JPH01292377A - Transfer material separating device for image forming device - Google Patents

Transfer material separating device for image forming device

Info

Publication number
JPH01292377A
JPH01292377A JP12075288A JP12075288A JPH01292377A JP H01292377 A JPH01292377 A JP H01292377A JP 12075288 A JP12075288 A JP 12075288A JP 12075288 A JP12075288 A JP 12075288A JP H01292377 A JPH01292377 A JP H01292377A
Authority
JP
Japan
Prior art keywords
voltage
peak
waveform
transfer material
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12075288A
Other languages
Japanese (ja)
Inventor
Hiroaki Tsuchiya
土屋 廣明
Nobuyuki Ito
展之 伊東
Tooru Kuzumi
徹 葛見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12075288A priority Critical patent/JPH01292377A/en
Priority to DE68928931T priority patent/DE68928931T2/en
Priority to EP89108768A priority patent/EP0342600B1/en
Publication of JPH01292377A publication Critical patent/JPH01292377A/en
Priority to US08/396,072 priority patent/US5526106A/en
Priority to HK98115380A priority patent/HK1014058A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To reduce the disorder of a waveform, to lower a peak-to-peak voltage, and to reduce the size and weight of the device by superposing 1st and 2nd sine waveforms and the voltage applying to a separation electrostatic discharger and using the obtained voltage. CONSTITUTION:First and second sine wave high-voltage power sources 3 and 4 and a DC voltage power source 5 are connected to the discharge wire of the separation electrostatic discharger 8 in series and the power source 5 is driven by a corona current control circuit 7 with the signal of a corona current detecting circuit 6 to control the quantity of corona discharge. Further, the frequency of the power source 4 is set three times as high as that of the power source 3 and the powers of both power sources are superposed on over the other so that the voltage waveform of the former lowers the peak value of the voltage waveform of the latter. A toner image formed on the surface of a photosensitive body 1 reaches the transfer position where a transfer charger 2 is present while timed with the transfer supplied by the circuit 6 and the toner image on the photosensitive body 1 is transferred at this position to a transfer material. Then the transfer material is separated from the photosensitive body 1 by the corona discharging of a discharger 8 having the opposite polarity from in the transfer and further conveyed to a fixation position.

Description

【発明の詳細な説明】 (1)発明の目的 (産業上の利用分野) この発明は、静電複写機、同プリンタなどで静電転写プ
ロセスを利用する画像形成装置、とくにその転写材分離
装置に関するものである。
Detailed Description of the Invention (1) Purpose of the Invention (Field of Industrial Application) This invention relates to an image forming apparatus that uses an electrostatic transfer process in an electrostatic copying machine, a printer, etc., and particularly to a transfer material separation device thereof. It is related to.

(従来技術と解決すべき課題) 像担持体表面に形成した可転写トナー像に、紙などシー
ト状の転写材を当接させ、転写帯電器によって該トナー
像を転写材に静電的に転写する工程を包含する周知の画
像形成装置においては、転写時に転写材が獲得する電荷
のために、転写後も像担持体に吸着傾向となるので、こ
れを像担持体から積極的に分離する必要がある。
(Prior art and issues to be solved) A sheet-like transfer material such as paper is brought into contact with a transferable toner image formed on the surface of an image carrier, and the toner image is electrostatically transferred to the transfer material by a transfer charger. In well-known image forming apparatuses that include a step of transferring, the charge acquired by the transfer material during transfer tends to stick to the image carrier even after transfer, so it is necessary to actively separate this from the image carrier. There is.

このための分離手段として、転写後の位置に分離除電器
を配し、これによって転写材に、転写時とは逆極性の電
荷を付与して、転写時に得た電荷を中和除電するような
ものがすでに広く実用されている。
As a separation means for this purpose, a separation static eliminator is placed at the post-transfer position, and this applies a charge of opposite polarity to the transfer material during transfer to neutralize and eliminate the charge obtained during transfer. are already in widespread use.

このような分離除電器としては、交流に直流を重畳した
電圧によるコロナ放電を転写材裏面から印加するように
構成したものが汎用されており、その除電機能は、印加
電圧のピーク間電圧に依存し、これが大きいほど除電能
が高い。
A commonly used separation static eliminator is one that is configured to apply a corona discharge from the back side of the transfer material using a voltage of alternating current and direct current, and its static eliminator function depends on the peak-to-peak voltage of the applied voltage. However, the larger this value, the higher the static elimination ability.

したがって、近来におけるこの種の画像形成装置におけ
る作動の高速化傾向からすれば、転写材の分離も迅速に
行なうためには、分離除電器の印加電圧もそのピーク間
値を大きくすることが望ましいわけであるが、反面、こ
の値を大きくすると火花放電、沿面放電など異常放電を
発生しやすくなるので無制限に太きくすることはできな
い。
Therefore, considering the recent trend toward faster operation in this type of image forming apparatus, it is desirable to increase the peak-to-peak value of the voltage applied to the separation static eliminator in order to quickly separate the transfer material. However, on the other hand, if this value is increased, abnormal discharges such as spark discharge and creeping discharge are likely to occur, so it cannot be made thicker without limit.

また、この掃除電器の放電線は、転写材たる紙から発生
する微細な紙粉、装置内の浮遊トナーなどによって汚染
されやすく、前記ピーク間電圧を高くすると、この点か
らも異常放電を発生しやすくなるので好ましくない。
In addition, the discharge wire of this cleaning device is easily contaminated by fine paper dust generated from the paper used as the transfer material, floating toner inside the device, etc., and if the peak-to-peak voltage is increased, abnormal discharge may occur from this point as well. This is not preferable as it makes it easier.

さらにまた、この種の画像形成装置における近来の小型
軽量化による、特段の専門的知識のないより多数のユー
ザが気軽に使用するような傾向からすれば、可及的に低
いピーク間電圧で好適な分離性が得られるようなものが
望ましい。
Furthermore, given the recent trend toward smaller and lighter image forming apparatuses of this type, which allow more users without special expertise to easily use them, it is preferable to use as low a peak-to-peak voltage as possible. It is desirable to have a material that provides good separability.

とくに像担持体として、アモルファスシリコン感光体を
使用したものにおいては、異常放電によって過剰の電荷
が蓄積されやすく、このために感光体に絶縁破壊による
ピンホールを発生してその寿命を短かくする欠点がある
Particularly in image carriers that use amorphous silicon photoreceptors, excessive charge tends to accumulate due to abnormal discharge, which causes pinholes to occur in the photoreceptor due to dielectric breakdown, shortening its lifespan. There is.

ピーク間電圧を高くすることなく、実効的に印加電圧の
Sin波形と同等の出力を得る手段として、特開昭52
−42218号公報、同52−42219号公報、また
、特開昭54−139736号公報などみるように、矩
形波を利用したり、Sin波形のピーク部分をリミッタ
でつぶして平坦にした波形を利用するようなことが提案
されているが、これらは当然ながら高次の高調波を含ん
でおり、分離除電器のような高圧放電装置においては、
高調波成分の漏洩電流が増大するので電源容量を増大す
る必要性、リークによるノイズ対処などの問題が生起す
る。
As a means to effectively obtain an output equivalent to the sine waveform of the applied voltage without increasing the peak-to-peak voltage, JP-A-52
As seen in Publication No. 42218, No. 52-42219, and Japanese Unexamined Patent Publication No. 54-139736, a square wave is used, or a waveform made flat by flattening the peak part of the sine waveform with a limiter is used. However, these naturally contain high-order harmonics, and in high-pressure discharge devices such as separation static eliminators,
Since the leakage current of harmonic components increases, problems arise such as the need to increase the power supply capacity and noise countermeasures due to leakage.

また、理想的な矩形波、ピーク部を平面化したSin波
形を入力しても、実際の帯電器のコロナ放電においては
、空間容量、漏洩電流の関係から入力波形と同様の高圧
波形を得ることはできず、波形の歪みのために所望のピ
ーク間電圧は得られないのが普通である。
Furthermore, even if an ideal rectangular wave or a sine waveform with a flattened peak is input, in an actual charger corona discharge, a high voltage waveform similar to the input waveform cannot be obtained due to the relationship between space capacitance and leakage current. Usually, the desired peak-to-peak voltage cannot be obtained due to waveform distortion.

本発明はこのような事態に対処すべくなされたものであ
って、分離除電器の印加電圧のピーク間電圧を高めるこ
となく、異常放電の危険を減少し、この種画像形成装置
の高速化、小型化に適合し、分離機能もすぐれた転写材
分離装置を提供することを目的とするものである。
The present invention has been made in order to cope with such a situation, and reduces the risk of abnormal discharge without increasing the peak-to-peak voltage of the voltage applied to the separation static eliminator, and increases the speed of this type of image forming apparatus. It is an object of the present invention to provide a transfer material separation device that is suitable for downsizing and has an excellent separation function.

(2)発明の構成 (課題を解決する技術手段、その作用)上記の目的を達
成するために、本発明は、像担持体表面の可転写トナー
像に転写材を当接させて該トナー像を静電的に転写材に
転写したのち、この転写材を像担持体から分離除電器の
作用によって静電的に分離する画像形成装置において、
該分離除電器に印加する電圧波形を、第1の正弦波形と
、これの3倍の周波数を有する第2の正弦波形とを重畳
してなる電圧波形としだを特徴とする転写材分離装置で
ある。
(2) Structure of the invention (technical means for solving the problem, its effect) In order to achieve the above object, the present invention provides a method for bringing a transfer material into contact with a transferable toner image on the surface of an image carrier to In an image forming apparatus that electrostatically transfers the image to a transfer material and then electrostatically separates the transfer material from the image carrier by the action of a separation static eliminator,
A transfer material separating device characterized in that the voltage waveform applied to the separation static eliminator is a voltage waveform formed by superimposing a first sine waveform and a second sine waveform having a frequency three times that of the first sine waveform. be.

このように構成することによって、分離除電器に印加す
る電圧波形の乱れを可及的に小さくしてそのピーク値を
低下させるとともに、分離可能の範囲を拡大することが
できる。
With this configuration, disturbances in the voltage waveform applied to the separation static eliminator can be minimized to lower its peak value, and the separable range can be expanded.

(実施例の説明) 第1図は本発明を、回転円筒状のアモルファスシリコン
感光体をそなえた複写機に適用した実施例を示す要部側
面図であって、紙面に垂直方向にのびていて、矢印方向
に回転する感光体1に平行に転写帯電器29分離除電器
8が近接配置してあリ、感光体1表面に形成されたトナ
ー像は、搬−路6によって供給される転写(不図示)と
タイミングを合せて転写帯電器2の存する転写部位に到
達し、この部位において、感光体のトナー像は転写材に
転移する。
(Description of an Embodiment) FIG. 1 is a side view of a main part showing an embodiment in which the present invention is applied to a copying machine equipped with a rotating cylindrical amorphous silicon photoreceptor, which extends perpendicularly to the paper surface. , a transfer charger 29 and a separation static eliminator 8 are arranged close to each other in parallel with the photoreceptor 1 rotating in the direction of the arrow.The toner image formed on the surface of the photoreceptor 1 is transferred to the transfer ( (not shown), the toner image on the photoreceptor is transferred to the transfer material at this location.

転写後、転写材は分離除電器8によって転写時とは反対
の極性を有するコロナ放電によって除電されて感光体か
ら分離し、さらに不図示の定着部位に搬送されるものと
する。
After the transfer, the transfer material is charge-eliminated by a separation charge eliminator 8 by a corona discharge having a polarity opposite to that at the time of transfer, separated from the photoreceptor, and further conveyed to a fixing site (not shown).

なお、云う迄もなく、感光体1の周辺には、潜像形成手
段、現像装置、クリーニング装置その細画像形成に必要
な部材が配設しであるが、それらは本発明には直接関係
がないので、すべて省略しである。
Needless to say, a latent image forming means, a developing device, a cleaning device, and other members necessary for forming fine images are arranged around the photoreceptor 1, but these are not directly related to the present invention. Since there is no such thing, I have omitted everything.

上記のような装置において、本発明にあっては、前記分
離除電器8の放電線に、第1の正弦波高圧電源3.第2
の正弦波高圧電源4.直流電圧電源5を直列に接続し、
コロナ電流検知回路6の信号により、コロナ電流制御回
路7によって直流電圧電源を駆動してコロナ放電量を制
御するように構成し、前記第2の電源4の周波数を、第
1の電源3のそれの3倍とするとともに、前者の電圧波
形が後者の電圧波形のピーク値を低下させるように両者
を重畳するものとする。
In the above device, according to the present invention, a first sine wave high voltage power source 3. Second
4. Sine wave high voltage power supply. Connect the DC voltage power supplies 5 in series,
The corona current control circuit 7 drives the DC voltage power supply in response to the signal from the corona current detection circuit 6 to control the amount of corona discharge. The voltage waveform of the former is assumed to be three times as large as the voltage waveform of the latter, and the two are superimposed so that the peak value of the voltage waveform of the latter decreases.

以下に実験の結果について説明する。なお、前述のよう
に感光体にはアモルファスシリコンを用い、現像剤は負
極性トナー、転写電流は正極性である。
The results of the experiment will be explained below. As described above, amorphous silicon is used for the photoreceptor, negative polarity toner is used as the developer, and positive polarity is used for the transfer current.

第2図は、上記の装置の交流会の電圧波形を示すもので
あって、鎖線Aは前記電源3による正弦波波形で、ピー
ク間電圧は13.6kV、周波数f = 500Hzで
あり、点線Bは前記電源4による正弦波波形で、ピーク
間電圧は2.4kV、f=1500Hzとした。
FIG. 2 shows the voltage waveform of the above-mentioned device exchange, where the chain line A is the sine wave waveform generated by the power supply 3, the peak-to-peak voltage is 13.6 kV, and the frequency f = 500 Hz, and the dotted line B is a sine wave waveform generated by the power source 4, the peak-to-peak voltage was 2.4 kV, and f=1500 Hz.

AとBとの関係は、ピーク間電圧では、BはAの0.1
ないし0.33倍、好ましくは0,15〜0.25倍で
あるが、この場合、0.18倍とし、周波数はBはAの
3倍で、Aの一方の極性のピークがBの他方の極性のピ
ークに合致してAのピークが低下するように両者を重畳
した。
The relationship between A and B is that in peak-to-peak voltage, B is 0.1 of A.
The frequency is 0.33 to 0.33 times, preferably 0.15 to 0.25 times, but in this case it is 0.18 times, and the frequency B is 3 times that of A, and the peak of one polarity of A is the peak of the other polarity of B. The two were superimposed so that the peak of A was lowered to match the polarity peak of A.

実線CはA、Hの合成波形であって、ピーク間電圧は1
1.8kV、f工500Hzとなる。
Solid line C is a composite waveform of A and H, and the peak-to-peak voltage is 1.
The voltage will be 1.8kV and the frequency will be 500Hz.

このような印加電圧による作用について説明すると、従
来から用いられている波形A(ピーク間電圧13.6k
V)のみを分離除電器8に印加した場合のコロナ電流値
は正負青成分の和で550ILAで、波形C(ピーク間
電圧11.8kV)を印加した場合は525 ILAで
、はぼ同等のコロナ電流が得られた。この電流値は、A
波形ではピーク間電圧13.4kVに相当することにな
り、同様のコロナ電流を得るのに、C波形ではA波形よ
り、ピーク間電圧を1.6kV低くできることが判った
To explain the effect of such applied voltage, the conventionally used waveform A (peak-to-peak voltage 13.6k)
The corona current value when only V) is applied to the static eliminator 8 is the sum of positive and negative blue components, and is 550 ILA, and when waveform C (peak-to-peak voltage 11.8 kV) is applied, it is 525 ILA, which is almost the same corona current. A current was obtained. This current value is A
The waveform corresponds to a peak-to-peak voltage of 13.4 kV, and it was found that the peak-to-peak voltage can be lowered by 1.6 kV in the C waveform than in the A waveform to obtain the same corona current.

分離除電器8の放電開始電圧は正負極性ともほぼ13・
5kVであったので、正極側でみると、放電電界はA波
形の場合、(13,4/2)−3゜5 =3,2kV、
C波形の場合は、(11,8/2)−3,5=2.4k
Vとなり、C波形ノ場合の放電電界は、A波形の場合の
それの75%ですむことになる。
The discharge starting voltage of the separation static eliminator 8 is approximately 13.
5kV, so looking at the positive electrode side, the discharge electric field is (13,4/2)-3°5 = 3,2kV in the case of A waveform.
For C waveform, (11,8/2)-3,5=2.4k
V, and the discharge electric field in the case of the C waveform is 75% of that in the case of the A waveform.

つぎに、A波形でピーク間電圧13.4kV、C波形で
同11.8kVを印加し、直流電源5によってコロナ放
電の正負の割合を変化させ、即ち差電流を変化させて1
分離可能、再転写発生の範囲を調べた。
Next, a peak-to-peak voltage of 13.4 kV is applied to the A waveform, and 11.8 kV is applied to the C waveform, and the ratio of positive and negative corona discharge is changed by the DC power supply 5, that is, the difference current is changed to 1
The extent of separable, retranscriptional occurrence was investigated.

A波形においては、分離性は−10,Aより負側によっ
た範囲、再転写は一100gAより負側において発生し
たので、許容範囲は−10〜−100ルA、すなわち、
90ルAであった。
In the A waveform, the separation is -10, which is more negative than A, and the retransfer occurs at more negative than -100gA, so the tolerance range is -10 to -100gA, that is,
It was 90 ruA.

これが、C波形ではθ〜−120ILAで、許容範囲は
120鉢Aとなった。
This is θ~-120ILA in the C waveform, and the allowable range is 120 pots A.

このように、良好に分離できる範囲をひろげることがで
きる。
In this way, the range of good separation can be expanded.

第3図は分離除電器にグリッド電極を使用した場合を示
す実施例であって、前記の実施例のものと対応する部分
には同一の符号を付して示してあり、それらについては
、とくに必要のない限り説明を省略する。
FIG. 3 shows an embodiment in which a grid electrode is used in the separation static eliminator. Parts corresponding to those in the previous embodiment are designated by the same reference numerals, and special attention will be given to them. Omit explanations unless necessary.

図示の装置においては、分離除電器を2個使用し、転写
帯電器側の分離除電器の後半(転写材の進行方向下流側
)にのみグリッド電極9を配設してあり、これに符号l
Oで示す抵抗素子が接続しである。なお、抵抗の代りに
バイアス電源、非線形素子などを利用できることは勿論
である。
In the illustrated device, two separate static eliminators are used, and a grid electrode 9 is disposed only in the latter half (downstream side in the direction of movement of the transfer material) of the separate static eliminator on the transfer charger side.
A resistance element indicated by O is connected. Note that, of course, a bias power supply, a nonlinear element, etc. can be used instead of the resistor.

グリッド電極を使用する理由としては、分離放電の安定
化のほか、放電電流の分布を調整することによって、分
離性と再転写性のバランスを変化させ得ること、また、
グリッド電極に抵抗素子を接続することによってセルフ
バイアス作用をもたせ、グリッド電位を転写材電位に追
随させて除電効率を向上させ得ることなどがあげられる
The reason for using a grid electrode is that in addition to stabilizing the separation discharge, the balance between separation and retransferability can be changed by adjusting the discharge current distribution.
For example, by connecting a resistance element to the grid electrode, a self-biasing effect can be provided, and the grid potential can be made to follow the transfer material potential, thereby improving the static elimination efficiency.

上記の装置において、分離除電器の放電線に印加する波
形は2第図Cに相当するものであり、これとA波形の場
合との放電電流1分離再転写性についてみると、A波形
でピーク間電圧13.4に■のときのコロナ放電電流の
正負成分の和は1080 gAテ、C波形でピーク間電
圧11.8kVのときのそれは1040#LAでほぼ同
等の放電電流が得られた。
In the above device, the waveform applied to the discharge wire of the separation static eliminator corresponds to the one shown in Figure 2 C. Looking at the discharge current 1 separation retransferability between this and the case of A waveform, the A waveform has a peak. The sum of the positive and negative components of the corona discharge current when the peak-to-peak voltage was 13.4 to 1 was 1080 gAte, and when the peak-to-peak voltage was 11.8 kV in the C waveform, the sum was 1040 #LA, which gave almost the same discharge current.

また、人波形の分離再転写の許容範囲は+30〜−15
0gAで、その許容巾は1801LAであり、C波形で
はこれが+50〜−180gAであって、許容巾は23
0JLAであった。
Also, the allowable range for separating and retransferring human waveforms is +30 to -15
At 0 gA, the allowable width is 1801 LA, and for the C waveform, this is +50 to -180 gA, and the allowable width is 23
It was 0JLA.

このようにグリッド電極を使用する分離装置でも分離再
転写性が向上していることが判る。
It can thus be seen that the separation and retransferability is improved even in the separation apparatus using the grid electrode.

グリッド電極を使用するさいの弊害として、グリッド電
極の汚れによって、除電器の放電線とグリッド電極の間
で異常放電が発生することがあり、A波形の場合、ピー
ク間電圧13.4kVでは、約5万枚通紙後にスパーク
(異常放電)が発生したが、C波形、ピーク間電圧11
.8kVの場合には、約10万枚通紙後にもスパークの
発生はなかった。
A disadvantage of using grid electrodes is that dirt on the grid electrodes may cause abnormal discharge between the discharge wire of the static eliminator and the grid electrodes. Sparks (abnormal discharge) occurred after 50,000 sheets were passed, but C waveform, peak-to-peak voltage 11
.. In the case of 8 kV, no sparks were generated even after approximately 100,000 sheets were passed.

(3)発明の詳細 な説明したように、本発明によるときは、静電分離方式
をとる転写材分離装置において、分離除電器に印加する
電圧に前記第1、第2の正弦波形を重畳した電圧を使用
するので、波形の乱れが小さく、ピーク間電圧を低下さ
せるとともに、良好な転写材の分離可能範囲を拡大でき
るので、長期にわたって安定的に分離機能を維持するこ
とができ、画像形成装置の小型化、軽量化に適合せしめ
るに有効である。
(3) As described in detail, according to the present invention, in a transfer material separation device employing an electrostatic separation method, the first and second sine waveforms are superimposed on the voltage applied to the separation static eliminator. Since voltage is used, waveform disturbance is small, peak-to-peak voltage is reduced, and the range in which good transfer materials can be separated can be expanded, so the separation function can be stably maintained over a long period of time, and the image forming device This is effective in making it suitable for miniaturization and weight reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す複写機の要部側面図、 第2図は分離除電器に印加する電圧の波形を示す図、 第3図は本発明の他の実施例を示す要部側面図である。 1φ・・感光体、2・−・転写帯電器、3.4・・・交
流バイアス電源、5・・・直流高圧電源、8・・・分離
除電器、9・・・グリッド電極。 第1図 第2図 第3図
Fig. 1 is a side view of the main parts of a copying machine showing an embodiment of the present invention, Fig. 2 is a diagram showing the waveform of the voltage applied to the separation static eliminator, and Fig. 3 is a main part showing another embodiment of the invention. FIG. 1φ: Photoreceptor, 2: Transfer charger, 3.4: AC bias power supply, 5: DC high voltage power supply, 8: Separation static eliminator, 9: Grid electrode. Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)像担持体表面の可転写トナー像に転写材を当接さ
せて該トナー像を静電的に転写材に転写したのち、この
転写材を像担持体から分離除電器の作用によって静電的
に分離する画像形成装置において、 該分離除電器に印加する電圧波形を、第1の正弦波形と
、これの3倍の周波数を有する第2の正弦波形とを、第
2の正弦波形が第1の正弦波形のピーク値を低下させる
ように重畳してなる電圧波形とした転写材分離装置。
(1) After the transfer material is brought into contact with the transferable toner image on the surface of the image carrier and the toner image is electrostatically transferred to the transfer material, the transfer material is separated from the image carrier by the action of a static eliminator. In an image forming apparatus that electrically separates the voltage waveforms applied to the separation static eliminator, a first sine waveform and a second sine waveform having a frequency three times that of the first sine waveform are combined. A transfer material separation device that uses a voltage waveform that is superimposed to lower the peak value of a first sine waveform.
(2)第2の正弦波形のピーク間電圧が第1の正弦波形
のそれの1/10〜1/3である特許請求の範囲第1項
記載の転写材分離装置。
(2) The transfer material separation device according to claim 1, wherein the peak-to-peak voltage of the second sine waveform is 1/10 to 1/3 of that of the first sine waveform.
JP12075288A 1988-05-16 1988-05-19 Transfer material separating device for image forming device Pending JPH01292377A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12075288A JPH01292377A (en) 1988-05-19 1988-05-19 Transfer material separating device for image forming device
DE68928931T DE68928931T2 (en) 1988-05-16 1989-05-16 Image recorder with release agents for the transfer material
EP89108768A EP0342600B1 (en) 1988-05-16 1989-05-16 Image forming apparatus with transfer material separating means
US08/396,072 US5526106A (en) 1988-05-16 1995-02-28 Image forming apparatus with transfer material separating means
HK98115380A HK1014058A1 (en) 1988-05-16 1998-12-24 Image forming apparatus with transfer material separating means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12075288A JPH01292377A (en) 1988-05-19 1988-05-19 Transfer material separating device for image forming device

Publications (1)

Publication Number Publication Date
JPH01292377A true JPH01292377A (en) 1989-11-24

Family

ID=14794113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12075288A Pending JPH01292377A (en) 1988-05-16 1988-05-19 Transfer material separating device for image forming device

Country Status (1)

Country Link
JP (1) JPH01292377A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576574A (en) * 1980-06-11 1982-01-13 Toshiba Electric Equip Corp Transistor inverter device
JPS60194794A (en) * 1984-03-15 1985-10-03 Toshiba Corp Controlling method for cycloconverter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576574A (en) * 1980-06-11 1982-01-13 Toshiba Electric Equip Corp Transistor inverter device
JPS60194794A (en) * 1984-03-15 1985-10-03 Toshiba Corp Controlling method for cycloconverter

Similar Documents

Publication Publication Date Title
JPS614082A (en) Corona discharging device
EP0342600B1 (en) Image forming apparatus with transfer material separating means
JPH01292377A (en) Transfer material separating device for image forming device
JPS6243681A (en) Copying machine
JPS60216361A (en) Brush electrostatic charging and transferring device
JP3744323B2 (en) Power supply
JP2671041B2 (en) Image forming device
JPH01287589A (en) Transfer material separating device for image forming device
JPH01292369A (en) Corona discharge device
US4478870A (en) Corona image transfer method
JPS61133960A (en) Transfer device
JPS5952268A (en) Transfer paper separating method
JPS63286876A (en) Transfer material separating device for image forming device
JP2622966B2 (en) Image forming device
JP3250291B2 (en) Charging device, static eliminator, and image forming device
JPH05119634A (en) Transfer material separation device
JPH05107876A (en) Electrostatic charging device fitted to be used in image forming device
JPS61262750A (en) Image forming device
KR920007721B1 (en) Transcription deviding apparatus for electrography
JPS60220381A (en) Destaticizing device
JPS6353882A (en) Ionizer
KR890004107B1 (en) Transcription and seperation of mineograph
JPH0486780A (en) Electrostatic charge and destaticization device for image forming device
JPS6356674A (en) Cleaning method for transfer device
JP4013453B2 (en) High voltage power supply apparatus for transfer, transfer apparatus using the same, and image forming apparatus using the transfer apparatus