JPH01290547A - Method for toughening ceramics - Google Patents

Method for toughening ceramics

Info

Publication number
JPH01290547A
JPH01290547A JP63122733A JP12273388A JPH01290547A JP H01290547 A JPH01290547 A JP H01290547A JP 63122733 A JP63122733 A JP 63122733A JP 12273388 A JP12273388 A JP 12273388A JP H01290547 A JPH01290547 A JP H01290547A
Authority
JP
Japan
Prior art keywords
zirconium
zirconia
ceramics
impregnated
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63122733A
Other languages
Japanese (ja)
Other versions
JPH0547497B2 (en
Inventor
Akira Matsui
明 松井
Tomoaki Ishiguro
智明 石黒
Sotohiro Takabayashi
外広 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYAMA PREF GOV
Toyama Prefecture
Original Assignee
TOYAMA PREF GOV
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYAMA PREF GOV, Toyama Prefecture filed Critical TOYAMA PREF GOV
Priority to JP63122733A priority Critical patent/JPH01290547A/en
Publication of JPH01290547A publication Critical patent/JPH01290547A/en
Publication of JPH0547497B2 publication Critical patent/JPH0547497B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve strength and toughness by producing a mold body or a presintered body with ceramics contg. a specified amt. of fine zirconia as starting material, impregnating a soln. contg. zirconium into the body, drying and sintering this impregnated body. CONSTITUTION:Zirconia of <=3mum average particle size is incorporated into ceramics such as alumina, mullite, zircon or silicon carbide as starting material by 3-20wt.% and a molded body or a presintered body is produced with the starting material. A soln. contg. zirconium or an aq. soln. of a zirconium salt such as zirconium oxychloride or zirconium nitride is impregnated into the body and this impregnated body is dried and sintered. By this method, residual compressive stress is generated in the surface layer of the resulting ceramic sintered body and ceramics having superior strength and toughness is obtd.

Description

【発明の詳細な説明】 本発明は、セラミックス焼結体の表面層に残留圧縮応力
を発生させ、強度向上と靭性の向上を同時に達成しよう
とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to generate residual compressive stress in the surface layer of a ceramic sintered body to simultaneously improve strength and toughness.

従来、セラミックスを強化する方法として、表面圧!8
層を構成する方法が知られている。例えばアルミナ焼結
体の表面に酸化クロムを固溶させる方法、チタニア表面
に酸1ヒスズを固溶させる方法が翔られているが、強度
向上効果は前者で2.7〜28.9!てあり不十分であ
る。また、急冷法により表面層に圧縮応力を与える方法
も提案されているが、制御が難しく再現性に乏しいため
実用(ヒされていない。また、近年ジルコニア分散セラ
ミックスにおいて、表面を研磨することやジルコニアの
安定化剤を高温熱処理により除去することにより表層の
ジルコニアを正方品系から単斜晶系に変態させその際の
体積膨張により表面に圧縮応力をかける方法が提案され
ている。しかし、これらの方法では、残留圧縮応力のか
かる厚さが薄くセラミックスの強度を支配する代表的な
衷面偏の深さに比較して、表層の残留圧縮応力のかかる
厚みが(歪めて薄いため、セラミックスの強化は不十分
である。  さらに、内層は安定化ジルコニアと母相セ
ラミックス、また外層は未安定ジルコニアと母相セラミ
ックスの複合焼結体からなる三層構造のセラミックスを
プレス成形や鋳込み成形で作製する方法も提案されてい
る。この方法によるセラミックスは表面圧縮層の厚みを
制御できるので、セラミックスの表面の1yよりも圧縮
層を厚くでき有効であるが、表面層と内層との界面で破
損するので強(ヒは不十分であるという欠点がある。こ
れは、まず表面層を成形し次いで内層を成形するため界
面に欠陥を含みやすいことと、さらに、表面層は圧縮応
力がまた内層には引っ張り応力が働き界面で応力の不連
続が生じるためである。また、製造しにくいことも欠点
である。
Conventionally, surface pressure has been used as a method to strengthen ceramics! 8
Methods of configuring layers are known. For example, a method of dissolving chromium oxide on the surface of an alumina sintered body and a method of dissolving 1-His acid on the surface of titania have been proposed, but the strength improvement effect of the former is 2.7 to 28.9! However, it is insufficient. In addition, a method of applying compressive stress to the surface layer by a rapid cooling method has been proposed, but it has not been put into practical use because it is difficult to control and has poor reproducibility. A method has been proposed in which the zirconia in the surface layer is transformed from a tetragonal system to a monoclinic system by removing the stabilizer by high-temperature heat treatment, and applying compressive stress to the surface due to the volume expansion at that time.However, these methods In this case, the thickness to which the residual compressive stress is applied is thin and the thickness to which the residual compressive stress is applied to the surface layer is thin (distorted and thin) compared to the depth of the typical back surface deflection that governs the strength of ceramics, so the strengthening of the ceramic is In addition, there is also a method of producing a three-layer ceramic structure by press molding or casting, in which the inner layer is made of stabilized zirconia and matrix ceramic, and the outer layer is a composite sintered body of unstabilized zirconia and matrix ceramic. Ceramics made using this method can control the thickness of the surface compressed layer, making the compressed layer thicker than 1y on the surface of the ceramic, which is effective. This is because the surface layer is molded first and then the inner layer is molded, so the interface tends to contain defects, and furthermore, the surface layer has compressive stress and the inner layer has tensile stress. This is because stress discontinuity occurs at the working interface.Another drawback is that it is difficult to manufacture.

本発明者らは、セラミックス成形体もしくは予備焼結体
(多孔質)にジルコニウム水溶液を含浸し、乾燥、焼結
させることを試みている際、正方品系ジルコニアと単斜
晶系ジルコニアの@量比が4以−ヒて、かつその粒子径
が0.1〜1μmで、かつ焼結体の表層濃度が高く内部
に向かって低濃度になるような濃度勾配でジルコニアが
母相中に分散している組織のセラミックスが得られ、そ
の強度は、母相だけで構成されるセラミックスに比較し
て大幅に向上することを見いだした。
When the present inventors attempted to impregnate a ceramic molded body or a pre-sintered body (porous) with a zirconium aqueous solution, dry it, and sinter it, the ratio of tetragonal zirconia to monoclinic zirconia 4 or more, and the particle size is 0.1 to 1 μm, and zirconia is dispersed in the matrix with a concentration gradient such that the concentration at the surface of the sintered body is high and the concentration decreases toward the inside. It was found that the strength of the ceramics was significantly improved compared to ceramics composed only of the matrix phase.

その後、破壊靭性を向上させるためさらに鋭意検討した
結果、ジルコニウム溶参αを含浸させるべき成形体また
は予備焼結体の原料に予め粒子径3μm以下のジルコニ
アを3〜20WT!含有させることにより、ジルコニア
は表面が高く内部に向かって低くなる濃度勾配をしてお
り、かつ単斜晶系/正方晶系の比も表面が高く内部に向
かって連続的に低くなる組織のセラミックスが得られ、
母相のみて構成されるセラミックスに比較して、強度と
共に大幅に破壊靭性も改善されることを見いだし・本発
明を完成するに至った。
After that, as a result of further intensive studies to improve fracture toughness, we found that 3 to 20 WT of zirconia with a particle size of 3 μm or less was added to the raw material of the compact or pre-sintered body to be impregnated with zirconium welding α! By including zirconia, the surface becomes high and the concentration gradient decreases toward the inside, and the monoclinic/tetragonal ratio also becomes ceramic with a structure that is high at the surface and continuously decreases toward the inside. is obtained,
The present inventors have discovered that the strength and fracture toughness are significantly improved compared to ceramics composed only of a matrix, and have completed the present invention.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

平均粒子径が3μ以下のジルコニア粒子をを3〜20u
t!含有する平均粒子径が3μm以下のアルミナ、ムラ
イト、ジルコン、窒化珪素、炭化珪素、サイアロンから
進ばれた一種または二種以上の混合物または化合物ある
いは焼成することによりこれらを生成するセラミ・ンク
ス粉体原料により所望の形状の成形体を形成する。
3~20u of zirconia particles with an average particle size of 3μ or less
T! A mixture or compound of one or more of alumina, mullite, zircon, silicon nitride, silicon carbide, and sialon containing an average particle size of 3 μm or less, or a ceramic powder raw material produced by firing them. A molded body having a desired shape is formed by this process.

平均粒子径を3μm以下と限定した理由は、それより大
きいと焼結後のジルコニアの平均粒子径が大きくなり単
科晶系に変態する際の体積膨張のため、母相セラミック
ス中に制御できないクラックを生じ強度が低下してしま
うことと、また母相セラミックスの粒子径が3μmを越
えると焼結温度が大幅に1昇して実用的でないためであ
る。
The reason why the average particle size is limited to 3 μm or less is that if it is larger than that, the average particle size of zirconia after sintering will increase and the volume will expand when it transforms into a monocrystalline system, which can cause uncontrollable cracks in the matrix ceramic. This is because the strength decreases, and when the particle size of the matrix ceramic exceeds 3 μm, the sintering temperature increases significantly by 1, making it impractical.

セラミックスの成形方法としては、セラミックスの成形
ζこ一般的に用いられているプレス法、スリップキャス
ト法、射出成形法等の成形方法が用いられる。CIP処
理を施すと粗大気孔が除去されるので一層好適である。
As a method for molding ceramics, commonly used methods for molding ceramics, such as a press method, a slip casting method, and an injection molding method, are used. CIP treatment is more suitable because coarse pores are removed.

そして必要に応して成形体を予備焼結する。予備焼結は
機械加工や取扱を容易にするための強度を付与する目的
で行うが、かさ密度が理論密度の70γ以下である必要
がある。
The molded body is then preliminarily sintered if necessary. Preliminary sintering is performed for the purpose of imparting strength to facilitate machining and handling, but it is necessary that the bulk density is 70γ or less, which is the theoretical density.

その理由は、かさ密度が70%以上では、焼結体中のジ
ルコニア濃度が低くなり強靭化の効果が少なくなるから
である。
The reason is that if the bulk density is 70% or more, the zirconia concentration in the sintered body will be low and the toughening effect will be reduced.

その後、成形体あるいは予備焼結体をオキシ塩化ジルコ
ニウム、硝酸ジルコニウム、酢酸ジルコニウム等のジル
コニウム含有溶液中に大気中または真空槽内で浸漬して
含浸処理する。含浸用の溶液の濃度は、濃すぎると粘性
が高く含浸し難くなる、一方、薄くなりすぎろと焼結体
中のジルコニア濃度が低くなり強靭化の効果が少なくな
るので、1〜4mol/lが好ましい。また、含浸処理
においては、含浸、乾燥を繰り返すことも好ましく、こ
れによって高濃度なジルコニア含浸体が得られろ。
Thereafter, the compact or pre-sintered body is impregnated by immersing it in a solution containing zirconium such as zirconium oxychloride, zirconium nitrate, or zirconium acetate in the air or in a vacuum tank. The concentration of the solution for impregnation should be 1 to 4 mol/l, because if it is too thick, the viscosity will be high and it will be difficult to impregnate, but if it is too thin, the zirconia concentration in the sintered body will be low and the toughening effect will be reduced. is preferred. Further, in the impregnation treatment, it is also preferable to repeat impregnation and drying, whereby a highly concentrated zirconia-impregnated body can be obtained.

かくして、含浸処理後、乾燥、焼結させることにより、
ジルコニアは表面が高く内部に向かって低くなる濃度勾
配をしており、かつ単斜晶系/正方品系の比も表面が高
く内部に向かって連続的に低くなる組織のセラミックス
が得られる。このセラミックスは、母相のみで構成され
ろセラミックスに比較して、強度と共に大幅に破壊靭性
も改善され、強靭(ヒする。
Thus, by drying and sintering after impregnation,
Zirconia has a concentration gradient that is high at the surface and decreases toward the inside, and a ceramic with a monoclinic/tetragonal ratio that is high at the surface and continuously decreases toward the inside can be obtained. This ceramic has significantly improved strength and fracture toughness compared to ceramics composed only of a matrix, making it tougher.

ここで、成形前に原料セラミックス粉体中に配合するジ
ルコニアの量は、3〜20wtχ好ましくは7〜15w
tχがが好適である。これは、多すぎると含浸処理の有
無にかかわらず表層部も内部も単科晶系が主体になり、
強度が弱くなる。一方、少なすぎろと、含浸処理の有無
にかかわらず表層部も内部も正方晶系が主体になり、靭
性の向北を11;I待し・雅いためである。
Here, the amount of zirconia blended into the raw ceramic powder before molding is 3 to 20 wtχ, preferably 7 to 15 w.
It is preferred that tχ. This means that if there is too much, monocrystalline systems will become the main component both on the surface and inside, regardless of whether or not impregnation is applied.
Strength becomes weaker. On the other hand, if it is too small, the surface layer and the interior will be mainly tetragonal, regardless of the presence or absence of impregnation treatment, and the toughness will improve.

本発明によるセラミックスは、マイクロクランクによる
高靭性1ヒのほかに、表層のジルコニアのかなりの量が
単科晶系に変態し体ffi膨張しているのに対し、内側
になるにつれて単斜晶系ジルコニアの量は連続的に減少
し内部は大半が正方品系ジルコニアのままであり体積変
化はないので、表面層には強力な圧縮応力が働き、強度
向上と靭性向ヒが同時に達成されたものと考えられる。
In addition to high toughness due to the microcrank, the ceramic according to the present invention has a large amount of zirconia in the surface layer transformed into a monoclinic crystal system and expands as a body, whereas as it becomes inner, monoclinic zirconia becomes larger. The amount of zirconia decreases continuously, and the interior remains mostly tetragonal zirconia with no change in volume, so it is thought that strong compressive stress acts on the surface layer, achieving both strength improvement and toughness improvement at the same time. It will be done.

従来ジルコニア分散強化セラミックスの製造時にジルコ
ニアの凝集を防いて均一分散させる技術は難しかったが
、本発明によれば、初期ジルコニアの濃度が低いため容
易に均一分散が可能となる。
Conventionally, during the production of zirconia dispersion-strengthened ceramics, it has been difficult to prevent zirconia from agglomerating and uniformly disperse the zirconia, but according to the present invention, uniform dispersion is easily possible because the initial zirconia concentration is low.

また、含浸処理するだけで強度を40℃以上また靭性を
100X以上同時に向丘させることができるので、産業
JO:、極めて有効である。
In addition, the strength can be increased by 40° C. or higher and the toughness can be increased by 100X or more just by impregnation treatment, which is extremely effective for industry.

以下、実施例により本発明を説明をする。The present invention will be explained below with reference to Examples.

「実施例1」 住友アルミニウム(株)!!アルミナAESIICY 
(平均粒子径0.5μm)90℃量部に第一希元素(株
)製未安定化ジルコニアUEP (平均粒子径0.2ヒ
m)10重量部を混合し、分散剤はD305を用い、2
wtLのステアリン酸エマルジョンと2,5νtXのワ
ックスエマルジョンを添加しボールミルにより24hr
湿式混合した。
“Example 1” Sumitomo Aluminum Co., Ltd.! ! Alumina AESIICY
(average particle size 0.5 μm) 10 parts by weight of unstabilized zirconia UEP (average particle size 0.2 μm) manufactured by Daiichi Kigenso Co., Ltd. was mixed with 90°C weight part, D305 was used as a dispersant,
Added wtL stearic acid emulsion and 2.5νtX wax emulsion and heated in a ball mill for 24 hours.
Wet mixed.

乾燥後、解砕し、−軸加圧成形法(成形圧カフ00Jf
/cm2)により4x4x36mm3の成形体を作製し
、1100℃て予@焼結した。80℃の純水100gr
にオキシ塩化ジルコニウムをl0Jrを溶解後、そのジ
ルコニウム塩溶液に予m 焼結体を入れ30分間含浸さ
せた。その後、直ちに1/1アンモニア水溶液中に4時
間浸漬し、次いて80℃で2[1r、120℃で2hr
乾燥した。10℃/minの速度で昇温し、1650°
Cてl h r bi結させ強靭化セラミックス(試料
l)を得た。
After drying, it is crushed and subjected to -axial pressure molding method (molding pressure cuff 00Jf
/cm2) to produce a molded body of 4x4x36mm3, and pre-sintered at 1100°C. 80℃ pure water 100g
After dissolving 10 Jr. of zirconium oxychloride in the solution, the sintered body was placed in the zirconium salt solution and impregnated for 30 minutes. After that, it was immediately immersed in a 1/1 ammonia aqueous solution for 4 hours, and then immersed in a 1/1 ammonia aqueous solution for 2 hours at 80℃ and 2 hours at 120℃.
Dry. Raise the temperature at a rate of 10°C/min to 1650°
A toughened ceramic (sample 1) was obtained by bonding the mixture.

また、対照として、含浸処理を行わず焼成温度が160
0℃である以外は、前間と同様な処理をして試02を作
製した。得られた試料は、常温で、 スパン距離20 
mm、クロスヘツド降下速度0.5mm/mir+の条
件で3点曲げ試験を行った。その結果を以下に示す。 
(単位Jf/mm2) 破壊靭性(!αは、 IF法により求めた。このときの
荷重は20kgfとした。
In addition, as a control, the firing temperature was 160℃ without impregnation treatment.
Sample 02 was prepared by performing the same treatment as in the previous step except that the temperature was 0°C. The obtained sample had a span distance of 20 at room temperature.
A three-point bending test was conducted under the conditions of 0.5mm/mir+ and a crosshead descending speed of 0.5mm/mir+. The results are shown below.
(Unit: Jf/mm2) Fracture toughness (!α) was determined by the IF method. The load at this time was 20 kgf.

その結果を以下に示す。 (単位MPa、Fm)「実施
例2」 住友アルミニウム(株)製アルミナAESIICY (
The results are shown below. (Unit: MPa, Fm) "Example 2" Alumina AESIICY (manufactured by Sumitomo Aluminum Co., Ltd.)
.

平均粒子径0.571m)と福島けい石を用いてムライ
トを合成し、ボールミルで48hr粉砕し、平均粒子径
2.571mの原料を調製した。その原料90重量部に
第一希元素(株)′IEJ未安定化ジルコニアEP(平
均粒子径1.0μm)10重量部を混合し、分散剤は0
305を用い、2wtLのステアリン酸エマルジョンと
2.5νtXのワックスエマルジョンヲ添加しボールミ
ルにより24hr湿式混合した。
Mullite was synthesized using Fukushima silica (with an average particle diameter of 0.571 m) and pulverized in a ball mill for 48 hours to prepare a raw material with an average particle diameter of 2.571 m. 10 parts by weight of Daiichi Kigenso Co., Ltd.'IEJ unstabilized zirconia EP (average particle size 1.0 μm) was mixed with 90 parts by weight of the raw material, and the dispersant was 0.
305, 2 wtL of stearic acid emulsion and 2.5 νtX of wax emulsion were added and wet-mixed for 24 hours using a ball mill.

乾燥後、解砕し、−軸加圧成形法(成形圧カフ00Kg
f/cm2)により4 x 4 x 36 m m 3
の成形体を作製し、1100°Cで予備焼結した。80
℃の純水100grにオキシ塩化ジルコニウムを1OJ
rを溶解後、そのジルコニウム塩溶液に予備焼結体を入
れ30分間含浸させた。その後、直ちにl/]アンモニ
ア水溶液中に4時間浸漬し、次いて80℃で2hr、1
20°Cて2hr乾燥した。lOoC/ minの速度
で昇温し、1650℃でlhr焼結させ強靭化セラミッ
クス(試料l)を得た。
After drying, crush it and use the -axial pressure molding method (molding pressure cuff 00 kg)
f/cm2) by 4 x 4 x 36 mm3
A molded body was prepared and pre-sintered at 1100°C. 80
1OJ of zirconium oxychloride in 100g of pure water at ℃
After dissolving r, the preliminary sintered body was placed in the zirconium salt solution and impregnated for 30 minutes. Thereafter, it was immediately immersed in l/] ammonia aqueous solution for 4 hours, then at 80°C for 2 hours, 1 hour.
It was dried at 20°C for 2 hours. The temperature was raised at a rate of 10oC/min and sintered at 1650°C for 1hr to obtain a toughened ceramic (sample 1).

また、対口aとして、含浸処理を行わず焼成11度が1
600’Cである以外は、前間と同様な処理をして試料
2を作製した。1尋られた試料は、$温て、スパン距j
t[20+nm、クロスへ・?ト降下速度0.5mm/
m(nの条件で3点曲げ試験を行った。その結果を以下
に示す。 (単位kgf1mrr12)破壊靭性値は、
 IF法により求めた。このときの荷重は20に3fと
した。
In addition, as a counter a, the firing temperature is 11 degrees without impregnation treatment.
Sample 2 was prepared in the same manner as in the previous step except that the temperature was 600'C. 1. The sample asked is heated by $ and span distance j
t[20+nm, to cross? descending speed 0.5mm/
A three-point bending test was conducted under the conditions of m (n). The results are shown below. (Unit: kgf1mrr12) The fracture toughness value is
Obtained using the IF method. The load at this time was 20.3f.

Claims (1)

【特許請求の範囲】[Claims]  平均粒子径3μm以下のジルコニアを3〜20wt%
含有するセラミックス原料で構成される成形体もしくは
予備焼結体にジルコニウム塩水溶液もしくは含ジルコニ
ウム溶液を含浸させ、乾燥後焼結することを特徴とする
セラミックスの強化方法
3 to 20 wt% zirconia with an average particle diameter of 3 μm or less
A method for strengthening ceramics, which comprises impregnating a molded body or pre-sintered body composed of a ceramic raw material containing a zirconium salt aqueous solution or a zirconium-containing solution, and sintering it after drying.
JP63122733A 1988-05-19 1988-05-19 Method for toughening ceramics Granted JPH01290547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63122733A JPH01290547A (en) 1988-05-19 1988-05-19 Method for toughening ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63122733A JPH01290547A (en) 1988-05-19 1988-05-19 Method for toughening ceramics

Publications (2)

Publication Number Publication Date
JPH01290547A true JPH01290547A (en) 1989-11-22
JPH0547497B2 JPH0547497B2 (en) 1993-07-16

Family

ID=14843242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63122733A Granted JPH01290547A (en) 1988-05-19 1988-05-19 Method for toughening ceramics

Country Status (1)

Country Link
JP (1) JPH01290547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108472110A (en) * 2015-12-28 2018-08-31 登士柏西诺德公司 Method for producing formed body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108472110A (en) * 2015-12-28 2018-08-31 登士柏西诺德公司 Method for producing formed body
CN108472110B (en) * 2015-12-28 2020-12-29 登士柏西诺德公司 Method for producing molded bodies

Also Published As

Publication number Publication date
JPH0547497B2 (en) 1993-07-16

Similar Documents

Publication Publication Date Title
Greil et al. Sintering and HIPping of silicon nitride-silicon carbide composite materials
JPS6117468A (en) Ceramic products
JPH0222175A (en) Production and sintering of reaction bonded silicon nitride composite material containing silicon carbide whisker or silicon nitride powder
US5312787A (en) Ceramics composite material and method of producing the same
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
EP0410601B1 (en) Composite ceramic material
JPH01290547A (en) Method for toughening ceramics
EP0515574B1 (en) Method of making large cross-section injection molded or slip cast ceramics shapes
CA2074524A1 (en) Method of making large cross section injection molded or slip cast ceramic shapes
JPH0236554B2 (en)
JPH09208328A (en) Porous silicon nitride-based ceramics having high strength and low thermal conductivity and its production
WO1989001923A1 (en) Magnesia partially-stabilized zirconia ceramics and process for making the same
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JPH07291722A (en) Production of ceramics sintered compact
JPH0380153A (en) Manufacture of ziroconia-based ceramic
JP3287202B2 (en) Silicon nitride ceramic composite and method for producing the same
Uchikoshi et al. Preparation and sintering of silica-doped zirconia by colloidal processing
JP2579322B2 (en) Titanium carbide / silicon carbide whisker / zirconia composite sintered body and method for producing the same
JPH0610115B2 (en) Manufacturing method of composite ceramics
EP0383933A1 (en) Ceramic composite material and process for its production
JP3163704B2 (en) Partially stabilized zirconia sintered body
JPH038775A (en) Production of ceramic sintered compact
WO1989003371A1 (en) One step sinter/hip processing of ceramics
JPH0872032A (en) Manufacture of fiber reinforced ceramics
JPH0667782B2 (en) Al (2) O (3) Base ceramic material and manufacturing method thereof