JPH01292624A - Base film for magnetic tape - Google Patents

Base film for magnetic tape

Info

Publication number
JPH01292624A
JPH01292624A JP12157188A JP12157188A JPH01292624A JP H01292624 A JPH01292624 A JP H01292624A JP 12157188 A JP12157188 A JP 12157188A JP 12157188 A JP12157188 A JP 12157188A JP H01292624 A JPH01292624 A JP H01292624A
Authority
JP
Japan
Prior art keywords
film
base film
young
modulus
magnetic tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12157188A
Other languages
Japanese (ja)
Other versions
JP2621340B2 (en
Inventor
Yujiro Matsuyama
松山 雄二郎
Tadashi Tabota
規 多保田
Katsuro Kuze
勝朗 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP63121571A priority Critical patent/JP2621340B2/en
Publication of JPH01292624A publication Critical patent/JPH01292624A/en
Application granted granted Critical
Publication of JP2621340B2 publication Critical patent/JP2621340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve surface smoothness and abrasion resistance by scratching the surface of a biaxially oriented film comprising mainly polyethylene naphthalate by use of a diamond needle the end of which has a specific radius to form streaks of specific width and by specifying the Young's modulus in longitudinal direction and 5% elongation stress of the film. CONSTITUTION:The scratches on the biaxially oriented film comprising mainly polyethylene naphthalate are formed by use of a diamond needle the end of which has a 50mum radius under 10g loading and in a constant speed of 0.2mm/ second. The maximum width of the scratches is <=23mum, and the Young's modulus in the longitudinal direction and 5% elongation stress of the film are specified as 500-1,000kg/mm<2> and 20-32kg/mm<2>, respectively. Thus, the surface smoothness and abrasion resistance can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気テープ用として特に縦方向の強度が大
きく、表面平滑性および耐摩耗性に優れ、かつ耐熱性を
有するベースフィルムに関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a base film for use in magnetic tapes, which has especially high longitudinal strength, excellent surface smoothness and abrasion resistance, and heat resistance. be.

(従来の技術) 一般にポリエチレンテレフタレートに代表されるポリエ
ステルは、物理的および化学的諸特性に優れているので
、繊維用、成型品用の他に磁気テープ用、フロッピーデ
ィスク用、写真用、コンデンサー用、包装用、レントゲ
ン用などのフィルムとマても広く用いられている。
(Prior art) Polyester, typically represented by polyethylene terephthalate, has excellent physical and chemical properties, so it is used not only for textiles and molded products, but also for magnetic tapes, floppy disks, photographs, and capacitors. It is also widely used as a film for packaging, X-rays, etc.

特に磁気テープの分野では、ポリエチレンテレフタレー
トを主成分とするベースフィルムが広い範囲で使用され
ており、その適用範囲は更に拡がる傾向にある。一方、
技術の高度化に伴い、装置および磁気テープの小型化が
求められ、そのためベースフィルムの一層の薄膜化、す
なわち高強力化が必要になり、ポリエチレンテレフタレ
ートからなるベースフィルムを製造する際、−軸方向に
強く延伸してテープ強度を増加させるテンシライズ化が
採用されている。
Particularly in the field of magnetic tapes, base films containing polyethylene terephthalate as a main component are widely used, and their range of application tends to expand further. on the other hand,
As technology becomes more sophisticated, devices and magnetic tapes are required to be made smaller, which in turn requires thinner base films, that is, higher strength. Tensilizing is used to increase the strength of the tape by strongly stretching it.

(発明が解決しようとする課題) しかしながら、ポリエチレンテレフタレートを原料とし
てテンシライズ化した場合は、得られるベースフィルム
の5%伸長時応力が最大20kg/mm”程度であり、
業界の要求に対して不十分であった。
(Problems to be Solved by the Invention) However, when polyethylene terephthalate is used as a raw material for tensilization, the stress at 5% elongation of the resulting base film is about 20 kg/mm at maximum,
It was insufficient to meet industry requirements.

また、特殊な延伸条件を採用することにより、強度的に
要求を満たすベースフィルムが得られても、強度と他の
特性、例えば熱収縮特性との間には互いに相反する傾向
があるため、上記のベースフィルムを磁気テープに加工
するために金属蒸着法を採用する場合は、ベースフィル
ムが100℃以上に加熱されて熱収縮を生じ、品質が低
下するという問題があった。
Furthermore, even if a base film that satisfies the strength requirements is obtained by adopting special stretching conditions, strength and other properties, such as heat shrinkage properties, tend to conflict with each other. When a metal vapor deposition method is employed to process a base film into a magnetic tape, there is a problem in that the base film is heated to 100° C. or more, causing thermal contraction and deterioration of quality.

また、磁気テープ用ベースフィルムとして使用するには
、滑り性および優れた磁気変換特性を付与するため、フ
ィルム表面に適度な表面突起を形成する必要があり、そ
のため微細な無機粒子を添加しなければならず、更に、
上記の表面突起は、これが欠落すると、磁気テープに加
工するためのプロセスおよび磁気テープとして使用する
際の滑り性が不十分になるので、ベースフィルムに加工
する際のコーディング工程などのプロセスにおいて外部
から摩擦力によって摩耗などの変形が生じないものでな
ければならない。
In addition, in order to use it as a base film for magnetic tape, it is necessary to form appropriate surface protrusions on the film surface in order to impart slipperiness and excellent magnetic conversion properties, and for this reason, fine inorganic particles must be added. Not only that, but also
If the surface protrusions mentioned above are missing, the slipperiness will be insufficient during the process of processing into magnetic tape and when using it as a magnetic tape, so it is necessary to remove it from the outside during processes such as the coding process when processing into base film. It must not cause wear or other deformation due to frictional force.

この発明は、ポリエチレンテレフタレートに代わってポ
リエチレンナフタレートを使用することにより、ポリエ
チレンテレフタレートフィルムが有する力学的欠点を解
消し、強度および耐摩耗性に優れ、熱収縮が小さく、磁
気テープ用、特に高級磁気テープ用として好適なベース
フィルムを提供するものである。
By using polyethylene naphthalate instead of polyethylene terephthalate, this invention eliminates the mechanical drawbacks of polyethylene terephthalate film, has excellent strength and abrasion resistance, has low heat shrinkage, and is suitable for magnetic tapes, especially high-grade magnetic The present invention provides a base film suitable for use in tapes.

(課題を解決するための手段) 上記の課題を解決するため、この発明の磁気テープ用ベ
ースフィルムは、ポリエチレンナフタレートを主成分す
る二軸延伸フィルムであり、そのフィルム表面を先端の
曲率半径が50μmのダイヤモンド針によって10’g
の荷重下、0.2+am/秒の一定速度で引っ掻いて得
られる筋状痕の最大幅が23μm以下であり、かつフィ
ルム縦方向のヤング率がSOO〜1000kg/mm”
、5%伸長時応力が20〜32kg/IW12であるこ
とを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the base film for magnetic tape of the present invention is a biaxially stretched film mainly composed of polyethylene naphthalate, and the film surface has a radius of curvature at the tip. 10'g by 50μm diamond needle
The maximum width of streak marks obtained by scratching at a constant speed of 0.2+am/sec under a load of 23 μm or less, and the Young's modulus in the longitudinal direction of the film is SOO~1000 kg/mm”
, the stress at 5% elongation is 20 to 32 kg/IW12.

この発明で用いるポリエステルは、酸成分としてナフタ
レン−2,6−ジカルボン酸を主たる成分とし、グリコ
ール成分としてエチレングリコールを主たる成分とする
ものであり、なかんずくその繰返し単位の80モル%以
上がエチレンナフタレートからなるものであり、他の共
重合成分としては、テレフタル酸、イソフタル酸、p−
β−オキシエトキシ安息香酸、4,4′−ジカルボキシ
ルジフェニール、 4.4’−ジカルボキシルベンゾフ
ェノン、ビス(4−カルボキシルフェニール)エタン、
アジピン酸、セバシン酸、5−ナトリウムスルホイソフ
タル酸、シ′クロにキサン−1,4−ジカルボン酸等の
ジカルボン酸成分、′プロピレングリミール、ブタンジ
オール、ネオペンチルグリコール、ジエチレングリコー
ル、シクロヘキサンジメタツール、ビフェノールAのエ
チレンオキサイド付加物、ポリエチレングリコール、ポ
リプロピレングリコール、ポリテトラメチレジグリコー
ル等のグリコール成分、p−オキシ安息香酸などのオキ
ジ安息香酸成分等を任意に選択使用することができる。
The polyester used in this invention mainly contains naphthalene-2,6-dicarboxylic acid as an acid component and ethylene glycol as a glycol component, and above all, 80 mol% or more of its repeating units are ethylene naphthalate. Other copolymerized components include terephthalic acid, isophthalic acid, p-
β-oxyethoxybenzoic acid, 4,4'-dicarboxyldiphenyl, 4,4'-dicarboxylbenzophenone, bis(4-carboxylphenyl)ethane,
Dicarboxylic acid components such as adipic acid, sebacic acid, 5-sodium sulfoisophthalic acid, cycloxane-1,4-dicarboxylic acid, propylene glycol, butanediol, neopentyl glycol, diethylene glycol, cyclohexane dimetatool, Glycol components such as ethylene oxide adducts of biphenol A, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, oxybenzoic acid components such as p-oxybenzoic acid, etc. can be arbitrarily selected and used.

その他の共重合成分としてアミド結合、カーボネート結
合等を含有する少量の化合物を含むことができる。
A small amount of a compound containing an amide bond, a carbonate bond, etc. may be included as other copolymer components.

上記ポリエステルの製造方法としては、芳香族ジカルボ
ン酸とグリコールとを直接反応させる直接重合法、芳香
族ジカルボン酸のジメチルエステルとグリコールとをエ
ステル交換反応させるエステル交換法など任意の製造法
を適用することができる。そして、上記のポリエステル
からフィルムを製造する方法としては、一般的なロール
テンターを用いて縦横同時に延伸する方法、および縦横
に逐次延伸する方法があるが、特に二軸方向に延伸した
後に一軸方向に再延伸してスーパーテンシライズドタイ
プの二軸延伸フィルムとするのが好適である。例えば、
上記のポリエステルを280〜320℃で溶融押出し、
急冷固化させて実質的に無配向の未延伸シートを得、こ
の未延伸シートを延伸温度110〜180℃、好ましく
は115〜150℃、延伸倍率3〜7.5倍で縦方向お
よび横方向にそれぞれ延伸し、1’70〜260℃の温
度で熱固定して製造される。この場合の延伸倍率は。
Any production method can be used to produce the polyester, such as a direct polymerization method in which an aromatic dicarboxylic acid and a glycol are directly reacted, or a transesterification method in which a dimethyl ester of an aromatic dicarboxylic acid and a glycol are transesterified. I can do it. Methods for manufacturing films from the polyester mentioned above include a method of simultaneously stretching in the length and width using a general roll tenter, and a method of successive stretching in the length and width, but in particular, a method of stretching in the biaxial direction and then in the uniaxial direction. It is preferable to re-stretch the film to obtain a supertensilized type biaxially stretched film. for example,
Melt extrusion of the above polyester at 280 to 320°C,
The unstretched sheet is rapidly cooled and solidified to obtain a substantially non-oriented unstretched sheet, and this unstretched sheet is stretched in the longitudinal and lateral directions at a stretching temperature of 110 to 180°C, preferably 115 to 150°C, and a stretching ratio of 3 to 7.5 times. Each is stretched and heat-set at a temperature of 1'70 to 260°C. The stretching ratio in this case is.

縦倍率を横倍率よりも大きくしても、また小さくしても
よく、更に2段以上に分けてもよい。、なお、フィルム
表面に適度に突起を形成してフィルム走行時の滑り性を
改善するため、重合反応中に複数の可溶性無機化合物か
ら不溶性の粒子、いわゆる内部粒子を生成させたり、重
合系に不活性無機粒子、いわゆる外部粒子を添加したり
、またこれらを併用したりすることができるのは従来と
同様であり、外部粒子としては、カオリン、酸化チタン
、酸化ケイ素、炭酸カルシウム、硫酸バリウム等が例示
され、その添加手段としては、エチレングリコールスラ
リーとして行なうのが分散性および取扱い性の点で好ま
しい。
The vertical magnification may be made larger or smaller than the horizontal magnification, and may be further divided into two or more stages. In addition, in order to form appropriate protrusions on the film surface and improve slipperiness during film running, insoluble particles, so-called internal particles, are generated from multiple soluble inorganic compounds during the polymerization reaction, or insoluble particles are added to the polymerization system. As before, it is possible to add active inorganic particles, so-called external particles, or to use them in combination.External particles include kaolin, titanium oxide, silicon oxide, calcium carbonate, barium sulfate, etc. As an example, it is preferable to use an ethylene glycol slurry from the viewpoint of dispersibility and handleability.

(作用) この発明のフィルムは、ポリエチレンナフタレートを主
成分としているので、ポリエチレンテレフタレートを主
成分とするものに比べてフィルム表面硬度が向上し、フ
ィルム表面に突起を形成すの内部粒子や外部粒子を覆う
フィルム皮膜が堅牢になり、前記ダイヤモンド針による
引っ掻き試験で得られる筋状症の幅が、上記フィルムの
製膜条件、例えば延伸倍率や熱固定温度にもよるが、約
20%狭くなる。したがって、製膜後のスリットやコー
ティングの際、更に磁気テープとした後の録画、再生の
際にフィルム表面が強い摩擦を繰返し受けても上記の表
面突起の欠落することが無く、そのため磁気信号の欠落
、いわゆるドロップアウトが大幅に減少し、かつ長期間
にわたって良好な滑り性が保持される。そして、フィル
ム表面突起の堅牢度を知るため、後記するモデル的なフ
ィルム耐久走行性テストを行なったところ、このテスト
結果と上記ダイヤモンド針による引っ掻き試験の結果と
の相関性が極めて高く、引っ掻き試験による筋状症の幅
が狭いものは、フィルム耐久走行性テストにおいても良
好な結果の得られることが判明した。すなわち、ダイヤ
モンド針を用いた引っ掻き試験による筋状症の幅は、2
3μ以下、好ましくは21μ以下が必要であり、上記の
幅が23μよりも広く、表面硬度が低いと、テープとし
た際の耐摩耗性が不十分となり、テープの走行中に突起
が欠落し、これが粉末になってフィルム表面に付着し、
ドロップアウトを生じさせ、かつフィルム走行時の滑り
性を低下させる。
(Function) Since the film of this invention has polyethylene naphthalate as its main component, the film surface hardness is improved compared to that of a film whose main component is polyethylene terephthalate, and internal particles and external particles that form protrusions on the film surface are improved. The film covering the film becomes more robust, and the width of the streaks obtained in the diamond needle scratch test becomes approximately 20% narrower, depending on the film forming conditions, such as the stretching ratio and heat setting temperature. Therefore, even if the film surface is repeatedly subjected to strong friction during slitting and coating after film formation, and during recording and playback after being made into a magnetic tape, the above-mentioned surface protrusions will not be lost, and therefore the magnetic signal will not be lost. Missing, so-called dropouts, are significantly reduced, and good slipperiness is maintained over a long period of time. In order to find out the robustness of the film surface protrusions, we conducted a model film durability test to be described later, and found that the correlation between this test result and the scratch test result using the diamond needle described above was extremely high. It was found that films with narrow streaks gave good results in the film durability test. In other words, the width of the streaks determined by the scratch test using a diamond needle is 2
It needs to be 3μ or less, preferably 21μ or less. If the above width is wider than 23μ and the surface hardness is low, the abrasion resistance when made into a tape will be insufficient, and the protrusions will be missing while the tape is running. This turns into powder and adheres to the film surface.
This causes dropouts and reduces the slipperiness during film running.

また、この発明のフィルムは、各種の力学的特性中、少
なくとも縦方向のヤング率と5%伸長時応力を前記の値
に限定するので、磁気テープ用として必要な特性を比較
的容易に実現することができる。ただし、上記のヤング
率が500 kg / rru ”未満であったり5%
伸長時応力が20 kg / nm 2未満であったり
した場合は、弾性特性が不十分となり、ベースフィルム
の厚さを目的とする水準まで下げることができず、反対
にヤング率が1000kg/mm”を超えたり5%伸長
時応力が32kg/lll112を超えたりした場合は
、フィルムの熱収縮率および厚さむらが過大になる。
In addition, the film of the present invention limits at least the Young's modulus in the longitudinal direction and the stress at 5% elongation to the above-mentioned values among various mechanical properties, so that the properties required for magnetic tape can be achieved relatively easily. be able to. However, if the above Young's modulus is less than 500 kg/rru" or 5%
If the stress during elongation is less than 20 kg/nm2, the elastic properties will be insufficient and the thickness of the base film cannot be lowered to the desired level, and on the other hand, the Young's modulus may be 1000 kg/mm. If the stress at 5% elongation exceeds 32 kg/ll112, the heat shrinkage rate and thickness unevenness of the film will become excessive.

(実施例) ナフタレン−2,6−ジカルボン酸ジメチル100部(
重量基準、以下同じ)、エチレングリコール60部、酢
酸マグネシウム0.085部および二酸化アンチモン0
.035部を反応器に取付け、エステル交換反応を行な
った。反応温度は反応の進行に伴い160℃から220
℃に調節し、流出するメタノール量により反応の完結を
確認した。エステル交換反応終了後、平均粒径0.15
μmのコロイダルシリカのエチレングリコールスラリー
を酸化ケイ素として0.25部、およびトリメチルホス
フェートのエチレングリコール溶液をリン原子として0
.0064部それぞれ添加した後、常法により最終温度
285℃、最終圧力0.O8mnHgで重縮合を行ない
、極限粘度0.585のポリエチレンナフタレートを得
た。
(Example) 100 parts of dimethyl naphthalene-2,6-dicarboxylate (
(based on weight, the same applies hereinafter), 60 parts of ethylene glycol, 0.085 parts of magnesium acetate, and 0 parts of antimony dioxide.
.. 035 parts were attached to a reactor and a transesterification reaction was carried out. The reaction temperature changes from 160℃ to 220℃ as the reaction progresses.
The temperature was adjusted to 0.degree. C., and the completion of the reaction was confirmed by the amount of methanol flowing out. After the transesterification reaction, the average particle size is 0.15.
0.25 parts of ethylene glycol slurry of μm colloidal silica as silicon oxide, and 0.25 parts of ethylene glycol solution of trimethyl phosphate as phosphorus atoms.
.. After adding 0.064 parts of each, the final temperature was 285°C and the final pressure was 0. Polycondensation was carried out at O8 mnHg to obtain polyethylene naphthalate with an intrinsic viscosity of 0.585.

上記ポリエチレンナフタレートポリマーのチップを乾燥
した後、温度298℃で溶融押出し、厚み150μmの
未延伸原反を作成し、この未延伸原反を小型モデル延伸
機(米国TM−1ong社製)の使用により縦方向に5
.0倍、横方向に3.2倍それぞれ延伸し、200℃で
30秒間熱固定して実施例1の二軸延伸フィルム(厚み
9μm)を得た。
After drying the above polyethylene naphthalate polymer chips, they were melt extruded at a temperature of 298°C to create an unstretched original fabric with a thickness of 150 μm, and this unstretched original fabric was used in a small model stretching machine (manufactured by TM-1ong, USA). vertically by 5
.. The film was stretched 0 times and 3.2 times in the transverse direction, and heat-set at 200° C. for 30 seconds to obtain the biaxially stretched film of Example 1 (thickness 9 μm).

一方、通常の方法で得られるポリエチレンテレフタレー
トを原料とし、上記実施例1と同様の方法で同じ厚みの
比較例の二軸延伸フィルムを得た。
On the other hand, using polyethylene terephthalate obtained by a conventional method as a raw material, a biaxially stretched film of the same thickness as that of Example 1 was obtained in the same manner as in Example 1 above.

また、実施例1において、滑剤として平均粒径0.9μ
mの炭酸カルシウムのエチレングリコールスラリーを0
.25部添加する以外は、実施例1と同様に重合および
製膜を行ない、実施例2の二軸延伸フィルムを得た。
In addition, in Example 1, as a lubricant, the average particle size was 0.9 μm.
0 m of calcium carbonate ethylene glycol slurry
.. Polymerization and film formation were carried out in the same manner as in Example 1, except that 25 parts were added, and a biaxially stretched film of Example 2 was obtained.

上記の実施例1.2および比較例の二軸延伸フィルムに
ついて平均表面粗さTAR、ダイヤモンド針を用いた引
っ掻きによる表面硬度およびモデル的フィルム耐久走行
性の試験を行なった。その結果を下記の表に示す。
The biaxially stretched films of Example 1.2 and Comparative Example above were tested for average surface roughness TAR, surface hardness by scratching with a diamond needle, and model film running durability. The results are shown in the table below.

ただし、表面硬度および弾性特性等の物性は、次のよう
にして測定した。
However, physical properties such as surface hardness and elastic properties were measured as follows.

(1)ヤング率、5%伸長時応力 フィルムの長さ方向および幅方向とそれぞれ平行に長さ
150mm、幅10m+のタンザク形試料を切り出し、
東洋ボールドウィン株式会社製テンシロンを用い、変形
速度100%/分で引張り試験を実施し、ヤング率およ
び5%伸長時応力を常法によって算出した。
(1) Young's modulus, stress at 5% elongation A tanzak-shaped sample with a length of 150 mm and a width of 10 m+ was cut out parallel to the length and width directions of the film, respectively.
A tensile test was conducted using Tensilon manufactured by Toyo Baldwin Co., Ltd. at a deformation rate of 100%/min, and the Young's modulus and stress at 5% elongation were calculated by conventional methods.

(2)フィルム表面硬度 15mnX15++++nの大きさに切出した試料をス
ライドグラス上に固定し、先端の曲率半径が50μmの
ダイヤモンド針を10gの荷重で押しつけ、0.2nn
/秒の一定速度で試料の表面を引っ掻き、得られたサン
プルにアルミニウム蒸着を施した後、顕微鏡による観察
および写真撮影を行ない、最終的に400倍の拡大写真
から上記引っ掻きによる筋状痕の幅(μm)を測定する
(2) A sample cut into a film surface hardness of 15 mm x 15+++n was fixed on a slide glass, and a diamond needle with a tip radius of curvature of 50 μm was pressed with a load of 10 g to obtain a 0.2 nn.
The surface of the sample was scratched at a constant speed of 1/sec, and the resulting sample was coated with aluminum vapor deposition, then observed with a microscope and photographed.Finally, the width of the streaks caused by the scratching was determined from a 400x magnified photograph. (μm).

(3)外部粒子の平均粒径 エチレングリコール中で十分に分散して得られたスラリ
ー中における粒度分布を光透過型遠心沈降式粒度分布測
定機(株式会社島津製作所製、5A−CF2型)の使用
によって測定し、その積算50%の値を用いた。
(3) Average particle size of external particles The particle size distribution in the slurry obtained by sufficient dispersion in ethylene glycol was measured using a light transmission type centrifugal sedimentation type particle size distribution analyzer (manufactured by Shimadzu Corporation, model 5A-CF2). It was measured by use, and the cumulative value of 50% was used.

(4)フィルム表面平均粗さTAR 株式会社小坂研究所製三次元粗さ測定器(SE−3AK
)を用い、フィルム表面を針先端の曲率半径2μm、荷
重30■の条件下、長さ方向にカットオフ0.25+w
nで、1mにわたって測定し、2μmピッチで500点
に分割し、各点の高さを三次元解析装置(SPA−1)
に取込んだ。しかるのち、これと同様の操作をフィルム
幅方向について2μmピッチで連続的に150回、つま
りフィルム幅方向0.3mnにわたって行ない、上記の
解析装置に取込んだ。次に、解析装置を用いて高さ方向
のデータの平均偏差を求め、これをμm単位で表して平
均粗さTARとした。
(4) Film surface average roughness TAR Three-dimensional roughness measuring instrument manufactured by Kosaka Laboratory Co., Ltd. (SE-3AK
), the film surface was cut off 0.25 + w in the length direction under the conditions of a curvature radius of the needle tip of 2 μm and a load of 30 μm.
n, measured over 1 m, divided into 500 points at a pitch of 2 μm, and measured the height of each point using a three-dimensional analysis device (SPA-1).
Incorporated into. Thereafter, the same operation was performed continuously 150 times at a pitch of 2 μm in the width direction of the film, that is, over a length of 0.3 mm in the width direction of the film, and the resultant film was loaded into the above-mentioned analyzer. Next, the average deviation of the data in the height direction was determined using an analyzer, and this was expressed in μm units to define the average roughness TAR.

(5)フィルム耐久走行性 幅12.F+mmにスリットしたフィルムを用い、温度
23℃、相対湿度65%の条件下、図示の装置を用いて
測定した。図において、1は上記のスリットにより得ら
れた幅12.5noのテープ状フィルム、2は長さ25
閣のクランク、3は回転自在のガイドローラ、4は市販
の家庭用VTRのガイドボスト(最大粗さRt=0.1
5μm、平均粗さRa=0.08μm)、5は重さ70
gのウェイトであり、図示のようにガイドローラ3およ
びガイドボスト4にテープ状フィルム1を掛け、ガイド
ボスト4に対するテープ状フィルム1の接触角度θを1
35度に設定し、クランク2の先端のピンにフィルム1
の一端のループを掛け、フィルム1の他端にウェイト5
を固定し、クランク2を8rpmの速度で回転−12= してガイドボスト4にフィルム1を摺接させ、100往
復後にフィルム表面を顕微鏡で観察し、擦り傷の多少で
3段階に評価し、筋の発生が多く見られるものを×、少
量見られるものをΔ、筋の発生がほとんど見られないも
のを0とした。
(5) Film durability and running width 12. Measurement was carried out using a film slit to F+mm under the conditions of a temperature of 23° C. and a relative humidity of 65% using the apparatus shown in the figure. In the figure, 1 is a tape-like film with a width of 12.5 mm obtained by the above slit, and 2 is a tape-shaped film with a length of 25 mm.
3 is a rotatable guide roller, 4 is a guide boss of a commercially available home VTR (maximum roughness Rt = 0.1
5 μm, average roughness Ra = 0.08 μm), 5 weighs 70
The tape-like film 1 is applied to the guide roller 3 and the guide post 4 as shown in the figure, and the contact angle θ of the tape-like film 1 to the guide post 4 is set to 1.
Set the angle to 35 degrees, and place film 1 on the pin at the tip of crank 2.
Hang one end of the loop and attach the weight 5 to the other end of the film 1.
was fixed, and the crank 2 was rotated at a speed of 8 rpm -12= to bring the film 1 into sliding contact with the guide post 4. After 100 reciprocations, the film surface was observed with a microscope, and the number of scratches was evaluated in three stages. A case where a lot of streaks were observed was given as ×, a case where a small amount of streaks were seen was given as Δ, and a case where almost no streaks were seen was given as 0.

(6)熱収縮率 温度150℃のオーブン中に魚具Q。の試料を無堅張状
態で入れ、1時間後に取出して長さQを測定し、式((
no−fl)/flo) X 100(%)で算出する
(6) Heat shrinkage rate Fish toppings Q in an oven at a temperature of 150°C. The sample was put in a non-tensioned state, taken out after 1 hour, the length Q was measured, and the formula ((
Calculated as: no-fl)/flo) x 100 (%).

(以下空白) 上記の表で明らかなように、この発明の実施例1および
2の二軸延伸フィルムは、走行時の耐摩擦性に優れ、か
つ高級磁気テープ用ベースフィルムとして十分な弾性特
性を備え、熱収縮率も小さかった。これに対し、ポリエ
チレンテレフタレートからなる比較例のフィルムは、表
面硬度を示す筋状痕の幅が過大であり、またヤング率、
5%伸長時応力も小さく、更に熱収縮率が過大であり、
そのため実施例1.2に比べて硬度が低く、弾性特性、
熱収縮率も不十分であり、高級磁気テープ用として不適
当であった。
(Blank below) As is clear from the table above, the biaxially stretched films of Examples 1 and 2 of the present invention have excellent abrasion resistance during running and sufficient elasticity as a base film for high-grade magnetic tapes. In addition, the heat shrinkage rate was also small. On the other hand, in the comparative film made of polyethylene terephthalate, the width of the streaks indicating surface hardness was too large, and the Young's modulus and
The stress at 5% elongation is small, and the heat shrinkage rate is excessive.
Therefore, the hardness is lower than that of Example 1.2, and the elastic properties are lower.
The heat shrinkage rate was also insufficient, making it unsuitable for use in high-grade magnetic tapes.

(発明の効果) この発明の磁気テープ用ベースフィルムは、ポリエチレ
ンナフタレートを主成分とする二軸延伸フィルムであり
、表面平滑性と耐摩擦性に優れ、かつ縦方向の強度が大
きいので、平滑性、耐摩耗性および薄膜化の要求される
蒸着タイプの高級磁気テープ用ベースフィルムとして極
めて有用である。
(Effects of the Invention) The base film for magnetic tape of the present invention is a biaxially stretched film mainly composed of polyethylene naphthalate, and has excellent surface smoothness and abrasion resistance, and high strength in the longitudinal direction. It is extremely useful as a base film for vapor-deposited high-grade magnetic tapes that require high strength, abrasion resistance, and thin film thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

=15− 図面は、フィルム耐久走行性試験機の模式図である。 1:テープ状フィルム、2:クランク、3ニガイドロー
ラ、4ニガイドポスト、5:ウェイト。 特許出願人  東洋紡績株式会社 代理人 弁理士  吉 1)了 司 =16−
=15- The drawing is a schematic diagram of a film durability running property tester. 1: tape-like film, 2: crank, 3 guide roller, 4 guide post, 5: weight. Patent applicant Toyobo Co., Ltd. Agent Patent attorney Yoshi 1) Tsukasa Ryo = 16-

Claims (1)

【特許請求の範囲】 〔1〕ポリエチレンナフタレートを主成分とする二軸延
伸フィルムであり、そのフィルム表面を先端の曲率半径
が50μmのダイヤモンド針によって10gの荷重下、
0.2mm/秒の一定速度で引っ掻いて得られる筋状痕
の最大幅が23μm以下であり、かつフィルム縦方向の
ヤング率が500〜1000kg/mm^2、5%伸長
時応力が20〜32kg/mm^2であることを特徴と
する磁気テープ用ベースフィルム。
[Scope of Claims] [1] A biaxially stretched film containing polyethylene naphthalate as a main component, whose surface was touched under a load of 10 g by a diamond needle with a radius of curvature of 50 μm at the tip.
The maximum width of streak marks obtained by scratching at a constant speed of 0.2 mm/sec is 23 μm or less, and the Young's modulus in the longitudinal direction of the film is 500 to 1000 kg/mm^2, and the stress at 5% elongation is 20 to 32 kg. /mm^2 A base film for magnetic tape.
JP63121571A 1988-05-18 1988-05-18 Base film for magnetic tape Expired - Lifetime JP2621340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63121571A JP2621340B2 (en) 1988-05-18 1988-05-18 Base film for magnetic tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63121571A JP2621340B2 (en) 1988-05-18 1988-05-18 Base film for magnetic tape

Publications (2)

Publication Number Publication Date
JPH01292624A true JPH01292624A (en) 1989-11-24
JP2621340B2 JP2621340B2 (en) 1997-06-18

Family

ID=14814531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63121571A Expired - Lifetime JP2621340B2 (en) 1988-05-18 1988-05-18 Base film for magnetic tape

Country Status (1)

Country Link
JP (1) JP2621340B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625442A (en) * 1992-03-27 1994-02-01 Teijin Ltd Base film for magnetic recording tape

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228918A (en) * 1985-07-30 1987-02-06 Teijin Ltd Magnetic recording tape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228918A (en) * 1985-07-30 1987-02-06 Teijin Ltd Magnetic recording tape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625442A (en) * 1992-03-27 1994-02-01 Teijin Ltd Base film for magnetic recording tape

Also Published As

Publication number Publication date
JP2621340B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
KR100227401B1 (en) Biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate
KR960005445B1 (en) Biaxially oriented polyester film
US5718860A (en) Process for the preparation of polyester base film for magnetic recording media
KR920003488B1 (en) Magnetic recording medium
JPS61236852A (en) Oriented polyester film
JP7303999B2 (en) LAMINATED POLYESTER FILM AND MAGNETIC RECORDING TAPE USING THE SAME
JPH09239829A (en) Biaxially oriented polyester film
US20050147795A1 (en) Biaxially oriented polyster film and flexible disk
JP2019131787A (en) Polyester composition, polyester film and magnetic recording medium
JPH01292624A (en) Base film for magnetic tape
JPH01204959A (en) Polyester composition and biaxially oriented polyester film prepared therefrom
JP6982801B2 (en) Laminated polyester film and magnetic recording medium
KR100201196B1 (en) Biaxially oriented polyester film for data recording medium
JPH07235039A (en) Biaxially-oriented polyester film and its preparation
KR0157180B1 (en) Biaxial orientation polyethyleneterephtalate film for metal thin film magnetic recording medium
JP2920938B2 (en) Oriented polyester film
JPH08337664A (en) Polyester film and its production
JP3763158B2 (en) Biaxially oriented polyester film
JP6982802B2 (en) Laminated polyester film and magnetic recording medium
JPS63128030A (en) Oriented polyester film
KR0130609B1 (en) Process for making biaxial oriented polyester film
JP3672581B2 (en) Polyester film
JPH06262678A (en) Biaxially oriented polyester film
JPH0156657B2 (en)
JPH0356538A (en) Biaxially oriented polyester film for magnetic recording medium