JPH01292369A - Corona discharge device - Google Patents

Corona discharge device

Info

Publication number
JPH01292369A
JPH01292369A JP12195188A JP12195188A JPH01292369A JP H01292369 A JPH01292369 A JP H01292369A JP 12195188 A JP12195188 A JP 12195188A JP 12195188 A JP12195188 A JP 12195188A JP H01292369 A JPH01292369 A JP H01292369A
Authority
JP
Japan
Prior art keywords
peak
voltage
frequency
corona discharge
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12195188A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ito
展之 伊東
Hiroaki Tsuchiya
土屋 廣明
Tooru Kuzumi
徹 葛見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12195188A priority Critical patent/JPH01292369A/en
Priority to EP89108768A priority patent/EP0342600B1/en
Priority to DE68928931T priority patent/DE68928931T2/en
Publication of JPH01292369A publication Critical patent/JPH01292369A/en
Priority to US08/396,072 priority patent/US5526106A/en
Priority to HK98115380A priority patent/HK1014058A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To reduce an electric voltage between peaks and to make a corona discharge device suitable for high speed operation and for miniaturization without accompanying abnormal discharge by impressing an electric voltage having sine alternate current wave form alone. CONSTITUTION:A DC power source 7, a sine AC power source 6, having (f) frequency, and a sine AC power source 5 having (mf) frequency (wherein m is 2n+1; n is an integer) are connected to a charging line 3 of a corona discharge device. Thus, an electric voltage resulted by the superposition of said two ACs on DC is impressed to the charging line 3. A mark 1 means a sum current of a positive and a negative component conducted to the charging line 3. By this constitution, a desired discharge current can be maintained by a low voltage between peaks without causing abnormal discharge.

Description

【発明の詳細な説明】 (1)発明の目的 (産業上の利用分野) この発明は、静電複写機、同プリンタなど、静電記録プ
ロセスを利用する画像形成装置、とくにそれに使用する
に適したコロナ放電装置に関するものである。
Detailed Description of the Invention (1) Purpose of the Invention (Field of Industrial Application) The present invention is particularly suitable for use in image forming apparatuses that utilize an electrostatic recording process, such as electrostatic copying machines and printers. This invention relates to a corona discharge device.

(従来技術と解決すべき課題) 像担持体たる感光体を一様に帯電させたのち、これに光
像を照射して静電潜像を形成し、ついで該潜像に現像剤
を付与して現像し、これに紙などシート状の転写材を当
接させるとともに、この転写材に適宜極性の電荷を付与
して前記現像像を転写材に転移させ、さらに、この転写
材に転写時とは反対極性の電荷を付与してこれを像担持
体から分離するように構成した画像形成装置は従来から
周知である。
(Prior art and problems to be solved) After uniformly charging a photoreceptor as an image carrier, a light image is irradiated onto it to form an electrostatic latent image, and then a developer is applied to the latent image. A sheet-like transfer material such as paper is brought into contact with this, and the developed image is transferred to the transfer material by imparting an appropriate polar charge to this transfer material. Image forming apparatuses configured to apply charges of opposite polarity to separate the charge from the image carrier are conventionally well known.

このような装置においては、前述のように感光層を一様
に帯電させるさい、現像像を転写するさい、転写材を分
離するさいなどに、帯電器によってコロナ放電を行なう
ことになるが、このための放電電極への電圧印加手段と
しては、該電極に通常正弦波形の交流電圧を印加する、
交流に直流を重畳した電圧を印加するなどの手段がひろ
く実用されている。
In such an apparatus, corona discharge is performed by the charger when uniformly charging the photosensitive layer, transferring the developed image, and separating the transfer material as described above. As a means for applying voltage to the discharge electrode for
Means such as applying a voltage that is a superimposition of alternating current and direct current are widely used.

この種の帯電器の除電および帯電機能は、印加電圧のピ
ーク間電圧の大いさに依存し、その値が高いほど帯電あ
るいは除電機能も大きくなる傾向がある。
The charge removal and charge functions of this type of charger depend on the magnitude of the peak-to-peak voltage of the applied voltage, and the higher the value, the greater the charge or charge removal function tends to be.

したがって、近来におけるこの種の装置の高速化傾向か
らすれば、像担持体、転写材などに対する帯電、除電を
迅速確実に行なうためには、前記印加電圧のピーク闇値
を大きくするのが望ましいが、反面、あまり高くすると
火花放電、沿面放電など異常放電を発生する危険を増大
することを免かれない。
Therefore, in view of the recent trend towards higher speeds in this type of apparatus, it is desirable to increase the peak dark value of the applied voltage in order to quickly and reliably charge and remove static electricity from the image carrier, transfer material, etc. On the other hand, if it is set too high, the risk of abnormal discharges such as spark discharges and creeping discharges inevitably increases.

一方、この種の画像形成装置においては、次第に小型軽
便なものが賞用され、あらゆる階層の人々が手軽に利用
するようになってきており、このような観点からみれば
、可及的に低いピーク間電圧で所期の帯電、除電機能が
得られることが望ましい。
On the other hand, in this type of image forming apparatus, smaller and lighter ones are gradually being used, and people from all walks of life are starting to use them easily. It is desirable that the desired charging and static eliminating functions can be obtained at peak-to-peak voltage.

そこで、印加電圧のピーク値を抑えて実効電流量を増す
手段として、たとえば、特開昭52−15328号公報
、特公昭52−42218号公報などにみるように印加
電圧波形に矩形波を用いるもの、特開昭54−1397
36号公報などにみるように、正弦波交流の正負のピー
ク近傍をスライスして所定の波高値を得るようにしたも
のなどが提案されている。
Therefore, as a means to suppress the peak value of the applied voltage and increase the effective current amount, for example, a method using a rectangular wave as the applied voltage waveform, as seen in Japanese Patent Application Laid-open No. 52-15328 and Japanese Patent Publication No. 52-42218, etc. , Japanese Patent Publication No. 54-1397
As seen in Publication No. 36, etc., a device has been proposed in which a predetermined peak value is obtained by slicing the vicinity of the positive and negative peaks of a sinusoidal alternating current.

矩形波、正弦波の周波数、最高電圧値を同じとすれば、
放電開始電圧と最大電圧の間で波形に囲まれる部分の面
積は矩形波の方が大きく、電荷供給量も大きくなるが、
実際の装置においては、数Vないし数十Vの矩形波信号
を、トランスによって数kVないし十数kVに増巾する
のが普通であるため、たとえば、第10A図に示す入力
波形が、第1OB図に点線で示されるような出力波形と
なるべきが、同図実線で示すように歪み、ピーク間電圧
の低減、ピーク部分の平坦化が困難で実用的ではない。
If the frequency and maximum voltage value of the square wave and sine wave are the same,
The area surrounded by the waveform between the discharge starting voltage and the maximum voltage is larger for the rectangular wave, and the amount of charge supplied is larger, but
In an actual device, it is common to amplify a rectangular wave signal of several volts to several tens of volts to several kV to several tens of kV using a transformer, so for example, the input waveform shown in FIG. The output waveform should be as shown by the dotted line in the figure, but as shown by the solid line in the figure, it is distorted and it is difficult to reduce the peak-to-peak voltage and flatten the peak portion, making it impractical.

また、第1!図は前記後者の場合を略示するものである
が、この場合には、当然のことながら電力損失(符号2
4で示す部分)が生ずるので好ましくない、なお同図符
号14は放電開始電圧値を示すものとする。
Also, number 1! The figure schematically shows the latter case, but in this case, it goes without saying that the power loss (symbol 2
4) occurs, which is undesirable. Note that reference numeral 14 in the figure indicates the discharge starting voltage value.

第12図は、13.6kV (ピーク間電圧)の正弦波
交流をコロナ放電させたときの放電電流と等しい電流量
を維持し、第11図のような仕方で最大電圧(同図符号
21で示す値)をさげる場合に、スライス前のピーク間
電圧をあげることによって、どの程度の損失が生ずるか
を示すグラフである。
Figure 12 shows how to maintain a current amount equal to the discharge current when corona discharge is performed with a sinusoidal alternating current of 13.6 kV (peak-to-peak voltage), and apply the maximum voltage (represented by reference numeral 21 in the figure) in the manner shown in Figure 11. 12 is a graph showing how much loss occurs by increasing the peak-to-peak voltage before slicing when decreasing the value shown in FIG.

図中、横軸にはスライス前の正弦波交流のビーク間電圧
の局の値をとっている。
In the figure, the horizontal axis represents the peak-to-peak voltage of the sinusoidal alternating current before slicing.

ピーク間電圧をあげたときの、前回の最大電圧21の変
化をeで示し、ロスが増大する様子をfで示してあり、
これから、ピーク間電圧を僅か下げることによって大き
なロスが生ずることが判る。
The change in the previous maximum voltage 21 when the peak-to-peak voltage is increased is shown by e, and the increase in loss is shown by f.
It can be seen that a small reduction in the peak-to-peak voltage results in a large loss.

本発明はこのような事態に対処すべくなされたものであ
って、正弦波交流波形の電圧のみを印加することによっ
て、印加電圧のピーク間電圧を低下させ、異常放電の危
険をともなうことなく、この種画像形成装置の高速化、
小型化に適合し得るようなコロナ放電装置を提供するこ
とを目的とするものである。
The present invention has been made to deal with such a situation, and by applying only a voltage with a sinusoidal AC waveform, the peak-to-peak voltage of the applied voltage can be reduced, without the risk of abnormal discharge. Speeding up this type of image forming device,
The object of the present invention is to provide a corona discharge device that can be adapted to miniaturization.

(2)発明の構成 (課題を解決する技術手段、その作用)上記の目的を達
成するため、本発明は、被放電面をコロナ放電によって
帯電あるいは除電するコロナ放電装置において、所望の
コロナ放電を得るべく、コロナ放電電極に、周波数fの
正弦波交流と、周波数(2n+1;nは正の整数)×f
の正弦波交流のうち周波数の小さいものを優先して、少
なくとも1つの正弦波交流とを重畳した電圧を印加する
ことを特徴とするものである。
(2) Structure of the invention (technical means for solving the problem and its operation) In order to achieve the above object, the present invention provides a corona discharge device that charges or removes electricity from a surface to be discharged by corona discharge. In order to obtain a corona discharge electrode, a sinusoidal alternating current with a frequency f and a frequency (2n+1; n is a positive integer)×f
The present invention is characterized in that among the sine wave alternating currents, priority is given to one having a small frequency, and a voltage in which at least one sine wave alternating current is superimposed is applied.

このように構成することによって、低いピーク間電圧に
よって、異常放電のおそれなく、所望の放電電流を維持
することができる。
With this configuration, a desired discharge current can be maintained with a low peak-to-peak voltage without fear of abnormal discharge.

(実施例の説明) 第1図は本発明を、回転円筒状の感光体をそなえた画像
形成装置に適用した実施例の要部側面図であって、紙面
に垂直方向にのび、図示矢印方向に回転する感光体1に
平行に、帯電線3と、これを囲繞するように配設された
シールドケース4とからなる帯電器2が近接配置しであ
る。
(Description of an Embodiment) FIG. 1 is a side view of a main part of an embodiment in which the present invention is applied to an image forming apparatus equipped with a rotating cylindrical photoreceptor. A charger 2 consisting of a charging wire 3 and a shield case 4 disposed to surround the charging wire 3 is disposed in parallel with the photoreceptor 1 which rotates.

この帯電器2によって感光体1の表面が一様に帯電され
、以後、周知の仕方で、これに静電潜像が形成され、こ
れにトナーが付与されてトナー像となり、該トナー像が
、紙などの転写材に当接された状態でこれに転写された
のち、この転写材が感光体から分離されるものとし、こ
れらの操作を実行するための現像器、転写帯電器、分離
除電器、クリーニング装置その他の部材が配設されてい
ることは云う迄もないが、それらはすべて省略しである
The surface of the photoreceptor 1 is uniformly charged by the charger 2, and an electrostatic latent image is formed thereon in a well-known manner.Toner is applied to this to form a toner image, and the toner image is After being transferred to a transfer material such as paper while being in contact with it, this transfer material is separated from the photoreceptor, and a developing device, transfer charger, and separation static eliminator are used to carry out these operations. , a cleaning device, and other members are provided, but they are all omitted.

上記のような構成において、本発明にあっては、前記放
電装置の帯電線3に直流電源79周波数fの正弦波交流
電源6および周波数mf (m=2n+1;nは正の整
数)の正弦波交流電源5が接続してあり、これによって
、帯電線3に、直流にこれら2つの交流を重畳した電圧
を印加するようになっている6図中符号Iは、帯電線に
流入する正負両成分の和電流である。
In the above configuration, in the present invention, the charging line 3 of the discharge device is connected to a DC power source 79, a sine wave AC power source 6 of frequency f, and a sine wave of frequency mf (m=2n+1; n is a positive integer). An AC power supply 5 is connected, thereby applying a voltage that is a superimposition of these two alternating currents and direct current to the charging wire 3.6 The symbol I in the figure indicates both positive and negative components flowing into the charging wire. is the sum current of

電源5.6のピーク間電圧の比と前記電流Iとの関係を
第2図に示す。
The relationship between the peak-to-peak voltage ratio of the power source 5.6 and the current I is shown in FIG.

横軸は電源6のピーク間電圧に対する電源5のそれの比
Aを、縦軸は前記電流Iを示すものとする。これから判
るように、前記比Aは1/10〜1/3が適当である。
The horizontal axis represents the ratio A of the peak-to-peak voltage of the power source 5 to the peak-to-peak voltage of the power source 6, and the vertical axis represents the current I. As can be seen, the appropriate ratio A is 1/10 to 1/3.

第3図に、電源6による周波数fの波形8(図示点yj
)と電源5による周波数3fの波形9(図示鎖線)との
重畳波形10(図示実線)を示しである。この場合、前
記比Aは0.175としである。
In FIG. 3, a waveform 8 of frequency f (illustrated point yj
) and a waveform 9 (shown as a chain line) of frequency 3f from the power source 5 superimposed on a waveform 10 (shown as a solid line). In this case, the ratio A is 0.175.

重畳の仕方は、図示のように、周波数fの電圧がOvの
ときに、周波数3fの電圧もOvとなるように同期をと
って、前者波形のピーク時に後者波形のピーク値がこれ
を打ち消すようにする。
As shown in the figure, when the voltage at frequency f is Ov, the voltage at frequency 3f is also synchronized so that it becomes Ov, and when the former waveform peaks, the peak value of the latter waveform cancels out this. Make it.

第4図にみるように、同じピーク値の正弦波形8”に比
して、本発明による印加電圧波形10が実効的に良好で
あることが判る。
As shown in FIG. 4, it can be seen that the applied voltage waveform 10 according to the present invention is effectively better than the sine waveform 8'' having the same peak value.

第5図は、正弦波(曲線a)、前記本発明による波形(
曲線b)および完全矩形波(曲線C)を印加した場合に
おける、ピーク間電圧と和電流Iとの関係を、実用範囲
(ピーク間電圧8〜14kV)において示すグラフであ
って、はぼ同量の和電流を得るのに、本発明によるとき
は、単純正弦波の場合に比して、ピーク間電圧で100
0ないし1500V低くできることが判る。
FIG. 5 shows a sine wave (curve a) and a waveform according to the present invention (curve a).
This is a graph showing the relationship between peak-to-peak voltage and sum current I in the practical range (peak-to-peak voltage 8 to 14 kV) when applying curve b) and a complete rectangular wave (curve C), with approximately the same amount. According to the present invention, compared to the case of a simple sine wave, the peak-to-peak voltage is 100
It can be seen that the voltage can be lowered by 0 to 1500V.

第6図は、第1図の装置における直流電源7の電圧を変
化させた場合における、差電流i (正成分電流−員成
分電流)の変化を示すグラフである。
FIG. 6 is a graph showing changes in the differential current i (positive component current - positive component current) when the voltage of the DC power supply 7 in the device shown in FIG. 1 is changed.

グラフ中、aは、重畳される交流にピーク間電圧11k
Vの正弦波を用いた場合、bは、ピーク間電圧9 .5
kVの、前述のような本発明による交流波形を用いた場
合を示している。
In the graph, a is the peak-to-peak voltage 11k of the superimposed alternating current.
When using a sine wave of V, b is the peak-to-peak voltage 9. 5
kV using an alternating current waveform according to the invention as described above.

図から判るように1本発明によるときは、同様の電流を
得るのに、より少ない直流バイアスですむことになり、
直流電源を小型化することができる。
As can be seen from the figure, according to the present invention, less DC bias is required to obtain the same current,
The DC power supply can be downsized.

具体的に云うと、感光体として有機半導体装置PC)を
用いて負帯電させる場合、これを−700vに帯電させ
るのに、はぼ−600pAの電流を感光体に流す必要が
あるが、このために、グラフ中の前記aにおいては一6
kVの直流バイアスが必要であるが、bにおいてはこれ
が一4kVですむことが判る。
Specifically, when negatively charging an organic semiconductor device (PC) as a photoreceptor, in order to charge it to -700V, it is necessary to flow a current of approximately -600 pA through the photoreceptor. In the above a in the graph, -6
Although a DC bias of kV is required, it can be seen that only 14 kV is required for b.

第7図は本発明を転写帯電器に適用した実施例を示すも
のである。
FIG. 7 shows an embodiment in which the present invention is applied to a transfer charger.

図示のように、転写帯電器11に、前記第1図々示の装
置と同様に、直流電源79周波数fの交流電源6および
周波数(2n+4)×fの交流電源5を接続して、これ
らを重畳して転写帯電器llに印加するものとする。
As shown in the figure, a DC power source 79, an AC power source 6 with a frequency f, and an AC power source 5 with a frequency (2n+4)×f are connected to the transfer charger 11, as in the device shown in the first figure. It is assumed that the voltages are applied to the transfer charger ll in a superimposed manner.

正極性現像剤とoPC感光体を用いる画像形成装置にお
いて、直流バイアス(O〜8kV)に。
In an image forming apparatus using a positive polarity developer and an oPC photoreceptor, a DC bias (0 to 8 kV) is applied.

周波数500Hz、ピーク間電圧10kVの正弦波交流
と、周波数1500Hz、ピーク間電圧が1 .8kV
の正弦波交流を重畳して印加したところ良好な転写を行
なうことができた。
A sine wave alternating current with a frequency of 500 Hz and a peak-to-peak voltage of 10 kV and a frequency of 1500 Hz and a peak-to-peak voltage of 1. 8kV
When a superimposed sinusoidal alternating current was applied, good transfer was achieved.

この種の装置においては、転写にさいして、感光体表面
のかぶりトナーが転写されたり、再転写が発生しないた
め、第8図に略示するように、重畳波形の正成分のピー
ク値が放電開始電圧(符号14で示す値)を越えないよ
うに、全体を負方向に偏倚させることが行なわれるが、
このような場合、低いピーク間電圧で有効なバイアスが
得られるので、上記のような操作をしても、負成分のピ
ーク値を異常放電を発生する危険にない範囲に抑えるこ
とができる。
In this type of device, during transfer, the fog toner on the photoreceptor surface is not transferred or retransfer occurs, so the peak value of the positive component of the superimposed waveform is the discharge as shown schematically in Figure 8. The whole is biased in the negative direction so as not to exceed the starting voltage (value indicated by reference numeral 14).
In such a case, an effective bias can be obtained with a low peak-to-peak voltage, so even if the above operation is performed, the peak value of the negative component can be suppressed within a range that does not pose the risk of abnormal discharge.

第9図は本発明を、残留電荷を除去する除電帯電器に適
用した実施例を示す要部側面図である。
FIG. 9 is a side view of a main part showing an embodiment in which the present invention is applied to a static eliminator that removes residual charges.

図示のように、除電帯電器20の帯電線19に前述の各
実施例のものと同様に、直流1周波数f、同(2n+1
)×fの各バイアス電源7,6.5を配設してこれらを
重畳印加するものとする、感光体としてアモルファスシ
リコン感光体を用い、これを図示矢印方向に440 a
rm/ secで回転させ、現像剤としては摩擦帯電量
−8JLc/grのトナーを使用してジャンピング行な
った。
As shown in the figure, the charging wire 19 of the static eliminator 20 is connected to the DC 1 frequency f, (2n+1
)×f bias power supplies 7, 6.5 are arranged to apply these biases in a superimposed manner. An amorphous silicon photoreceptor is used as the photoreceptor, and this is 440 a in the direction of the arrow shown in the figure.
Jumping was performed by rotating at rm/sec and using toner having a triboelectric charge of -8 JLc/gr as a developer.

電源6には周波数500Hz、ピーク間電圧1OkVの
正弦波交流を、電源5には周波数1500Hz、  ピ
ーク間電圧1.8kVの正弦波交流に重畳して合成後の
ピーク間電圧的9kVとして印加した。
A sine wave alternating current with a frequency of 500 Hz and a peak-to-peak voltage of 10 kV was applied to the power source 6, and a sine wave alternating current with a frequency of 1500 Hz and a peak-to-peak voltage of 1.8 kV was superimposed on the power source 5 to give a combined peak-to-peak voltage of 9 kV.

このような条件でベタ環のコピーをとると、感光体の電
位が約450Vの静電潜像が形成され、これが光量のな
い像露光部をすぎて現像部位に達すると、潜像電位は約
400Vに減衰する。
When a solid ring is copied under these conditions, an electrostatic latent image with a photoreceptor potential of approximately 450 V is formed, and when this passes through the image exposure area with no light intensity and reaches the development area, the latent image potential is approximately Attenuates to 400V.

これにトナーが供給されてトナー像が形成され、さらに
転写帯電器11をそなえた転写部位においてトナー像が
転写材に転写され、その後分離除電器12の作用で転写
材は感光体から分離されて不図示の定着部位に搬送され
るものとする。
Toner is supplied to this to form a toner image, and the toner image is further transferred to a transfer material at a transfer site equipped with a transfer charger 11. Thereafter, the transfer material is separated from the photoreceptor by the action of a separation static eliminator 12. It is assumed that the image is transported to a fixing site (not shown).

上記の分離過程後における感光体表面電位はおよそ+3
00vである0分離後、残留トナーが除去されて除電除
電器20によって除電が行なわれるが、該除電器20に
よるバイアスのうちの直流分を一500Vとしたとき、
除電後の感光体表面電位は+50Vまで落ちて充分使用
に酎えるものであった。
The surface potential of the photoreceptor after the above separation process is approximately +3
After 0 separation, which is 00V, the residual toner is removed and the static electricity is removed by the static eliminator 20. When the DC component of the bias by the static eliminator 20 is -500V,
After neutralization, the surface potential of the photoreceptor dropped to +50V, which was sufficient for use.

各帯電器に印加する正弦波交流電圧として、周波数fの
第1波形、周波数3fの第2波形に、さらに周波数5f
の第3波形を重畳し、第2波形のピーク間電圧を第1波
形のそれの0.24倍、第3波形のピーク間電圧を第1
波形のそれの0,07倍とした場合の合成波形をた第1
3図に略示した。
As a sinusoidal AC voltage applied to each charger, a first waveform of frequency f, a second waveform of frequency 3f, and a further waveform of frequency 5f are applied.
The peak-to-peak voltage of the second waveform is 0.24 times that of the first waveform, and the peak-to-peak voltage of the third waveform is
The first result is the composite waveform when it is 0.07 times that of the waveform.
It is schematically shown in Figure 3.

図中、符号8,9.26が夫々第1、第2、第3波形を
、符号27が合成波形を示す。
In the figure, numerals 8, 9, and 26 represent the first, second, and third waveforms, respectively, and numeral 27 represents the composite waveform.

このような波形のバイアスを第1図々示の装置に適用し
て、第5図の曲線dのような特性曲線が得られ、より良
好な効果が得られることが判つた。
It has been found that when such a bias waveform is applied to the device shown in FIG. 1, a characteristic curve such as curve d in FIG. 5 can be obtained, and better effects can be obtained.

また、第14図に、ピーク間電圧を、前記第1波形に対
する第2波形、第3波形の割合をそれぞれ0 .22,
0.05とした場合の合成波形を符号27の実線で略示
しである。このように印加バイアスのピーク近傍をさら
に平坦化することも可能である。
FIG. 14 also shows the peak-to-peak voltage and the ratio of the second waveform and third waveform to the first waveform, respectively, at 0. 22,
The composite waveform in the case of 0.05 is schematically shown by a solid line 27. In this way, it is also possible to further flatten the area near the peak of the applied bias.

以上のように、より高次の高調波を重畳させることによ
り波形が好適なものになる0反面、トランス数の増加に
よるコストアップ、高周波成分の漏洩など問題が生ずる
ことは当然としても1周辺技術の進展によってこれらの
問題が解決されれば、本発明の有効性は、さらに顕著な
ものがあると考えられる。
As mentioned above, although the waveform can be made more suitable by superimposing higher-order harmonics, it is natural that problems such as increased cost due to the increase in the number of transformers and leakage of high-frequency components may occur. If these problems are solved by the progress of the present invention, the effectiveness of the present invention will be even more significant.

(3)発明の詳細 な説明したように、本発明によるときは、静電的に画像
処理を行なう画像形成装置に使用するコロナ放電装置に
おいて、従来からひろく実用されていて取扱いも容易な
正弦波交流のみによって、所望の放電々流を維持しなが
ら、印加バイアスのピーク間電圧を低下させて異常放電
の発生を抑制でき、波形形成のための特段の付帯機構な
どを必要とせず装置全体の複雑化、大型化を避は得るの
で、画像形成装置の高速化、小型化によく適合すること
ができる。
(3) As described in detail, the present invention uses a sine wave, which has been widely used in practice and is easy to handle, in a corona discharge device used in an image forming apparatus that performs electrostatic image processing. By using only alternating current, it is possible to reduce the peak-to-peak voltage of the applied bias while maintaining the desired discharge current, thereby suppressing the occurrence of abnormal discharges, eliminating the need for special incidental mechanisms for waveform formation and reducing the complexity of the entire device. Since it is possible to avoid increasing the size and size of the image forming apparatus, it can be well adapted to speeding up and downsizing the image forming apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を回転円筒状の感光体をそなえた画像形
成装置の一次帯電器に適用した実施例を示す要部側面図
、 第2図は2種の印加交流電圧のピーク間電圧の比と和電
流の関係を示すグラフ、 第3図、第4図は2種の印加交流電圧とそれらの合成波
形を示す図、 第5図は各種印加交流電圧のピーク間電圧と得られる和
電流の関係を示すグラフ、 第6図は印加直流電圧と差電流の関係を示すグラフ、 第7図は本発明を転写帯電器に適用した実施例の要部側
面図、 第8図は同上印加バイアスの波形図、 第9図は本発明を除電器に適用した実施例を示す要部側
面図、 第10A図、第10B図は、それぞれ矩形波の入力波形
と出力波形を示す図、 第11図は正弦波のピーク部をスライスして平坦状にし
た場合の損失説明図、 第12図は同上損失の変化を示すグラフ、第13図、第
14図は3個の正弦波交流を合成した波形を略示する図
である。 1φ拳・感光体、2・・・−成帯電器、5・・・周波数
(2n+1)×fの交流電源、6・−・周波数fの交流
電源、7・Φ・直流電源、8.9・Φ・交流電源による
印加電圧波形、10・・・8と9の合成波形、11・$
・転写帯電器、12・赤・分離除電器、14・・・放電
開始電圧、20赤・・除電器。 第1図 工 第2図 第3図 第4図 Vpp (kV) 第71 第8図 μ 第9図 第10A図      第ios図 第11図
Fig. 1 is a side view of a main part showing an embodiment in which the present invention is applied to a primary charger of an image forming apparatus equipped with a rotating cylindrical photoreceptor, and Fig. 2 shows peak-to-peak voltages of two types of applied AC voltages. A graph showing the relationship between the ratio and the sum current. Figures 3 and 4 are diagrams showing two types of applied AC voltages and their combined waveforms. Figure 5 is the peak-to-peak voltage of various applied AC voltages and the resulting sum current. FIG. 6 is a graph showing the relationship between applied DC voltage and differential current. FIG. 7 is a side view of the main part of an embodiment in which the present invention is applied to a transfer charger. FIG. 8 is a graph showing the relationship between applied DC voltage and differential current. FIG. 9 is a side view of a main part showing an embodiment in which the present invention is applied to a static eliminator; FIGS. 10A and 10B are diagrams showing input waveforms and output waveforms of rectangular waves, respectively; FIG. 11 is an explanatory diagram of loss when the peak part of a sine wave is sliced into a flat shape, Figure 12 is a graph showing changes in loss as above, Figures 13 and 14 are waveforms that synthesize three sine wave alternating currents. FIG. 1 φ fist/photoreceptor, 2... - charger, 5... AC power supply with frequency (2n+1) x f, 6... AC power supply with frequency f, 7... φ DC power supply, 8.9. Φ・Applied voltage waveform by AC power supply, 10...Synthetic waveform of 8 and 9, 11・$
・Transfer charger, 12・Red・Separate static eliminator, 14...Discharge starting voltage, 20 Red...Static eliminator. Figure 1 Engineering Figure 2 Figure 3 Figure 4 Vpp (kV) 71 Figure 8 μ Figure 9 Figure 10A Figure IOS Figure 11

Claims (2)

【特許請求の範囲】[Claims] (1)被放電面をコロナ放電によって帯電または除電す
るコロナ放電装置において、 所望のコロナ放電を得るべく、コロナ放電電極に周波数
fの正弦波交流と、周波数(2n+1;nは正の整数)
×fの正弦波交流のうち周波数の小さいものを優先して
少なくとも1つの正弦波交流とを重畳した電圧を印加す
ることを特徴とするコロナ放電装置。
(1) In a corona discharge device that charges or neutralizes a surface to be discharged by corona discharge, in order to obtain the desired corona discharge, a sinusoidal alternating current of frequency f is applied to the corona discharge electrode, and a frequency (2n+1; n is a positive integer) is applied to the corona discharge electrode.
A corona discharge device characterized by applying a voltage superimposed with at least one sine wave alternating current, giving priority to one having a small frequency among xf sine wave alternating currents.
(2)周波数(2n+1)×fの正弦波交流のピーク間
電圧が、周波数fの交流の1/10ないし1/3である
特許請求の範囲第1項記載のコロナ放電装置。
(2) The corona discharge device according to claim 1, wherein the peak-to-peak voltage of the sinusoidal alternating current of frequency (2n+1)×f is 1/10 to 1/3 of the alternating current of frequency f.
JP12195188A 1988-05-16 1988-05-20 Corona discharge device Pending JPH01292369A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12195188A JPH01292369A (en) 1988-05-20 1988-05-20 Corona discharge device
EP89108768A EP0342600B1 (en) 1988-05-16 1989-05-16 Image forming apparatus with transfer material separating means
DE68928931T DE68928931T2 (en) 1988-05-16 1989-05-16 Image recorder with release agents for the transfer material
US08/396,072 US5526106A (en) 1988-05-16 1995-02-28 Image forming apparatus with transfer material separating means
HK98115380A HK1014058A1 (en) 1988-05-16 1998-12-24 Image forming apparatus with transfer material separating means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12195188A JPH01292369A (en) 1988-05-20 1988-05-20 Corona discharge device

Publications (1)

Publication Number Publication Date
JPH01292369A true JPH01292369A (en) 1989-11-24

Family

ID=14823955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12195188A Pending JPH01292369A (en) 1988-05-16 1988-05-20 Corona discharge device

Country Status (1)

Country Link
JP (1) JPH01292369A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281907A (en) * 2009-06-02 2010-12-16 Sharp Corp Transfer device and image forming apparatus
JP2013097330A (en) * 2011-11-04 2013-05-20 Ricoh Co Ltd Image forming apparatus
JP2016161850A (en) * 2015-03-04 2016-09-05 コニカミノルタ株式会社 Transfer device, image forming apparatus, and transfer control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576574A (en) * 1980-06-11 1982-01-13 Toshiba Electric Equip Corp Transistor inverter device
JPS60194794A (en) * 1984-03-15 1985-10-03 Toshiba Corp Controlling method for cycloconverter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576574A (en) * 1980-06-11 1982-01-13 Toshiba Electric Equip Corp Transistor inverter device
JPS60194794A (en) * 1984-03-15 1985-10-03 Toshiba Corp Controlling method for cycloconverter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281907A (en) * 2009-06-02 2010-12-16 Sharp Corp Transfer device and image forming apparatus
JP2013097330A (en) * 2011-11-04 2013-05-20 Ricoh Co Ltd Image forming apparatus
JP2016161850A (en) * 2015-03-04 2016-09-05 コニカミノルタ株式会社 Transfer device, image forming apparatus, and transfer control method

Similar Documents

Publication Publication Date Title
JPH01292369A (en) Corona discharge device
JPS6252296B2 (en)
JPH01133073A (en) Color electrophotographic method
JPS61153679A (en) Copying machine
JPS61278879A (en) Corona discharging device
JPS6336340Y2 (en)
JP2005331846A (en) Image forming apparatus
JPH05265362A (en) Electrophotographic device
JP3461235B2 (en) Electrophotographic equipment
JPS6114672A (en) Electrophotographic recording device
JPH06230645A (en) Multiple image forming device
JPH01287589A (en) Transfer material separating device for image forming device
JPH06289732A (en) Method and device for transferring electrostatically charged particles
JPH01191176A (en) Image forming device
JPS6180166A (en) Formation of color image
JPH01292377A (en) Transfer material separating device for image forming device
JPH03196172A (en) Transfer device for image forming device
JPH03109582A (en) Image recording method and device therefor
JPH0470784A (en) Transfer and separating device for image forming device
JPS5832706B2 (en) Exhaust oil
JPH09304991A (en) Two color electrophotography device
JPS6127569A (en) Image forming device
JPH01307776A (en) Color electrophotographic device
JPH05158326A (en) Image forming device
JPH04253080A (en) Destaticizer for transfer material carrier on image forming device