out rational low-cost treatment by adding an alkali agent contg. Mg to org. sewage, biologically nitrifying and denitrifying the sewage and adding a flocculant contg. Fe<3+> or Al<3+>. CONSTITUTION:Org. sewage 1 such as raw sewage or drainage is mixed with an excess concd. slurry 2, an alkali agent 3 contg. Mg is added and a polymer flocculant 4 is further added. PO4<3-> and NH4<+> in the sewage 1 react with Mg<2+> to form flocks. These flocks are separated with a wedge wire screen 5 and the remaining liq. 9 is sent to a biological nitrifying and denitrifying stage 10, where nitrogen and BOD are removed. A flocculant 12 contg. Fe<3+> or Al<3+> is added to a slurry 11 of activated sludge discharged from the stage 10 to flocculate nonbiodegradable COD and colloidal particles. The resulting flocks are separated with a membrane 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、し原糸汚水、下水、ごみ埋立滲出汚水、各種
産業廃水などの有機性汚水を、新規な概念、構成により
合理的に処理し、常に安定して裔度に浄化された処理水
を得る方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is capable of rationally treating organic sewage such as yarn sewage, sewage, landfill effluent sewage, and various industrial wastewater using a new concept and structure. The present invention also relates to a method for obtaining treated water that is consistently and thoroughly purified.

〔従来の技術〕[Conventional technology]

し尿等の有機性汚水を処理するための最も新しい方式は
、 る。
The newest method for treating organic wastewater, such as human waste, is

この膜分離方式は、活性汚泥及び凝集フロックの固液分
離が常に完璧であり、維持管理も容易であるという極め
て重要な長所をもっているため、非常に脚光を浴びてい
る。
This membrane separation method has been attracting much attention because it has the extremely important advantages of always perfect solid-liquid separation of activated sludge and coagulated flocs and easy maintenance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような新しい膜分離方式でも、次の
ような重大な問題点が未解決であり、さらに優れた処理
プロセスの開発が切望されている。
However, even with such a new membrane separation method, the following serious problems remain unsolved, and there is a strong need for the development of an even better treatment process.

すなわち、 ■ 生物学的硝化脱窒素処理水中に残留するCOD。That is, ■ COD remaining in biological nitrification and denitrification treated water.

色度及びpo、’−を凝集除去するために多量のFeC
l 3注入率(2000〜3000w/ 1 )を必要
とし、必然的にFe(011)i、 FePOaを主体
とする難脱水性のD集汚泥の発生量が多くなる。この結
果、汚泥処理工程の設備費、運転費が増加する。
Large amount of FeC to agglomerate remove chromaticity and po,'-
13 injection rate (2000 to 3000 w/1) is required, which inevitably increases the amount of D-collected sludge, which is difficult to dewater, and is mainly composed of Fe(011)i and FePOa. As a result, equipment costs and operating costs for the sludge treatment process increase.

■ 限外tP遇膜による固液分離工程を2段階必要とし
ているので、固液分離のための設備費及びランニングコ
ストが高くなる。例えば、限外が過膜分離工程のランニ
ングコストは、2段階を合せて、し尿lklあたり50
0〜600円という非常に高額となり、ユーザーのコス
ト負担が著しく増大する。
(2) Since a two-step solid-liquid separation process using an ultra-tP membrane is required, equipment costs and running costs for solid-liquid separation are high. For example, the running cost of the ultrafiltration membrane separation process is 50 yen per lkl of human waste, including the two stages.
The cost is extremely high, ranging from 0 to 600 yen, and the cost burden on the user increases significantly.

本発明は、このような膜分離方式の重大欠点を完全に解
決することを目的としており、具体的には、 ■ 凝集汚泥の発生量を大幅に減少させ、汚泥処理、処
分工程を合理化すること。
The purpose of the present invention is to completely solve these serious drawbacks of the membrane separation method, and specifically: (1) significantly reduce the amount of flocculated sludge generated and streamline the sludge treatment and disposal process; .

■ 活性汚泥の固液分離にのみ限外が過膜を適用し、凝
集汚泥の固液分離用の限外ヂ過膜の設置を不要にするこ
と。すなわち、限外濾過膜工程の設備コスト、ランニン
グコストを従来に比べて半減させること。
■ Apply ultrafiltration membrane only to solid-liquid separation of activated sludge, making it unnecessary to install ultrafiltration membrane for solid-liquid separation of flocculated sludge. In other words, the equipment cost and running cost of the ultrafiltration membrane process can be halved compared to conventional methods.

■ 従来の膜分離方式では、し尿中のリン酸分をFeP
Oa汚泥として処分せざるを得す、有効利用することが
できなかったが、リン酸分を肥料として有効利用しやす
い形態で回収する方法を確立すること。
■ In the conventional membrane separation method, the phosphoric acid content in human waste is removed using FeP.
Although the phosphoric acid content had to be disposed of as Oa sludge and could not be used effectively, it is necessary to establish a method for recovering the phosphoric acid content in a form that can be easily used effectively as fertilizer.

などを解決課題としている。These are the issues to be solved.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、有機性汚水にマグネシウム系アルカリ剤と高
分子凝集剤を添加し混和したのち固液分離し、得られた
分離液を生物学的1+l’i化脱窒素処理工程にて処理
し、該工程内もしくは該工程から流出する微生物スラリ
にFe”系又はへ13゛系凝集剤を添加して凝集せしめ
、該凝集スラリを膜分離し、分離された7ri縮スラリ
の一部を前記生物学的硝化脱窒製処理工程へ返送すると
共に、残部を前記有機性汚水に混合することを特徴とす
る有機性汚水の処理方法である。
The present invention involves adding and mixing a magnesium-based alkaline agent and a polymer flocculant to organic wastewater, followed by solid-liquid separation, and treating the resulting separated liquid in a biological 1+l'i denitrification treatment process, A Fe''-based or He13''-based flocculant is added to the microbial slurry flowing out of the process or from the process to cause flocculation, the flocculated slurry is separated by a membrane, and a part of the separated 7ri condensed slurry is used as the biological This method of treating organic wastewater is characterized in that the waste water is returned to the target nitrification and denitrification treatment process, and the remainder is mixed with the organic wastewater.

6作 用〕 本発明の一実施態様を示す図面を参照しながら、以下に
本発明の作用を詳しく説明する。
6 Effects] The effects of the present invention will be described in detail below with reference to the drawings showing one embodiment of the present invention.

搬入されたし尿lに後述する余剰濃縮スラリ2を添加混
合したのち、マグネシウム系アルカリ剤3 (Mg(O
ll)tの使用が好適)を加え、さらに高分子凝集剤4
 (カチオンポリマが好適)を添加し、混和してフロッ
クを形成したのち、ウェッジワイヤスクリーン5 (目
開き0.5鶴程度の回転式スクリーンの採用が好適)に
よってフロックを分離する。
Excess concentrated slurry 2 (described later) is added to and mixed with the carried human waste 1, and then magnesium-based alkaline agent 3 (Mg(O
(It is preferable to use
After adding (preferably a cationic polymer) and mixing to form flocs, the flocs are separated by a wedge wire screen 5 (preferably a rotary screen with an opening of about 0.5 mm).

し尿1に余剰濃縮スラリ2、マグネシウム系アルカリ剤
3及びポリマ4を添加混合することによって生成するフ
ロックの性状は、し尿1中のPO4’−とNH,”が−
g2゛と反応して生成した結晶性Nl!4MgPOe粒
子と、し尿l中の繊維分、 SSが一体化した、強度の
大きな脱水性の良好なものとなっており、ウェッジワイ
ヤスクリーン5で分離されたスクリーン分1iii!汚
泥6は、スクリュープレス脱水機、ベルトプレス脱水機
などの機械脱水機7によって効果的に低水分の脱水ケー
キ8 (スクリュープレスを適用する場合は、脱水ケー
キ水分は65%以下のものが得られる)に変換される。
The properties of the floc produced by adding and mixing excess concentrated slurry 2, magnesium-based alkaline agent 3, and polymer 4 to human waste 1 are such that PO4'- and NH,'' in human waste 1 are -
Crystalline Nl produced by reaction with g2゛! 4MgPOe particles, fibers in human waste 1, and SS are integrated into a product with great strength and good dehydration properties, and the screen portion separated by wedge wire screen 5 is 1iii! The sludge 6 is effectively reduced to a low-moisture dehydrated cake 8 by a mechanical dehydrator 7 such as a screw press dehydrator or a belt press dehydrator (if a screw press is used, a dehydrated cake with a moisture content of 65% or less can be obtained) ) is converted to

この脱水ケーキ8は、低水分で取扱いも楽であり、リン
酸含有量が多く肥料として有効利用することができる。
This dehydrated cake 8 has a low moisture content, is easy to handle, and has a high phosphoric acid content, so it can be effectively used as fertilizer.

一方、ウェッジワイヤスクリーン5でss、 ss性B
OD及びP04′−の大部分(80〜90%程度)が除
去されたスクリーン分離液9を、無希釈の生物学的硝化
脱窒製処理工程10(公知の回分型、硝化液循環型を適
用すればよい)に供給して硝化脱窒素処理を行い、スク
リーン分離液中の窒素成分。
On the other hand, with wedge wire screen 5, ss, ss property B
The screen separated liquid 9 from which most of the OD and P04'- (approximately 80 to 90%) have been removed is subjected to an undiluted biological nitrification and denitrification treatment step 10 (a known batch type or nitrification liquid circulation type). Nitrogen components in the screen separated liquid are supplied to a nitrification and denitrification process.

BOD成分などを生物学的に除去する。この過程におい
て、スクリーン分離液9中に少量残留しているPO4’
−も、活性汚泥に摂取されて除去される。
Biologically removes BOD components etc. In this process, a small amount of PO4' remains in the screen separation liquid 9.
- is also taken up by the activated sludge and removed.

次に、生物学的硝化脱窒製処理工程10から流出する活
性汚泥スラリ11に、p e 3 *系又はAI”系凝
集剤12 (FeC1,もしくはポリ硫酸第2鉄、^l
um。
Next, the activated sludge slurry 11 flowing out from the biological nitrification and denitrification treatment process 10 is treated with a p e 3 *-based or AI"-based flocculant 12 (FeC1, or polyferric sulfate,
um.

PACの使用が好適)を添加して、活性汚泥スラリll
中に含まれる非生物分解性COD成分及びコロイド状粒
子成分を凝集せしめたのち、限外が過膜。
PAC) is added to the activated sludge slurry.
After coagulating the non-biodegradable COD components and colloidal particle components contained therein, ultrafiltration is performed.

精密濾過膜などを装着した膜モジュール13(分画分子
量4〜10万程度のチューブラ又は平膜タイプの限外F
iモジュールの適用が好ましい)に供給して完璧に固液
分離し、SSゼロの全く清澄な膜i3過水14と濃縮ス
ラリ15に分離する。
Membrane module 13 equipped with a precision filtration membrane, etc. (tubular or flat membrane type ultra-F with a molecular weight cut-off of about 40,000 to 100,000)
i module is preferably applied) for complete solid-liquid separation and separation into completely clear membrane i3 with zero SS 14 and concentrated slurry 15.

膜モジュール13によって分離された濃縮スラリ15の
大部分は、生物学的硝化脱窒素処理工程10にリサイク
ルされるが、残部の余剰分たる余刺淵縮スラリ2を前述
のようにし尿1に混合し、し尿中のSS等と共に凝集せ
しめるようにする。
Most of the concentrated slurry 15 separated by the membrane module 13 is recycled to the biological nitrification and denitrification treatment step 10, but the remaining surplus slurry 2 is mixed with human waste 1 as described above. It is made to aggregate with SS etc. in human urine.

以上の実施態様で述べたように、本発明の技術思想の骨
子は、 (イ)打機性汚水と膜分離された余剰濃縮スラリとの混
合液に、マグネシウム系アルカリ剤とポリマとを添加し
、凝集フロック及びNII4MgPO,粒子を固液分離
する点 (訂)このような前処理を受けてPO,’−濃度とSS
が大幅に減少した液を生物学的硝化脱窒素処理したのち
、Fe 5 +系又はA13゛系凝集剤によって凝集処
理し、膜分離する点 という2つの技術を結合させた思想に要約される。
As described in the above embodiments, the gist of the technical idea of the present invention is as follows: (a) A magnesium-based alkaline agent and a polymer are added to the mixed liquid of percussion wastewater and membrane-separated excess concentrated slurry. , solid-liquid separation of flocs and NII4MgPO, particles (edited) After undergoing such pretreatment, PO,'-concentration and SS
The idea can be summarized as a combination of two techniques: after biological nitrification and denitrification treatment of a liquid in which the amount of carbon dioxide has been significantly reduced, flocculation treatment is performed using a Fe 5 + type or A13'' type flocculant, and membrane separation is performed.

〔実施例〕〔Example〕

滋賀県l郡衛生プラントに搬入されたし尿に、後述する
限外濾過膜を装着したチューブラ型膜モジュールで分離
された濃縮活性汚泥の余剰分を混合し、Mg (Off
) zを1000■/β添加して2〜3分攪拌したのち
、カチオンポリマとしてエバグロースC104G(荏原
インフィルコ■商品名〕を200〜2501W/j!添
加したところ、巨大なフロックが速やかに形成された。
Excess concentrated activated sludge separated by a tubular membrane module equipped with an ultrafiltration membrane (described later) is mixed with human waste brought to the Sanitation Plant in District I, Shiga Prefecture.
) was added at 1000■/β and stirred for 2 to 3 minutes, and then 200 to 2501W/J! of Evagrowth C104G (trade name of Ebara Infilco) was added as a cationic polymer, and huge flocs were quickly formed. .

しかるのち、目開き0.51■の回転式ウェッジワイヤ
スクリーンに供給したところ、容易にフロックは分離さ
れ、表−1の水質を示すスクリーン分離液が得られた。
Thereafter, when the water was fed to a rotating wedge wire screen with a mesh size of 0.51 square meters, the flocs were easily separated, and a screen-separated liquid having the water quality shown in Table 1 was obtained.

表−1 このスクリーン分離液を公知の硝化液循環型生物学的硝
化脱窒製処理工程で無希釈処理した。この時の運転条件
は、表−2のように設定した。
Table 1 This screen separated liquid was treated without dilution using a known nitrification liquid circulation type biological nitrification and denitrification treatment process. The operating conditions at this time were set as shown in Table-2.

表−2 次に、この生物学的硝化脱窒素処理工程の最終段の再曝
気槽から流出する活性汚泥スラリに対し、FeC13を
1600+w/j!添加し、Na01lでpl+を5.
0〜5.2に調整して2分間撹拌したのち、公称分画分
子量10万のポリオレフィン製限外ヂ過膜を装着したチ
ューブラ型モジュールに流速1.5 m/secで供給
し、クロスフローフィルトレージョンした。この結果、
限外Ui過膜の透過流速(Flux)は1.4n’r/
イ一膜面積・日となり、膜透過水の水質は、表−3のよ
うに極めて良好であった。
Table 2 Next, 1600+w/j of FeC13 was added to the activated sludge slurry flowing out from the reaeration tank at the final stage of this biological nitrification and denitrification treatment process! 5. Add pl+ with Na01l.
After adjusting the temperature to 0 to 5.2 and stirring for 2 minutes, it was supplied at a flow rate of 1.5 m/sec to a tubular module equipped with a polyolefin ultrafiltration membrane with a nominal molecular weight cutoff of 100,000, and the cross-flow filter Trasion was done. As a result,
The permeation flow rate (Flux) of the ultra-Ui membrane is 1.4 n'r/
The water quality of the water permeated through the membrane was extremely good as shown in Table 3.

表−3 一方、この膜分離で分離された濃縮活性汚泥の大部分を
生物学的硝化脱窒素処理工程にリサイクルし、残部の余
剰分を処理されるべきし尿に混合した。
Table 3 On the other hand, most of the concentrated activated sludge separated by this membrane separation was recycled to the biological nitrification and denitrification treatment process, and the remaining surplus was mixed with the human waste to be treated.

また、生物学的硝化脱窒素処理工程の前段に設けた前述
の回転式ウェッジワイヤスクリーンから排出された分離
汚泥を、直径300+uφ、長さ1.5mのスクリュー
プレス脱水機で脱水したところ、非常に効果的に脱水さ
れ、水分63〜65%のケーキが得られた。
In addition, when the separated sludge discharged from the aforementioned rotating wedge wire screen installed at the front stage of the biological nitrification and denitrification process was dewatered using a screw press dehydrator with a diameter of 300+uφ and a length of 1.5 m, it was found that A cake was obtained which was effectively dehydrated and had a moisture content of 63-65%.

〔発明の効果〕〔Effect of the invention〕

■ あらかじめ有機性汚水中のpo、3−の大部分をN
IIJgPOaとして除去したのち、生物学的硝化脱窒
素処理工程でさらにpo、’−を活性汚泥内にとり込ん
で除去するので、その後に添加されるFe”系凝集剤が
po、’−の除去のために消費されることなく 、CO
D 、色度などの除去に消費される。この結果、FeC
l、1などのFeh系凝集剤の所要量が、前述した従来
の膜分離方式に比較して273程度に減少し、汚泥発生
量も減少するから、汚泥の処理、処分工程の合理化がで
きる。
■ Most of the po and 3- in organic wastewater are replaced with N in advance.
After removing it as IIJgPOa, po,'- is further incorporated into activated sludge and removed in the biological nitrification and denitrification treatment process, so the Fe''-based flocculant added afterwards is used to remove po,'-. CO without being consumed by
D, consumed for removing chromaticity, etc. As a result, FeC
The required amount of Feh-based flocculants such as 1 and 1 is reduced to about 273 compared to the conventional membrane separation method described above, and the amount of sludge generated is also reduced, so the sludge treatment and disposal process can be streamlined.

■ マグネシウム系アルカリ剤の添加を受けた有機性l
η水を、生物学的硝化脱窒素処理したのちFe”系又は
AI”系凝集剤を添加して凝集処理するようにした結果
、凝集処理工程でのアルカリ剤が大幅に減少できる。す
なわち、マグネシウム系アルカリ剤が、po4″−の除
去と凝集工程用のρ1)調整剤との2つの機能を果たす
■ Organic l with addition of magnesium-based alkaline agent
By subjecting η water to biological nitrification and denitrification treatment and then adding Fe" or AI" type flocculants for flocculation treatment, the amount of alkaline agent used in the flocculation process can be significantly reduced. That is, the magnesium-based alkaline agent performs two functions: removing po4''- and acting as a ρ1) regulator for the flocculation process.

■ 膜分離工程が一工程ですみ、従来の膜分離方式に比
べ、膜分離工程のランニングコスト イニシャルコスト
が半減する。
■ The membrane separation process is a single step, and the initial cost of running the membrane separation process is halved compared to conventional membrane separation methods.

■ 有機性汚水中のPOa”と有機物が、NIl、Mg
PO。
■ POa” and organic matter in organic wastewater are NIl, Mg
P.O.

を高4度に含んだ低水分の有機性汚泥脱水ケーキとして
回収されるので、リン、有機物を資源として肥料などに
利用でき、従来の膜分離方式では得られない重要効果で
ある。
Since it is recovered as a low-moisture organic sludge dehydrated cake that contains phosphorus at a high 4 degrees Celsius, the phosphorus and organic matter can be used as resources for fertilizers, etc., which is an important effect that cannot be obtained with conventional membrane separation methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を示すフローシートである
。 l・・・し尿、2・・・余剰濃縮スラリ、3・・・マグ
ネシウム系アルカリ剤、4・・・ポリマ、5・・・ウェ
ッジワイヤスクリーン、6・・・スクリーン分離ンク泥
、7・・・機械脱水機、8・・・脱水ケーキ、9・・・
スクリーン分離液、10・・・生物学的硝化脱窒素処理
工程、11・・・活性汚泥スラリ、12・・・Fe”系
又はへ13゛系凝集剤、13・・・膜モジュール、14
・・・+11Ai3過水、15・・・/店縮スラリ。
FIG. 1 is a flow sheet showing one embodiment of the present invention. l... Human waste, 2... Excess concentrated slurry, 3... Magnesium-based alkaline agent, 4... Polymer, 5... Wedge wire screen, 6... Screen separation ink mud, 7... Mechanical dehydrator, 8... Dehydrated cake, 9...
Screen separation liquid, 10... Biological nitrification and denitrification treatment process, 11... Activated sludge slurry, 12... Fe'' type or He13'' type flocculant, 13... Membrane module, 14
...+11Ai3 superhydration, 15.../store shrinkage slurry.

Claims (1)

【特許請求の範囲】[Claims] (1)有機性汚水にマグネシウム系アルカリ剤と高分子
凝集剤を添加し混和したのち固液分離し、得られた分離
液を生物学的硝化脱窒素処理工程にて処理し、該工程内
もしくは該工程から流出する微生物スラリにFe^3^
+系又はAl^3^+系凝集剤を添加して凝集せしめ、
該凝集スラリを膜分離し、分離された濃縮スラリの一部
を前記生物学的硝化脱窒素処理工程へ返送すると共に、
残部を前記有機性汚水に混合することを特徴とする有機
性汚水の処理方法。
(1) After adding and mixing a magnesium-based alkaline agent and a polymer flocculant to organic wastewater, solid-liquid separation is performed, and the resulting separated liquid is treated in a biological nitrification and denitrification treatment process. Fe^3^ is present in the microbial slurry flowing out from the process.
+ type or Al^3^+ type flocculant is added to cause flocculation,
The flocculated slurry is membrane separated, and a part of the separated concentrated slurry is returned to the biological nitrification and denitrification treatment step,
A method for treating organic sewage, comprising mixing the remainder with the organic sewage.
JP63123920A 1988-05-23 1988-05-23 Treatment of organic sewage Granted JPH01293196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63123920A JPH01293196A (en) 1988-05-23 1988-05-23 Treatment of organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63123920A JPH01293196A (en) 1988-05-23 1988-05-23 Treatment of organic sewage

Publications (2)

Publication Number Publication Date
JPH01293196A true JPH01293196A (en) 1989-11-27
JPH0431760B2 JPH0431760B2 (en) 1992-05-27

Family

ID=14872612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63123920A Granted JPH01293196A (en) 1988-05-23 1988-05-23 Treatment of organic sewage

Country Status (1)

Country Link
JP (1) JPH01293196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124571A (en) * 1993-11-04 1995-05-16 Ngk Insulators Ltd Treatment process for organic drainage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129084A (en) * 1980-03-13 1981-10-08 Ebara Infilco Co Ltd Disposal of organic waste water containing phosphoric acid
JPS5948157A (en) * 1982-08-09 1984-03-19 ユニロイヤル・インコ−ポレ−テツド Coextruded product
JPS5949896A (en) * 1982-09-16 1984-03-22 Ebara Infilco Co Ltd Treatment of organic waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129084A (en) * 1980-03-13 1981-10-08 Ebara Infilco Co Ltd Disposal of organic waste water containing phosphoric acid
JPS5948157A (en) * 1982-08-09 1984-03-19 ユニロイヤル・インコ−ポレ−テツド Coextruded product
JPS5949896A (en) * 1982-09-16 1984-03-22 Ebara Infilco Co Ltd Treatment of organic waste water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124571A (en) * 1993-11-04 1995-05-16 Ngk Insulators Ltd Treatment process for organic drainage

Also Published As

Publication number Publication date
JPH0431760B2 (en) 1992-05-27

Similar Documents

Publication Publication Date Title
JP3452439B2 (en) Recovery and recycling of useful substances from organic waste
US5954964A (en) Process for enhancing dewatering of treated biosolids in a wastewater treatment system
JPS6210720B2 (en)
JP2796909B2 (en) Wastewater treatment method
JPH04131197A (en) Disposal of night soil type sewage and apparatus therefor
JPS6328500A (en) Treatment device for night soil sanitary sewage
JPH0124558B2 (en)
JPS6320600B2 (en)
JPH01293196A (en) Treatment of organic sewage
JPS637900A (en) Treatment of sewage of excretion system
JPH0647119B2 (en) Combined treatment method of human waste and septic tank sludge
JP2655284B2 (en) Treatment method of human wastewater
JPS60206498A (en) Treatment of excretion sewage
JPH0632833B2 (en) Organic wastewater treatment method
JPH0352699A (en) Treatment of sewage of night soil system
JPS58139798A (en) Treatment of organic waste liquid
JP3308788B2 (en) Organic wastewater treatment method
JPS62221494A (en) Method for treating excretion
JPH04227899A (en) Treatment of night soil
JPH0535039B2 (en)
JPS6133639B2 (en)
JPH02127000A (en) Treatment of night soil based sewage
JPH0649196B2 (en) Organic wastewater treatment method
JPH0141399B2 (en)
JPH0243998A (en) Treatment of excretion-based sewage