JPH01290718A - Method of controlling heat-treatment temperature - Google Patents

Method of controlling heat-treatment temperature

Info

Publication number
JPH01290718A
JPH01290718A JP11713388A JP11713388A JPH01290718A JP H01290718 A JPH01290718 A JP H01290718A JP 11713388 A JP11713388 A JP 11713388A JP 11713388 A JP11713388 A JP 11713388A JP H01290718 A JPH01290718 A JP H01290718A
Authority
JP
Japan
Prior art keywords
steel strip
temperature
temp
specific resistance
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11713388A
Other languages
Japanese (ja)
Inventor
Masaaki Ueno
上野 雅朗
Susumu Yoshioka
進 吉岡
Hiroshi Gondo
宏 権藤
Hideo Sakai
英夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP11713388A priority Critical patent/JPH01290718A/en
Publication of JPH01290718A publication Critical patent/JPH01290718A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/62Continuous furnaces for strip or wire with direct resistance heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To promptly detect the temp. of a material to be heat-treated and to enable temp. control without delay by measuring the specific resistance value of a steel strip in a heat treatment process, calculating the temp. thereof and increasing or decreasing the electric power to be applied to the steel strip according to the deviation from a set value. CONSTITUTION:The electric current from an AC power supply 14 in a direct electrical heating system is supplied through energizing terminals 2, 3 to the silicon steel strip 1 while the electric power is increased or decreased by an electric power control section 14. Joule heat is generated in the steel strip 1 by energization and the temp. thereof is increased by its own heat generation. The current and voltage values of this time are measured by an ammeter 9 and a voltmeter 8 and are sent to a specific resistance computing section 10 which computes the specific resistance. This specific resistance is sent to a temp. computing section 11, by which the temp. is calculated. The temp. or specific resistance value is put into a temp. program section 12 which emits the signal for increasing or decreasing the supply electric power according to the deviation from the set value so that the electric power is increased or decreased in the electric power control section 14. The temp. control without a delay with the high-temp. temp. elevation is thereby executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はケイ素鋼帯などの鋼帯の熱処理方法に係り、特
にケイ素鋼の薄板からなるケイ素鋼帯を、高速で加熱昇
温しで高温に保持し、しかも熱処理温度を極めて正確に
制御することのできるケイ素鋼帯の磁気特性改善のため
の熱処理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for heat treating steel strips such as silicon steel strips, and in particular, silicon steel strips made of thin sheets of silicon steel are heated at high speed and heated to a high temperature. The present invention relates to a heat treatment method for improving the magnetic properties of a silicon steel strip, which can maintain the same temperature and control the heat treatment temperature extremely accurately.

〔従来の技術〕[Conventional technology]

従来、被熱処理材として、例えばケイ素鋼帯に、その両
端から直接通電し、ケイ素鋼帯自身を発熱体として、高
速昇温で高温に加熱保持して冷却する熱処理を施し、磁
気特性の改善をはかるケイ素鋼帯の熱処理方法において
、従来はケイ素鋼帯の温度制御のための温度検出には、
通常熱電対による検出手段が用いられていた。すなわち
、被熱処理材であるケイ素鋼帯の表面に熱電対を接触さ
せ、被熱処理材の温度を検出して、被熱処理材に対する
通TIt電力を増減することにより温度制御を行ってい
た。
Conventionally, the material to be heat treated, for example, a silicon steel strip, is heat treated by applying electricity directly from both ends of the strip, using the silicon steel strip itself as a heating element, heating it at a high temperature, holding it at a high rate, and then cooling it to improve its magnetic properties. In the heat treatment method for measuring silicon steel strips, conventionally, temperature detection for controlling the temperature of silicon steel strips requires:
Usually, a thermocouple detection means was used. That is, a thermocouple is brought into contact with the surface of a silicon steel strip that is a material to be heat treated, the temperature of the material to be heat treated is detected, and the temperature is controlled by increasing or decreasing the TIt power applied to the material to be heat treated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者らは、先に、方向性の優れた、鉄損の低いケイ
素鋼帯を得るために種々検討した結果、方向性ケイ素鋼
帯を冷間圧延したのち、昇温速度を1.5〜b で昇温し、その後1000〜1400℃の高温で3時間
以上保持することにより、良好な磁気特性が得られるこ
とを見出し、特願昭62−3270号において発明を提
案した。
The present inventors previously conducted various studies in order to obtain a silicon steel strip with excellent directionality and low iron loss. After cold rolling a grain-oriented silicon steel strip, the heating rate was increased to 1.5. It was discovered that good magnetic properties could be obtained by raising the temperature to 1,000 to 1,400° C. for 3 hours or more, and proposed the invention in Japanese Patent Application No. 62-3270.

しかしながら、従来の熱処理方法、あるいは本発明者ら
による上記先願発明においては、熱処理温度を制御する
温度検出手段として熱電対を使用していたため1次に示
すような欠点があった。
However, the conventional heat treatment method or the above-mentioned invention by the present inventors had the following drawbacks because a thermocouple was used as a temperature detection means for controlling the heat treatment temperature.

(1)熱伝導により温度検出に遅れが生じ、高速な温度
変化に対して温度制御の追随性が極めて悪い。
(1) There is a delay in temperature detection due to heat conduction, and the ability of temperature control to follow rapid temperature changes is extremely poor.

(2)局部的な温度検出であるため、被熱処理材の全体
的な平均温度のコントロールが難しい。
(2) Since the temperature is detected locally, it is difficult to control the overall average temperature of the material to be heat treated.

(3) 1200℃以上の高温加熱の場合には、熱電対
の消耗が激しく経時劣化を起こすと共に、使用される熱
電対、例えば白金−白金ロジウム素線は高価格である。
(3) In the case of high-temperature heating of 1200° C. or higher, thermocouples are severely worn out and deteriorate over time, and the thermocouples used, such as platinum-platinum rhodium wires, are expensive.

本発明の目的は、上記従来技術における熱処理方法にお
いて熱電対を熱処理温度の検知手段とする欠点を解消し
、高価な熱雷対を使用することなく、高速加熱を行って
も温度検出に時間遅れの生じない、極めて正確に被熱処
理材の加熱温度を制御することのできるケイ素鋼帯など
の鋼帯の直接通電加熱法による熱処理温度の制御方法を
提供することにある。
An object of the present invention is to eliminate the drawbacks of using a thermocouple as a means for detecting the heat treatment temperature in the conventional heat treatment method described above, and to eliminate the need for using an expensive thermal lightning pair, and to solve the problem that there is a time delay in temperature detection even when high-speed heating is performed. It is an object of the present invention to provide a method for controlling the heat treatment temperature of a steel strip such as a silicon steel strip by a direct current heating method, which can control the heating temperature of a material to be heat treated very accurately without causing any of the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記本発明の目的は、被熱処理材である鋼帯を、該鋼帯
の両端部から直接通電して上記鋼帯自身の抵抗熱により
高速に加熱昇温し、高温に保持したあと冷却して鋼帯の
熱処理を行う熱処理温度の制御方法において、上記鋼帯
に施す設定の熱処理温度を鋼帯の比抵抗値に換算したも
のを温度基準となし、上記鋼帯の熱処理過程における比
抵抗値を計測して上記温度基準とした比抵抗値との差を
求め、該比抵抗値の差に応じて上記鋼帯に加える電力を
増減して鋼帯の温度制御を行うことにより、達成される
The object of the present invention is to heat a steel strip, which is a material to be heat-treated, by applying electricity directly from both ends of the steel strip to rapidly raise the temperature using the resistance heat of the steel strip itself, maintain the temperature at a high temperature, and then cool it. In the heat treatment temperature control method for heat treating a steel strip, the heat treatment temperature set for the steel strip is converted into the resistivity value of the steel strip as the temperature standard, and the resistivity value during the heat treatment process of the steel strip is determined as the temperature standard. This is achieved by measuring and determining the difference between the specific resistance value and the temperature reference value, and controlling the temperature of the steel strip by increasing or decreasing the electric power applied to the steel strip in accordance with the difference in the specific resistance value.

上記本発明の熱処理温度の制御方法を、例えばケイ素鋼
帯の磁気特性の改善に適用する場合には、上記ケイ素鋼
帯を非酸化性の雰囲気中で、1.5〜b 1400℃の高温で、3時間以上保持したあと所定の速
度で冷却することにより、達成される。
When applying the heat treatment temperature control method of the present invention to, for example, improving the magnetic properties of a silicon steel strip, the silicon steel strip is heated at a high temperature of 1.5 to 1400°C in a non-oxidizing atmosphere. , is achieved by cooling at a predetermined rate after holding for 3 hours or more.

〔作用〕[Effect]

例えば、ケイ素鋼の比抵抗は第2図に示すように、温度
によって直線的に変化する。ここで、比抵抗には、 R=に−・・・・・・(1) で定義される値であって、図に示すごとく、温度に比例
して増加し、 K=に0(1+αt)    ・・・・・(2)で示さ
れる。ここで、Rは抵抗(Ω)、Kはt’Cにおける比
抵抗(Ω・m)、Qは材料の長さ(m)。
For example, the resistivity of silicon steel changes linearly with temperature, as shown in FIG. Here, the specific resistance is a value defined by R = - (1), and as shown in the figure, increases in proportion to temperature, and K = 0 (1 + αt) ...It is shown in (2). Here, R is the resistance (Ω), K is the specific resistance at t'C (Ω・m), and Q is the length of the material (m).

Aは材料の断面積(m 2) * Koは0℃における
比抵抗(Ω・m ) F αは温度係数を表す。
A is the cross-sectional area of the material (m 2 ) *Ko is the specific resistance at 0°C (Ω·m ) F α is the temperature coefficient.

したがって、通電する電流および電圧値より、材料の平
均温度における抵抗および比抵抗を算出することができ
、これを温度に換算することにより時間遅れのない被熱
処理材の温度制御を行うことができる。
Therefore, the resistance and specific resistance at the average temperature of the material can be calculated from the applied current and voltage values, and by converting this into temperature, the temperature of the material to be heat treated can be controlled without time delay.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ、図面に基づいて説明す
る。
An embodiment of the present invention will be described below based on the drawings.

第1図は、本発明の熱処理温度制御方法を実施するため
の温度制御ブロック図である。図において、被熱処理材
である冷間圧延後のケイ素鋼帯1は、ボルト15で通電
端子2,3に接続される。通電端子2,3には1通電ケ
ーブル4,5により交流電源14から電流が、電力制御
部13を経由して供給される。また通電端子2,3には
、電圧測定ケーブル6.7が接続され、その他端に電圧
計8が接続されている。また、通電ケーブル5の途中に
は、電流計9が接続される。電圧計8および電流計9の
信号は、比抵抗演算部10へ接続され、温度演算部11
、温度時間プログラム部12を通り、電力制御部13に
送られる。
FIG. 1 is a temperature control block diagram for implementing the heat treatment temperature control method of the present invention. In the figure, a silicon steel strip 1 after cold rolling, which is a material to be heat treated, is connected to current-carrying terminals 2 and 3 with bolts 15. Current is supplied from an AC power supply 14 to the current-carrying terminals 2 and 3 via the power control unit 13 through single-carrying cables 4 and 5 . Further, a voltage measurement cable 6.7 is connected to the current-carrying terminals 2 and 3, and a voltmeter 8 is connected to the other end. Further, an ammeter 9 is connected to the middle of the energizing cable 5. The signals from the voltmeter 8 and the ammeter 9 are connected to a resistivity calculation section 10 and a temperature calculation section 11.
, and is sent to the power control section 13 through the temperature and time program section 12.

以上の構成による直接通電加熱方式において交流電源1
4からの電流は、電力制御部13で電力を増減させなが
ら、通電端子2,3を通り、ケイ素鋼帯1に供給される
。ケイ素鋼帯1は通電により、ジュール熱を発生し、自
らの発熱によって温度が上昇する。その時の電流および
電圧値が、電流計9および電圧計8によって計測され、
比抵抗演算部10へ送られることにより、次に示される
(3)式およびあらかじめ入力された断面積A、長さQ
と、上述の(1)式から比抵抗Kが演算される。
In the direct current heating method with the above configuration, AC power supply 1
The current from 4 passes through the current-carrying terminals 2 and 3 and is supplied to the silicon steel strip 1 while the power control section 13 increases or decreases the power. When the silicon steel strip 1 is energized, it generates Joule heat, and its temperature rises due to its own heat generation. The current and voltage values at that time are measured by an ammeter 9 and a voltmeter 8,
By being sent to the resistivity calculation unit 10, the following equation (3) and the cross-sectional area A and length Q input in advance are
Then, the specific resistance K is calculated from the above equation (1).

R=E/I        ・・・・・・(3)ここで
、Eは電圧(V)、Iは電流(A)、Rは被熱処理材の
抵抗(Ω)である。
R=E/I (3) where E is voltage (V), I is current (A), and R is resistance (Ω) of the material to be heat treated.

次に、この比抵抗には温度演算部11に送られ、上述の
(2)式により温度tが計算される。この温度あるいは
比抵抗が温度時間プログラム部12において、設定値と
の偏差に応じて供給電力の増減信号を発し、電力制御部
13において、電力を増減し被熱処理材の温度を制御す
る。
Next, this specific resistance is sent to the temperature calculation section 11, and the temperature t is calculated using the above-mentioned equation (2). This temperature or resistivity causes the temperature/time program section 12 to issue a signal to increase or decrease the supplied power according to the deviation from the set value, and the power control section 13 increases or decreases the power to control the temperature of the material to be heat treated.

次に、本実施例について図面を参照しながら。Next, the present embodiment will be explained with reference to the drawings.

さらに詳細に説明する。第3図は、本発明の実施例にお
いて用いた直接通電加熱方式の熱処理炉の断面構造を示
し、第4図は第3図の熱処理炉のI−I断面図を示す。
This will be explained in more detail. FIG. 3 shows a cross-sectional structure of a direct current heating type heat treatment furnace used in an embodiment of the present invention, and FIG. 4 shows a cross-sectional view taken along line II of the heat treatment furnace shown in FIG.

なお、第5図に、熱処理温度−時間設定プログラム曲線
に対する実際の熱処理温度−時間曲線を示す。
Incidentally, FIG. 5 shows an actual heat treatment temperature-time curve with respect to the heat treatment temperature-time setting program curve.

コイル状に巻かれた被熱処理材である冷間圧延後のケイ
素鋼帯1は、帯状の断熱性絶縁体18を、その隙間に巻
き込んだ状態で、耐熱性の断熱材よりなる台25上に配
置され、その両端はそれぞれ通電端子2,3に接続され
る。断熱性絶縁体18は、帯状アルミナファイバを使用
した。これらは、釣鐘形状の炉蓋17および炉床26に
よって構成されている熱処理炉16中に収容される。通
電端子2,3は絶縁シール材21により、それぞれ炉床
26と電気的に絶縁される。絶縁シール材21は気密材
としての役割も果たす。
The cold-rolled silicon steel strip 1, which is a heat-treated material wound into a coil, is placed on a table 25 made of a heat-resistant heat insulating material, with a strip-shaped heat-insulating insulator 18 wound into the gap. The two ends thereof are connected to current-carrying terminals 2 and 3, respectively. The heat-insulating insulator 18 used a band-shaped alumina fiber. These are housed in a heat treatment furnace 16 configured by a bell-shaped furnace lid 17 and a hearth 26. The current-carrying terminals 2 and 3 are electrically insulated from the hearth 26 by an insulating sealing material 21, respectively. The insulating seal material 21 also serves as an airtight material.

熱処理炉16のフランジ19の気密はOリングパツキン
20により保持される。そして、ガス供給バルブ22、
ガス排出バルブ23が設けられていて、それぞれガスの
供給および排出が行われる。
The flange 19 of the heat treatment furnace 16 is kept airtight by an O-ring packing 20. and a gas supply valve 22,
A gas discharge valve 23 is provided for supplying and discharging gas, respectively.

被熱処理材としては、厚さ0.30mmの市販の方向性
ケイ素鋼帯を0.11III11の厚さに冷間圧延して
、幅50mm 、長さ5mのものを1幅100nu++
、厚さ3mmの帯状のアルミナファイバで挟み、コイル
状に巻いて、その両端を通電端子2,3に接続して熱処
理炉16内に収納した。炉内の雰囲気としては、H2ガ
スをガス供給バルブ22より10 Q / min供給
し、ガス排出バルブ23より熱処理炉16外に排出した
As the material to be heat treated, a commercially available grain-oriented silicon steel strip with a thickness of 0.30 mm was cold rolled to a thickness of 0.11III11, and one width of 50 mm and a length of 5 m was 100 nu++.
It was sandwiched between strip-shaped alumina fibers having a thickness of 3 mm, wound into a coil, both ends of which were connected to current-carrying terminals 2 and 3, and housed in a heat treatment furnace 16. As the atmosphere in the furnace, H2 gas was supplied from the gas supply valve 22 at a rate of 10 Q/min, and was discharged to the outside of the heat treatment furnace 16 from the gas discharge valve 23.

これらの条件の下で被熱処理材は、第1図に示した温度
制御回路により、第5図の曲線Aに示す熱処理温度−時
間設定プログラム曲線に基づいて。
Under these conditions, the material to be heat treated is controlled by the temperature control circuit shown in FIG. 1 based on the heat treatment temperature-time setting program curve shown by curve A in FIG.

昇温速度lO℃/Sで1200℃まで昇温し、その温度
で7時間保持した。その結果、第5図の曲aBに示すご
とく、時間遅れに起因するオーバシュートも少なく、極
めて良好な熱処理温度制御を行うことができた。
The temperature was raised to 1200° C. at a heating rate of 10° C./S and held at that temperature for 7 hours. As a result, as shown in curve aB of FIG. 5, there was little overshoot due to time delay, and extremely good heat treatment temperature control could be performed.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく、本発明における被熱処理材
の熱処理温度の制御方法によれば、従来の熱雷対を用い
た場合のような熱伝導による温度計測の時間遅れがなく
、即座に被熱処理材の温度検出が可能で、これにより高
速昇温(例えば、3°C/ s以上)に対し、全く遅れ
のない温度制御が可能となり、直接通電加熱による熱処
理炉において、例えば、磁気特性にすぐれたケイ素鋼帯
を極めて容易に生産性よく製造することができる。
As explained in detail above, according to the method of controlling the heat treatment temperature of the material to be heat treated according to the present invention, there is no time delay in temperature measurement due to heat conduction unlike when using a conventional thermal lightning pair, and the material to be heat treated can be immediately treated. It is possible to detect the temperature of the material, and this makes it possible to control the temperature without any delay in response to rapid temperature increases (e.g., 3°C/s or more). It is possible to manufacture a silicon steel strip extremely easily and with high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において例示した温度制御ブロ
ック図、第2図はケイ素鋼の比抵抗と温度の関係を示す
グラフ、第3図は本発明の実施例において用いた直接通
電加熱方式の熱処理炉の断面構造を示す模式図、第4図
は第3図に示す熱処理炉のI−I断面図、第5図は本発
明の実施例における熱処理温度−時間設定プログラム曲
線と、実際の熱処理温度−時間曲線を示す図である。 1・・ケイ素鋼帯 2.3・・・通電端子 4.5・・・通電ケーブル 6.7・・・電圧測定ケーブル 8・・・電圧計     9・・・電流計10・・・比
抵抗演算部  11・・・温度演算部12・・・温度時
間プログラム部 13・・・電力制御部   14・・・交流電源15・
・・ボルト     16・・・熱処理炉17・・・炉
蓋      18・・断熱性絶縁体19・・・フラン
ジ    20・・・Oリングパツキン21・・・絶縁
シール材  22・・・ガス供給バルブ23・・・ガス
排出バルブ 25・・・台26・・・炉床 代理人弁理士  中 村 純之助 第1図 第2図 第3図 1−・ケイ素4g口ψ 2.3−一一ゑ乍壕チ 第4図 ヨ舟閏(分) 第5図
Fig. 1 is a temperature control block diagram exemplified in an embodiment of the present invention, Fig. 2 is a graph showing the relationship between specific resistance of silicon steel and temperature, and Fig. 3 is a direct current heating method used in an embodiment of the present invention. FIG. 4 is a schematic diagram showing the cross-sectional structure of the heat treatment furnace shown in FIG. FIG. 3 is a diagram showing a heat treatment temperature-time curve. 1... Silicon steel strip 2.3... Current carrying terminal 4.5... Current carrying cable 6.7... Voltage measurement cable 8... Voltmeter 9... Ammeter 10... Specific resistance calculation Section 11...Temperature calculation section 12...Temperature time program section 13...Power control section 14...AC power supply 15.
... Bolt 16 ... Heat treatment furnace 17 ... Furnace lid 18 ... Heat-insulating insulator 19 ... Flange 20 ... O-ring packing 21 ... Insulating sealing material 22 ... Gas supply valve 23 ... ... Gas discharge valve 25 ... Unit 26 ... Hearth agent Junnosuke Nakamura Fig. 1 Fig. 2 Fig. 3 Fig. 1 - Silicon 4g mouth ψ 2.3 - 11 ゑ Trench chi No. Figure 4 Boat leap (minutes) Figure 5

Claims (1)

【特許請求の範囲】 1、被熱処理材である鋼帯を、該鋼帯の両端部から直接
通電して上記鋼帯自身の抵抗熱により高速に加熱昇温し
、高温に保持したあと冷却して鋼帯の熱処理を行う熱処
理温度の制御方法において、上記鋼帯に施す設定の熱処
理温度を鋼帯の比抵抗値に換算したものを温度基準とな
し、上記鋼帯の熱処理過程における鋼帯の比抵抗値を計
測して上記温度基準とした比抵抗値との差を求め、該比
抵抗値の差に応じて上記鋼帯に加える電力を増減して鋼
帯の温度制御を行うことを特徴とする熱処理温度の制御
方法。 2、特許請求の範囲第1項において、被熱処理材として
ケイ素鋼帯を用い、非酸化性の雰囲気中で、1.5〜3
℃/s以上の高速で通電加熱昇温して、1000〜14
00℃の高温で、3時間以上保持したあと冷却すること
を特徴とする熱処理温度の制御方法。
[Scope of Claims] 1. A steel strip, which is a material to be heat treated, is heated and heated at a high temperature by directly applying electricity from both ends of the steel strip due to the resistance heat of the steel strip itself, and is then kept at a high temperature and then cooled. In the method of controlling the heat treatment temperature in which the steel strip is heat treated, the heat treatment temperature set for the steel strip is converted into the specific resistance value of the steel strip as the temperature reference, and the temperature of the steel strip during the heat treatment process of the steel strip is The method is characterized in that the temperature of the steel strip is controlled by measuring the specific resistance value, determining the difference between the specific resistance value and the specific resistance value set as the temperature reference, and increasing or decreasing the electric power applied to the steel strip according to the difference in the specific resistance value. A method of controlling the heat treatment temperature. 2. In claim 1, a silicon steel strip is used as the material to be heat treated, and in a non-oxidizing atmosphere, 1.5 to 3
1000 to 14
A method for controlling heat treatment temperature, characterized by holding the temperature at a high temperature of 00°C for 3 hours or more and then cooling it.
JP11713388A 1988-05-16 1988-05-16 Method of controlling heat-treatment temperature Pending JPH01290718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11713388A JPH01290718A (en) 1988-05-16 1988-05-16 Method of controlling heat-treatment temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11713388A JPH01290718A (en) 1988-05-16 1988-05-16 Method of controlling heat-treatment temperature

Publications (1)

Publication Number Publication Date
JPH01290718A true JPH01290718A (en) 1989-11-22

Family

ID=14704265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11713388A Pending JPH01290718A (en) 1988-05-16 1988-05-16 Method of controlling heat-treatment temperature

Country Status (1)

Country Link
JP (1) JPH01290718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004708A1 (en) * 1992-08-21 1994-03-03 Maschinenfabrik Niehoff Gmbh & Co. Kg Process and device for regulating the calorific output in a continuous annealing and processing line for continuously cast metal products
WO2010127646A3 (en) * 2009-05-04 2011-04-14 Institute Of Physics As Cr, V. V. I. A method of heat treatment and/or inspection of functional mechanical properties, particularly transformation strain and/or strength, of shape memory alloy filaments and apparatus for the application of this method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004708A1 (en) * 1992-08-21 1994-03-03 Maschinenfabrik Niehoff Gmbh & Co. Kg Process and device for regulating the calorific output in a continuous annealing and processing line for continuously cast metal products
US5700335A (en) * 1992-08-21 1997-12-23 Maschinenfabrik Niehoff Gmbh & Co. Kg Process and device for regulating the calorific output in a continuous annealing and processing line for continuously cast metal products
WO2010127646A3 (en) * 2009-05-04 2011-04-14 Institute Of Physics As Cr, V. V. I. A method of heat treatment and/or inspection of functional mechanical properties, particularly transformation strain and/or strength, of shape memory alloy filaments and apparatus for the application of this method

Similar Documents

Publication Publication Date Title
JPH01290718A (en) Method of controlling heat-treatment temperature
US3842239A (en) Power control circuit for resistance heating moving conductors
US2445866A (en) Apparatus for electric resistance heating of moving metallic strip
Mitchell et al. Some observations on the electrical and thermal properties of the slag-skin region in the electroslag remelting process
JPH0742515B2 (en) Induction heating control method for ERW pipe welds
JPH01299702A (en) Method and device for warm rolling
JPH04183822A (en) Method for heating metal wire
JPH05320852A (en) Alloying controller
JP3352732B2 (en) Die equipment for warm working
JPS60218431A (en) Method for cooling coil of host steel strip
RU2780703C2 (en) Method for control of polarity of thermoelectrodes
JPH0527479Y2 (en)
CA1099202A (en) Process and apparatus for the heat treatment of metallic strap coils
JP4649795B2 (en) Rolling conveyance roller insulation resistance monitoring method and system, and rolled material manufacturing method
JPH06306489A (en) Soaking device in continuous annealing line
JP2643990B2 (en) Diffusion furnace equipment
SU1638683A1 (en) Method for monitoring turbo generator transition to the asynchronous mode
JP3639712B2 (en) Coil heating device
JPH10110222A (en) Method for controlling foil temperature in metallic foil heat treatment apparatus
JPH03126810A (en) Electric conductive heating method
JPH0670259B2 (en) Continuous annealing method for steel strip
JPH06293908A (en) Electric heating device for metal strip
JPS6137917A (en) Method for controlling uniform heating of steel material
JPH08246067A (en) Apparatus for continuously annealing steel sheet and method therefor
Moore et al. The Ettingshausen-Nernst coefficient and transport properties of alumel from 200 to 473 K