JPH01292863A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01292863A
JPH01292863A JP63121894A JP12189488A JPH01292863A JP H01292863 A JPH01292863 A JP H01292863A JP 63121894 A JP63121894 A JP 63121894A JP 12189488 A JP12189488 A JP 12189488A JP H01292863 A JPH01292863 A JP H01292863A
Authority
JP
Japan
Prior art keywords
gate
transistor section
cell
sidewall
cell transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63121894A
Other languages
Japanese (ja)
Inventor
Kenichi Kanazawa
金沢 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63121894A priority Critical patent/JPH01292863A/en
Publication of JPH01292863A publication Critical patent/JPH01292863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components

Abstract

PURPOSE:To reduce cell area and deterioration of write by forming a side wall only on a gate sidewall of a periphery transistor section execpting the cell transistor section of a nonvolatile memory to make an LDD structure. CONSTITUTION:A side wall 18 is formed only on a polysilicon gate side wall of a peripheral transistor section 14, and not formed on a cell transistor section 13. Therefore, only the peripheral transistor section 14 can be formed in an LDD structure. Since the side wall 18 does not extend crosswise at the cell transistor 13, the interval between the cell transistor and an electrode window 21 can be made small, thus allowing a small cell area. Moreover, write function does not deteriorate because the cell transistor section 13 is not of LDD structure.

Description

【発明の詳細な説明】 〔概要〕 半導体装置の製造方法、特に、セルトランジスタを除く
周辺トランジスタのゲート側壁にのみサイドウオールを
形成し、LDD構造として高集積化に適した不揮発性半
導体記憶装置の製造方法に関し、 周辺トランジスタのみサイドウオールを設け、セルトラ
ンジスタにはサイドウオールを設けない、半導体装置の
製造方法を提供することを目的とし、セルトランジスタ
部と周辺トランジスタ部とを備えた不揮発性半導体記憶
装置の製造方法において、前記セルトランジスタのゲー
トと周辺トランジスタのゲートとを別々にパターニング
し、該周辺トランジスタのみ、そのゲート側壁にサイド
ウオールを形成することを特徴とする半導体装置の製造
方法を含み構成する。
[Detailed Description of the Invention] [Summary] A method for manufacturing a semiconductor device, particularly a nonvolatile semiconductor memory device suitable for high integration as an LDD structure, in which a sidewall is formed only on the gate sidewall of peripheral transistors excluding cell transistors. Regarding the manufacturing method, the purpose of the present invention is to provide a method for manufacturing a semiconductor device in which a sidewall is provided only for peripheral transistors and no sidewall is provided for cell transistors, and the present invention aims to provide a method for manufacturing a semiconductor device in which a sidewall is provided only for peripheral transistors, and no sidewall is provided for cell transistors. The method of manufacturing a semiconductor device includes patterning the gate of the cell transistor and the gate of the peripheral transistor separately, and forming a sidewall on the side wall of the gate of only the peripheral transistor. do.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造方法、特に、セルトランジ
スタを除(周辺トランジスタのゲート側壁にのみサイド
ウオールを形成し、LDD構造として高集積化に適した
不揮発性半導体記憶装置の製造方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a nonvolatile semiconductor memory device that is suitable for high integration as an LDD structure, in which sidewalls are formed only on the gate sidewalls of peripheral transistors, excluding cell transistors.

〔従来の技術〕[Conventional technology]

近年、半導体装置の高集積化、微細化とともに、接合が
浅く、かつチャネル長も短くなってきている。他方高電
界によりホットキャリアが生じ、このホットキャリアが
MOSデバイスのゲート酸化膜中に注入され、特性の劣
化が問題になっている。
In recent years, as semiconductor devices have become highly integrated and miniaturized, junctions have become shallower and channel lengths have become shorter. On the other hand, hot carriers are generated due to the high electric field, and these hot carriers are injected into the gate oxide film of the MOS device, causing a problem of deterioration of characteristics.

これに対して、従来、ゲート酸化膜上のポリシリコンゲ
ート側壁にサイドウオールを設け、このサイドウオール
下部のドレイン近傍の拡散層端にキャリア濃度の低い部
分を形成し、ドレイン近傍の電界緩和により、ホットキ
ャリアによる特性の劣化を防止したLDD(Light
ly Doped Drain低濃度にドープしたドレ
インをもつ構造)が知られている。
In contrast, conventionally, a sidewall is provided on the sidewall of the polysilicon gate on the gate oxide film, and a region with low carrier concentration is formed at the end of the diffusion layer near the drain at the bottom of the sidewall, and by relaxing the electric field near the drain, LDD (Light) prevents deterioration of characteristics due to hot carriers.
ly Doped Drain (a structure with a lightly doped drain) is known.

ところで、半導体メモリとして、随時に書き込みおよび
読み出しができる不揮発性メモリに、EFROM (E
rasable Programmable Read
 0nly Memory)がある。
By the way, as a semiconductor memory, EFROM (E
rasable Programmable Read
0nly Memory).

第3図は従来のHFROMのメモリセル構造を示す断面
図で、同図において、EFROMのメモリセルは、p形
シリコン基板1のソース・ドレインを形成するn゛層2
2間のチャネル上のゲート酸化膜3の上には、ポリシリ
コンのフローティングゲート4とコントロールゲート5
とが酸化膜6に包まれている。そして、n0層2上には
絶縁膜9に電極窓7が形成され、部分的に図示されるア
ルミニュウム配線層8が設けられている。このEFRO
Mにおいて、書き込みはドレイン接合に高電界をかけゲ
ート酸化膜3を通してフローティングゲート4に電荷を
注入することにより行い、消去は高いエネルギーを持っ
た紫外線を照射することによって、フローティングゲー
ト4中の電荷にエネルギーを与えゲート酸化膜3のバリ
アを越えて外へ逃がすことにより行われる。
FIG. 3 is a cross-sectional view showing the memory cell structure of a conventional HFROM.
A polysilicon floating gate 4 and a control gate 5 are formed on the gate oxide film 3 on the channel between the two.
and are covered with an oxide film 6. Further, on the n0 layer 2, an electrode window 7 is formed in an insulating film 9, and an aluminum wiring layer 8, which is partially illustrated, is provided. This EFRO
In M, writing is performed by applying a high electric field to the drain junction and injecting charges into the floating gate 4 through the gate oxide film 3, and erasing is performed by irradiating ultraviolet rays with high energy to inject the charges in the floating gate 4. This is done by applying energy and letting it escape beyond the barrier of the gate oxide film 3.

このようなEFROMなどの不揮発性半導体記憶装置に
おいても、高集積化、微、細化とともに周辺トランジス
タの仕様が厳しくなり、この周辺トランジスタをLDD
構造で製造しなければならなくなっている。
Even in non-volatile semiconductor memory devices such as EFROM, specifications for peripheral transistors have become stricter as the integration becomes higher, finer, and smaller.
It has become necessary to manufacture the structure.

〔発明が解決しようとする課題] しかし、従来のEPROMなどの不揮発性半導体記憶装
置をそのままLDD構造にしたのでは、第4図に示す如
く、セルトランジスタ部分のフローティングゲート4、
コントロールゲート5の側壁部分にサイドウオール6a
が形成され、このサイドウオール6a下部のドレイン近
傍のn+層層端端キャリア濃度の低いn−層10部分が
形成される。ところが、EFROMは他の半導体メモリ
と異なり、書き込みがアバランシェ崩壊により生じるホ
ットエレクトロンをフローティングゲート4に注入する
ことにより行なうため、第4図に示すセルトランジスタ
部分をLDD構造にした場合には、アバラシエ崩壊によ
るホットエレクトロンが生じにくく、書き込みが悪くな
る問題があった。また、セルトランジスタと電極窓7の
間隔は、セルトランジスタのサイドウオール68横に張
出した分が今まで以上に厳しくなる。セルトランジスタ
部のサイドウオール6aの下にn+層10を設けるよう
に製造すれば、書き込みの問題は避けられるが、セルト
ランジスタと電極窓7の間隔の問題は解決されない。ま
た、工程の増加も考えられる。
[Problems to be Solved by the Invention] However, if a conventional non-volatile semiconductor memory device such as an EPROM is made into an LDD structure as it is, as shown in FIG.
A side wall 6a is attached to the side wall portion of the control gate 5.
is formed, and a portion of the n- layer 10 having a low carrier concentration at the end of the n+ layer near the drain is formed below the sidewall 6a. However, unlike other semiconductor memories, writing in EFROM is performed by injecting hot electrons generated by avalanche collapse into the floating gate 4. Therefore, when the cell transistor part shown in FIG. 4 has an LDD structure, avalanche collapse There was a problem that hot electrons were less likely to be generated due to this, resulting in poor writing. Further, the distance between the cell transistor and the electrode window 7 becomes stricter than before due to the side wall 68 of the cell transistor extending sideways. If the n+ layer 10 is provided under the sidewall 6a of the cell transistor section, the problem of writing can be avoided, but the problem of the spacing between the cell transistor and the electrode window 7 will not be solved. Additionally, an increase in the number of steps is also considered.

そこで本発明は、周辺トランジスタのみサイドウオール
を設け、セルトランジスタにはサイドウオールを設けな
い、半導体装置の製造方法を提供することを目的とする
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device in which sidewalls are provided only for peripheral transistors and no sidewalls are provided for cell transistors.

〔課題を解決する手段〕[Means to solve problems]

上記課題は、セルトランジスタ部と周辺トランジスタ部
とを備えた不揮発性半導体記憶装置の製造方法において
、前記周辺トランジスタのゲートとセルトランジスタの
ゲートとを別々にパターニングし、該周辺トランジスタ
のみ、そのゲート側壁にサイドウオールを形成すること
を特徴とする半導体装置の製造方法によって解決される
The above problem is solved in a method of manufacturing a nonvolatile semiconductor memory device including a cell transistor section and a peripheral transistor section, in which the gate of the peripheral transistor and the gate of the cell transistor are patterned separately, and only the peripheral transistor is patterned on its gate sidewall. The problem is solved by a method for manufacturing a semiconductor device, which is characterized in that a sidewall is formed in the semiconductor device.

〔作用〕[Effect]

本発明では、不揮発性半導体記憶装置の周辺トランジス
タのゲート側壁にサイドウオールを形成し、メモリ領域
のゲートにはサイドウオールを形成せず、周辺トランジ
スタのみLDD構造にするため、セル面積を小さくでき
、また、書き込みも劣化することがなくなる。
In the present invention, a sidewall is formed on the sidewall of the gate of the peripheral transistor of a nonvolatile semiconductor memory device, no sidewall is formed on the gate of the memory region, and only the peripheral transistor has an LDD structure, so that the cell area can be reduced. Also, writing will not deteriorate.

〔実施例〕〔Example〕

以下、本発明を図示の一実施例により具体的に説明する
Hereinafter, the present invention will be specifically explained with reference to an illustrated embodiment.

第1図(a)〜(濁は本発明実施例の不揮発性半導体記
憶装置の製造工程断面図である。
FIGS. 1(a) to 1(a) are cross-sectional views of the manufacturing process of a nonvolatile semiconductor memory device according to an embodiment of the present invention.

まず、第1図(a)に示す如く、通常の方法によりP形
シリコン基板11にフィールド酸化膜12を形成し、素
子形成領域に相当するセルトランジスタ部13と周辺ト
ランジスタ部14にゲート酸化により、膜厚が300〜
400人程度のゲート酸化膜15を形成する。そして、
チャンネルを形成するためにほう素イオン(B゛)を注
入する(加速電圧50〜70keV。
First, as shown in FIG. 1(a), a field oxide film 12 is formed on a P-type silicon substrate 11 by a conventional method, and gate oxidation is performed on a cell transistor section 13 and a peripheral transistor section 14 corresponding to an element formation region. Film thickness is 300~
Approximately 400 gate oxide films 15 are formed. and,
Boron ions (B) are implanted to form a channel (acceleration voltage 50-70 keV).

ドーズ量I Xl0−”cm−”)。Dose amount IXl0-"cm-").

次に、第1図(b)に示す如く、ポリシリコンAを20
00〜3000人程度の膜厚に堆積し、セルトランジス
タ部13のゲート酸化膜15上にフローティングゲート
として残るようパターニングする。
Next, as shown in FIG. 1(b), 20% of polysilicon A was
The film is deposited to a thickness of approximately 0.00 to 3,000 nm, and patterned so as to remain on the gate oxide film 15 of the cell transistor section 13 as a floating gate.

次に、第1図(C)に示す如く、ポリシリコンAを熱酸
化し、300〜400人程度の酸化膜(St(h膜)1
6を形成した後、ポリシリコンBを全面に2000〜3
000人程度の膜厚に堆積する。
Next, as shown in FIG. 1(C), polysilicon A is thermally oxidized to form an oxide film (St(h film) 1
After forming 6, polysilicon B is coated with 2000 to 3
The film is deposited to a thickness of about 1,000 ml.

次に、第1図(d)に示す如(、周辺トランジスタ領域
のみポリシリコンBをパターニングしポリシリコンゲー
トを形成後、リンイオンを、加速電圧5(1〜70Ke
V  ドーズ量I XIO”co+−!程・度でイオン
注入し、周辺トランジスタ部14にポリシリコンBのゲ
ートをマスクに用いて、濃度の低いn−層17を形成す
る。このとき、セルトランジスタ部13は、ポリシリコ
ンBで覆われているため、n−層17は形成されない。
Next, as shown in FIG. 1(d), after patterning the polysilicon B only in the peripheral transistor region to form a polysilicon gate, phosphorus ions were injected at an acceleration voltage of 5 (1 to 70Ke).
Ions are implanted at a dose of IXIO"co+-!, and a low concentration n- layer 17 is formed in the peripheral transistor section 14 using the gate of polysilicon B as a mask. At this time, the cell transistor section Since 13 is covered with polysilicon B, n- layer 17 is not formed.

次に、第1図(e)に示す如(、気相成長法により酸化
シリコン(SiOz)を堆積後ζ異方性エツチング、に
よりエッチバックを行うとポリシリコンBの平らな表面
上のSingはエツチングされるが周辺トランジスタ1
4のポリシリコンBのゲート側壁にのみサイドウオール
18が形成される。
Next, as shown in FIG. 1(e), when silicon oxide (SiOz) is deposited by vapor phase growth and etched back by ζ anisotropic etching, the Sing on the flat surface of polysilicon B is Although it is etched, the peripheral transistor 1
Sidewalls 18 are formed only on the gate sidewalls of polysilicon B of No. 4.

次に、第1図(f)に示す如く、セルトランジスタ部1
3のみポリシリコンAとポリシリコンBを同時にパター
ニングし、フローティングゲートとコントロールゲート
を形成する。
Next, as shown in FIG. 1(f), the cell transistor section 1
3, polysilicon A and polysilicon B are simultaneously patterned to form a floating gate and a control gate.

次に、第1図(粉に示す如く、イオン注入による損傷な
どを防止するために、スルー酸化を行ってポリシリコン
Bの表面に酸化膜を形成した後、ひ素イオンを、加速電
圧50〜70KeV程度、ドーズ量I XIO”cm−
”程度でイオン注入し、セルトランジスタ部13と周辺
トランジスタ部14に濃度の高いn9層19を形成する
。このとき、周辺トランジスタのサイドウオール18の
下部は、このサイドウオール18にマスクされイオン注
入されない。
Next, as shown in Figure 1 (powder), in order to prevent damage caused by ion implantation, through oxidation was performed to form an oxide film on the surface of polysilicon B, and then arsenic ions were injected at an accelerating voltage of 50 to 70 KeV. degree, dose amount I XIO”cm-
A high concentration N9 layer 19 is formed in the cell transistor section 13 and the peripheral transistor section 14. At this time, the lower part of the side wall 18 of the peripheral transistor is masked by this side wall 18 and is not implanted with ions. .

以後は通常の不揮発性半導体記憶装置の製造工程により
形成される。
Thereafter, it is formed by a normal manufacturing process of a nonvolatile semiconductor memory device.

第2図は上記製造工程により形成される不揮発性半導体
記憶装置の断面図である。なお、第1図に対応する部分
は同一の符号を記す。同図において、上記第1図(樽の
工程後に、セルトランジスタ部分には、酸化シリコン(
SiO□)膜20、電極窓21、アルミニュウム配線N
22.23などが形成される。
FIG. 2 is a cross-sectional view of a nonvolatile semiconductor memory device formed by the above manufacturing process. Note that parts corresponding to those in FIG. 1 are denoted by the same reference numerals. In the figure, after the barrel process shown in Figure 1 above, silicon oxide (
SiO□) film 20, electrode window 21, aluminum wiring N
22, 23, etc. are formed.

上記製造方法によれば、周辺トランジスタ部14のポリ
シリコンゲート側壁にのみサイドウオール18が形成さ
れ、セルトランジスタ部13には形成されないため、周
辺トランジスタ部14のみLDD構造にすることができ
る。従って、セルトランジスタ部13では、サイドウオ
ール18が横に張出すことがなく、セルトランジスタと
電極窓21の間隔を狭(することができ、セル面積を小
さくすることが可能になる。また、セルトランジスタ部
13はLDD構造でないため、書き込み機能が悪くなる
ことがない。さらに、本実施例では、n−層17のイオ
ン注入するとき、セルトランジスタ部13側をマスクし
たり、あるいはn+層19のイオン注入するとき、周辺
トランジスタ部14を特別にマスクしたりすることなく
、従来と比較して使用マスク数も増加せず、工程が短く
なる。
According to the above manufacturing method, since the sidewall 18 is formed only on the sidewall of the polysilicon gate of the peripheral transistor section 14 and not on the cell transistor section 13, only the peripheral transistor section 14 can have an LDD structure. Therefore, in the cell transistor section 13, the sidewall 18 does not protrude laterally, and the interval between the cell transistor and the electrode window 21 can be narrowed, making it possible to reduce the cell area. Since the transistor section 13 does not have an LDD structure, the write function will not deteriorate.Furthermore, in this embodiment, when ion implantation is performed in the n- layer 17, the cell transistor section 13 side is masked or the n+ layer 19 is ion-implanted. During ion implantation, the peripheral transistor section 14 is not specially masked, the number of masks used does not increase compared to the conventional method, and the process is shortened.

なお、本発明においては、不揮発性半導体記憶装置の周
辺トランジスタのみそのゲート側壁にサイドウオールを
形成してLDD構造にすればよ(、拡散領域、注入イオ
ンなどの種類は実施例に限遊されない。
Note that in the present invention, only the peripheral transistors of the nonvolatile semiconductor memory device need only have a sidewall formed on their gate sidewalls to have an LDD structure (the types of diffusion regions, implanted ions, etc. are not limited to the embodiments).

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、不揮発性メモリにお
いて、そのセルトランジスタ部を除く周辺トランジスタ
部のゲート側壁のみにサイドウオールを形成しLDD構
造にしているため、セル面積を小さくできるとともに、
書き込みも劣化するqとがない。また、使用マスク数も
増加せず、工程を短くすることができる。
As explained above, according to the present invention, in a nonvolatile memory, a sidewall is formed only on the gate side wall of the peripheral transistor section excluding the cell transistor section, resulting in an LDD structure, so that the cell area can be reduced, and
Writing also does not deteriorate. Further, the number of masks used does not increase, and the process can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(6)は本発明実施例の製造工程断面図
、第2図は本発明実施例のEFROMの断面図、第3図
は従来のEr’ROMの断面図、第4図は従来のLDD
構造のEPROMの断面図である。 図中、 11はp形シリコン基板、 12はフィールド酸化膜、 13はセルトランジスタ部、 14は周辺トランジスタ部、 15はゲート酸化膜、 16はSiO□膜、 17はn−層、 18はサイドウオール、 19はn゛層、 20はSiO2膜、 21は電極窓、 22.23はアルミニュウム配線層 を示す。 特許出願人   富士通株式会社 代理人弁理士  久木元   彰 同  大臂義之 」(テ覧8H曳)1乞イクリ、lEPROMd1勾′面
7第2テ 聾4虐6    切外7 4! L D D ah E PROM Jrilll
n第4図
1(a) to (6) are sectional views of the manufacturing process of the embodiment of the present invention, FIG. 2 is a sectional view of the EFROM of the embodiment of the present invention, FIG. 3 is a sectional diagram of the conventional Er'ROM, and FIG. The figure shows a conventional LDD
FIG. 2 is a cross-sectional view of an EPROM structure. In the figure, 11 is a p-type silicon substrate, 12 is a field oxide film, 13 is a cell transistor section, 14 is a peripheral transistor section, 15 is a gate oxide film, 16 is a SiO□ film, 17 is an n-layer, and 18 is a sidewall. , 19 is the n layer, 20 is the SiO2 film, 21 is the electrode window, and 22 and 23 are the aluminum wiring layers. Patent Applicant: Fujitsu Ltd. Agent, Patent Attorney: Gen Kukimoto, Akido Otsuwa Yoshiyuki” (Telegraph 8H) 1.1, 1 EPROM d1. L D D ah E PROM Jrillll
nFigure 4

Claims (1)

【特許請求の範囲】 セルトランジスタ部(13)と周辺トランジスタ部(1
4)とを備えた不揮発性半導体記憶装置の製造方法にお
いて、 前記セルトランジスタ(13)のゲートと周辺トランジ
スタ(14)のゲートとを別々にパターニングし、該周
辺トランジスタ(14)のみ、そのゲート側壁にサイド
ウォール(18)を形成することを特徴とする半導体装
置の製造方法。
[Claims] Cell transistor section (13) and peripheral transistor section (1
4) In the method for manufacturing a nonvolatile semiconductor memory device, the gate of the cell transistor (13) and the gate of the peripheral transistor (14) are patterned separately, and only the peripheral transistor (14) has its gate sidewall patterned. 1. A method of manufacturing a semiconductor device, comprising forming a sidewall (18) on the surface of the semiconductor device.
JP63121894A 1988-05-20 1988-05-20 Manufacture of semiconductor device Pending JPH01292863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63121894A JPH01292863A (en) 1988-05-20 1988-05-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63121894A JPH01292863A (en) 1988-05-20 1988-05-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01292863A true JPH01292863A (en) 1989-11-27

Family

ID=14822538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63121894A Pending JPH01292863A (en) 1988-05-20 1988-05-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01292863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162677A (en) * 1997-12-22 2000-12-19 Oki Electric Industry Co., Ltd. Semiconductor device fabricating method
US6380584B1 (en) 1999-08-03 2002-04-30 Sharp Kabushiki Kaisha Semiconductor memory device with single and double sidewall spacers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162677A (en) * 1997-12-22 2000-12-19 Oki Electric Industry Co., Ltd. Semiconductor device fabricating method
US6380584B1 (en) 1999-08-03 2002-04-30 Sharp Kabushiki Kaisha Semiconductor memory device with single and double sidewall spacers

Similar Documents

Publication Publication Date Title
KR100221062B1 (en) A flash memory and manufacturing method of the same
US5164806A (en) Element isolating structure of semiconductor device suitable for high density integration
JP4210347B2 (en) High breakdown voltage transistor and manufacturing method thereof
US4949140A (en) EEPROM cell with integral select transistor
JP2897004B2 (en) CMOSFET manufacturing method
JPH02250331A (en) Semiconductor device and its manufacture
JP2855518B2 (en) Structure and manufacturing method of flash memory
JP2656986B2 (en) Manufacturing method of nonvolatile semiconductor memory device
US6025229A (en) Method of fabricating split-gate source side injection flash memory array
US6525380B2 (en) CMOS with a fixed charge in the gate dielectric
JP2924833B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP2729298B2 (en) Manufacturing method of MOS transistor
JPH01292863A (en) Manufacture of semiconductor device
US20010044191A1 (en) Method for manufacturing semiconductor device
JP3125359B2 (en) Method for manufacturing semiconductor device
JPH02295169A (en) Nonvolatile semiconductor memory
JPH0147905B2 (en)
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP3274785B2 (en) Manufacturing method of nonvolatile memory
JPH11297863A (en) Non-volatile memory of contact-less array structure and manufacture thereof
JPS61210673A (en) Mis type semiconductor device
KR950011030B1 (en) Making method eeprom
JP2672124B2 (en) Method of making MOS transistor
JPH0487374A (en) Manufacture of nonvolatile memory element
JPH02105469A (en) Mis type semiconductor device