JPH01290206A - Fe-based dust core - Google Patents

Fe-based dust core

Info

Publication number
JPH01290206A
JPH01290206A JP63300686A JP30068688A JPH01290206A JP H01290206 A JPH01290206 A JP H01290206A JP 63300686 A JP63300686 A JP 63300686A JP 30068688 A JP30068688 A JP 30068688A JP H01290206 A JPH01290206 A JP H01290206A
Authority
JP
Japan
Prior art keywords
elements
magnetic
powder
group
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63300686A
Other languages
Japanese (ja)
Inventor
Masami Okamura
正巳 岡村
Takao Sawa
孝雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63300686A priority Critical patent/JPH01290206A/en
Priority to DE68921021T priority patent/DE68921021T2/en
Priority to EP89304926A priority patent/EP0342922B1/en
Priority to KR1019890006739A priority patent/KR930011234B1/en
Publication of JPH01290206A publication Critical patent/JPH01290206A/en
Priority to US07/711,415 priority patent/US5178689A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Abstract

PURPOSE:To obtain an Fe-based dust core whose saturation magnetic flux density is high in a high-frequency region, whose soft magnetic characteristic is excellent and which can be shaped arbitrarily by using an alloy powder having a fine crystal particle of a specific composition. CONSTITUTION:An alloy powder expressed by Formula I and having a fine crystal particle is used. In Formula I, M represents at least one or more kinds selected from group IVa elements, group Va elements and group VIa elements in the periodic table, and M represents at least one or more elements selected from Mn, Co, Ni, Al and elements of a platinum group. In addition, the following conditions are set: 3<a<=8; 0.1<b<=8; 0<=c<=15; 8<=d<=22; 3<=e<=15; 15<=d+e<=28. By this setup, it is possible to obtain an Fe-based dust core whose saturation magnetic flux density is high, whose soft magnetic characteristic in a high frequency is excellent and which can be shaped arbitrarily.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、Fe基圧粉磁心に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a Fe-based powder magnetic core.

(従来技術) 従来から、スイッチングレギュレータなど高周波で使用
する磁心としては、パーマロイ、フェライトなどの結晶
質材料が用いられている。
(Prior Art) Crystalline materials such as permalloy and ferrite have conventionally been used as magnetic cores used in high frequency applications such as switching regulators.

しかしながら、パーマロイは比抵抗が小さいので高周波
での鉄損が大きくなる。またフェライトは高周波での損
失は小さいが、磁束密度もせいぜい5000 Gと小さ
く、そのため大きな動作磁束密度での使用時にあっては
、飽和に近くなりその結果鉄損が増大する。近時、スイ
ッチングレギュレータに使用される電源トランス、平滑
チョークコイル、コモンモードチョークコイルなど高周
波で使用されるトランスにおいては、形状の小形化が望
まれているが、その場合、動作磁束密度の増大が必要と
なるため、フェライトの鉄損増大は実用上大きな問題と
なる。
However, since permalloy has a low resistivity, iron loss at high frequencies increases. Further, although ferrite has a small loss at high frequencies, its magnetic flux density is also small, at most 5000 G, and therefore, when used at a large operating magnetic flux density, it approaches saturation, resulting in an increase in iron loss. Recently, there has been a desire to reduce the size of transformers used at high frequencies, such as power transformers used in switching regulators, smoothing choke coils, and common mode choke coils. Therefore, the increase in iron loss of ferrite becomes a big problem in practice.

このため、結晶構造を持たない非晶質磁性合金が、高透
磁率、低保磁力など優れた軟磁気特性を示すので最近注
目を集めて一部実用化されている。
For this reason, amorphous magnetic alloys that do not have a crystalline structure have recently attracted attention and have been put into practical use in some cases because they exhibit excellent soft magnetic properties such as high magnetic permeability and low coercive force.

これらの非晶質磁性合金は、Fe、Co、N1などを基
本とし、÷れに非晶質化元素(メタロイド)としてP%
 CS8% S i% Afi% Geなどを包含する
ものである。
These amorphous magnetic alloys are based on Fe, Co, N1, etc., and P% as an amorphous element (metalloid).
This includes CS8% Si% Afi% Ge and the like.

しかしながら、これら非晶性質磁性合金の全てが高周波
領域で鉄損が小さいというわけではない。
However, not all of these amorphous magnetic alloys have small iron loss in the high frequency range.

例えば、Fe基非晶質合金は、安価であり50〜60H
zの低周波領域ではケイ素鋼の約174という非常に小
さい鉄損を示すが、lO〜50KHzという高周波領域
にあっては著しく大きな鉄損を示し、とてもスイッチン
グレギュレータ等の高周波領域での使用に適合するもの
ではない。これを改善するために、Feの一部をNbS
Mo、Cr等の非磁性金属で置換することにより低磁歪
化し、低鉄損、高透磁率を図っているが、例えば樹脂モ
ールド時の樹脂の硬化収縮等による磁気特性の劣化も比
較的大きく、高周波領域で用いられる軟磁性材料として
は、充分な特性を得られるに至っていない。
For example, Fe-based amorphous alloys are inexpensive and 50~60H
In the low frequency range of z, it shows a very small iron loss of about 174 compared to silicon steel, but in the high frequency range of 10 to 50KHz, it shows a significantly large iron loss, making it very suitable for use in high frequency ranges such as switching regulators. It's not something you do. In order to improve this, some of the Fe was replaced with NbS.
By substituting non-magnetic metals such as Mo and Cr, magnetostriction is reduced, and low core loss and high magnetic permeability are achieved, but the magnetic properties are also relatively significantly deteriorated due to curing shrinkage of the resin during resin molding, for example. As a soft magnetic material used in a high frequency region, sufficient characteristics have not yet been obtained.

一方、Co基非晶質合金は、高周波領域で低鉄損、高角
形比が得られるため可飽和リアクトルなどの電子機器用
磁性部品に実用化されるが、コストが比較的高いもので
ある。
On the other hand, Co-based amorphous alloys have low core loss and high squareness ratios in the high frequency range, and are therefore put to practical use in magnetic parts for electronic devices such as saturable reactors, but they are relatively expensive.

また、圧粉磁心の技術分野からすると、薄帯に比べ種々
の形状を簡単に実現できることから鉄粉ダストコア、M
Oパーマロイダストコアなどがノイズフィルタやチョー
クコイルに用いられているか、鉄損が比較的大きく、電
源の高周波化に対して問題があった。
In addition, from the technical field of powder magnetic cores, iron powder dust cores, M
O permalloy dust cores and the like are used in noise filters and choke coils, and have relatively large iron losses, which poses a problem for higher frequency power supplies.

(発明が解決しようとする課題) 以上に述べたように、Fe基非晶質合金は安価な軟磁性
材料でありながら、磁歪が比較的大きく、CO基非晶質
合金に比べ鉄損、透磁率とも劣っており、高周波領域に
おける用途には問題があった。
(Problems to be Solved by the Invention) As described above, although Fe-based amorphous alloys are inexpensive soft magnetic materials, they have relatively large magnetostriction, and have lower iron loss and permeability than CO-based amorphous alloys. It also has poor magnetic property, which poses a problem for use in high frequency ranges.

一方Co基非晶質合金は磁気特性は良好であるものの、
素材の値段が高いため工業上有利ではなかった。
On the other hand, although Co-based amorphous alloys have good magnetic properties,
It was not industrially advantageous due to the high cost of the material.

また、圧粉磁心として用いられていた材料も、鉄損が比
較的大きく、電源の高周波化に対して問題があった。
In addition, the materials used for the powder magnetic core also had relatively large core losses, which caused problems with higher frequency power supplies.

したがって本願発明は、上記問題点に鑑み、高周波領域
において高飽和磁束密度で優れた軟磁気特性を有し、種
々の形状が可能なFe基圧粉磁心を提供することを目的
とする。
Therefore, in view of the above problems, it is an object of the present invention to provide an Fe-based powder magnetic core that has excellent soft magnetic properties with high saturation magnetic flux density in a high frequency region and can be formed into various shapes.

[発明の概要] (課題を解決するための手段) 上記目的を達成するためにFe基合金について種々検討
を重ねた結果、一般式 %式% から選ばれる少なくとも1種以上 M−;Mn、Co、Ni、AJ!、白金属元素から選ば
れる少なくとも1種以上 3<a≦8 0.1<b≦8 0≦c≦15 8≦d≦22 3≦e≦15 15≦d+e≦28 で表わされ、微細結晶粒を有する合金粉末が、優れた特
性を有することを初めて見い出し本発明に至ったのであ
る。
[Summary of the Invention] (Means for Solving the Problems) In order to achieve the above object, as a result of various studies on Fe-based alloys, at least one member selected from the general formula % M-; Mn, Co , Ni, AJ! , at least one selected from platinum metal elements: 3<a≦8 0.1<b≦8 0≦c≦15 8≦d≦22 3≦e≦15 15≦d+e≦28, and is a fine crystal. It was discovered for the first time that alloy powder having grains has excellent properties, leading to the present invention.

本発明は上記組成を有する合金粉末に特に微細結晶粒を
存することを特徴とする 特に微細結晶粒は、合金中に面積比で30%以上存在す
ることが好ましく、さらには前記微細結晶粒中に50〜
300Aの結晶粒が80%以上存在することが好ましい
The present invention is characterized in that particularly fine crystal grains are present in the alloy powder having the above composition. In particular, it is preferable that the fine crystal grains exist in the alloy in an area ratio of 30% or more, and furthermore, the fine crystal grains are present in the alloy powder in an area ratio of 30% or more. 50~
It is preferable that 80% or more of 300A crystal grains exist.

以下に、本発明合金の組成限定理由および微細結晶粒の
限定理由について説明する。
The reason for limiting the composition of the alloy of the present invention and the reason for limiting the fine crystal grains will be explained below.

まず組成限定理由について説明する。First, the reason for limiting the composition will be explained.

Cuは耐食性を高め、結晶粒の粗大化を防ぐと共に、鉄
損、透磁率など軟磁気特性を改善するのに有効な元素で
あるが、あまり少ないと添加の効果が得られず、逆にあ
まり多いと磁気特性の劣化を生じるために、その範囲を
3を越えて8原子%以下とした。特に圧粉磁心の場合C
uが増大することにより充填率が増加するので好ましい
。好ましくは3を越えて5原子%以下である。
Cu is an effective element for increasing corrosion resistance, preventing coarsening of crystal grains, and improving soft magnetic properties such as iron loss and magnetic permeability. If the content is too large, the magnetic properties deteriorate, so the range was set to exceed 3 and be below 8 atomic %. Especially in the case of powder magnetic core C
This is preferable because the filling rate increases as u increases. Preferably it is more than 3 and less than 5 atomic %.

Mは結晶粒径の均一化に有効であると共に、磁歪および
磁気異方性を低減させ軟磁気特性の改善および温度変化
に対する磁気特性の改善に有効な元素であるが、その量
があまり少ないと添加の効果が得られず、逆にあまり多
いと飽和磁束密度が低くなるため、その量を0.1〜8
原子%とした。
M is an element that is effective in making the crystal grain size uniform, reducing magnetostriction and magnetic anisotropy, and improving soft magnetic properties and magnetic properties against temperature changes, but if its amount is too small, The effect of addition cannot be obtained, and conversely, if too much is added, the saturation magnetic flux density will be low, so the amount should be adjusted to 0.1 to 8
Expressed as atomic %.

好ましくは1〜7原子%、さらに好ましくは1.5〜5
原子%である。ここでMにおける各添加元素は上記効果
と共にさらにそれぞれ、IVa族元素は最適磁気特性を
得るための熱処理条件の範囲の拡大、Va族元素は耐脆
化性の向上および切断等の加工性の向上、VIa族元素
は耐食性の向上および表面性状の向上の効果があり、こ
れにより磁歪、軟磁気特性の改善、等の効果を有してい
る。
Preferably 1 to 7 at%, more preferably 1.5 to 5
It is atomic percent. Here, in addition to the above-mentioned effects, each additive element in M has the following effects: IVa group elements expand the range of heat treatment conditions to obtain optimal magnetic properties, and Va group elements improve embrittlement resistance and workability such as cutting. , Group VIa elements have the effect of improving corrosion resistance and surface properties, and thereby have effects such as improving magnetostriction and soft magnetic properties.

前記Mの元素中特に低鉄損化にはNb、Mo。Among the M elements, Nb and Mo are particularly useful for lowering iron loss.

Ta、W、Zr、Hfが好ましい。Ta, W, Zr, and Hf are preferred.

M゛は軟磁気特性の改善に有効な元素であるが、あまり
その量が多いと飽和磁束密度が低下し好ましくないため
、その量を15原子%以下とした。好ましくはlO原子
%以下である。
M is an element effective in improving the soft magnetic properties, but if the amount is too large, the saturation magnetic flux density will decrease, which is undesirable, so the amount is set to 15 at % or less. Preferably it is 10 atomic % or less.

ここでCu、M、M−の合計量は3.1〜25原子%が
好ましい。これは合計量があまり少ないと添加の効果が
少なく、逆にあまり多いと飽和磁束密度が小さくなりす
ぎる傾向があるからである。
Here, the total amount of Cu, M, and M- is preferably 3.1 to 25 atomic %. This is because if the total amount is too small, the effect of addition is small, and conversely, if the total amount is too large, the saturation magnetic flux density tends to become too small.

Siは製造時における合金の非結晶化または直接微細結
晶を析出させるのに有効な元素であり、その量があまり
少ないと製造時における超急冷の効果が得られにくく上
記状態が得られず、逆にあまり多いと飽和磁束密度が低
くなり上記状態が得られにくくなるため、優れた磁気特
性が得られなくなるため、その量を8〜22原子%とし
た。好ましくは10〜20原子%であり、さらに好まし
くは12〜18原子%である。
Si is an effective element for making the alloy amorphous or directly precipitating fine crystals during manufacturing, and if its amount is too small, it will be difficult to obtain the effect of ultra-quenching during manufacturing, and the above state will not be obtained, resulting in the opposite effect. If the amount is too large, the saturation magnetic flux density becomes low and it becomes difficult to obtain the above state, making it impossible to obtain excellent magnetic properties. Preferably it is 10 to 20 atom %, more preferably 12 to 18 atom %.

BはSiと同様に合金の非晶質化または直接微細結晶を
析出させるのに有効な元素であり、その量があまり少な
いと製造時における超急冷の効果が得られにくく上記状
態が得られず、逆にあまり多いと磁気特性の観点から不
都合が生じるためその量を3〜15原子%とした。好ま
しくは5〜10原子%である。
Like Si, B is an effective element for making the alloy amorphous or directly precipitating fine crystals, and if its amount is too small, it is difficult to obtain the effect of ultra-quenching during manufacturing, and the above state cannot be obtained. On the other hand, if the amount is too large, problems will occur from the viewpoint of magnetic properties, so the amount is set to 3 to 15 at %. Preferably it is 5 to 10 at%.

ここでSiとBの合計量はその量があまり少ないとその
効果が得られに<<、逆にあまり多いと同様にその効果
が得られにくくなると共に、飽和磁束密度の低下を生じ
るため、その量は15〜28原子%が好ましい。
Here, if the total amount of Si and B is too small, the effect will not be obtained. On the other hand, if the amount is too large, it will be difficult to obtain the effect as well, and the saturation magnetic flux density will decrease. The amount is preferably 15 to 28 at.%.

上記本発明のFe基基磁磁性合金粉末、例えば液体急冷
法により、非晶質合金薄帯を得た粉砕するかあるいは、
アトマイズ法メカニカルアロイング法などにより急冷粉
末を得た後前記非晶質合金の結晶化温度に対し一50〜
+120℃、好ましくは一30〜+100℃の温度で1
分〜10時間、好ましくは10分〜5時間の熱処理を行
い、意図する微細結晶を析出させる方法、あるいは急冷
法の急冷速度を制御して微細結晶粒を析出させる方法等
により得ることが可能となる。
The Fe-based magnetic alloy powder of the present invention is pulverized to obtain an amorphous alloy ribbon by, for example, a liquid quenching method, or
After obtaining the rapidly cooled powder by the atomization method, mechanical alloying method, etc.,
1 at a temperature of +120°C, preferably -30 to +100°C.
It can be obtained by a method in which the intended fine crystals are precipitated by heat treatment for 10 minutes to 10 hours, preferably 10 minutes to 5 hours, or by a method in which fine crystal grains are precipitated by controlling the quenching rate in a quenching method. Become.

次に本発明のFe基基磁磁性合金微細結晶粒について述
べる。
Next, the fine crystal grains of the Fe-based magnetomagnetic alloy of the present invention will be described.

本発明の合金中において、あまり微細結晶粒が少ないと
、すなわち非晶質相があまり多いと鉄損が大きく、透磁
率が低く、磁歪が大きく、樹脂モールドによる磁気特性
の劣化が増大するため、合金中の微細結晶粒は面積比で
30%以上存在することが好ましい。
In the alloy of the present invention, if there are too few fine crystal grains, that is, if there are too many amorphous phases, the iron loss will be large, the magnetic permeability will be low, the magnetostriction will be large, and the deterioration of magnetic properties due to resin molding will increase. It is preferable that the fine crystal grains in the alloy exist in an area ratio of 30% or more.

さらに上記微細結晶粒中においても結晶粒径があまり小
さいと磁気特性の改善が図れず、逆にあまり大きいと磁
気特性の劣化が発生するため、上記微細結晶粒中におい
ても、結晶粒径50〜300Aの結晶が80%以上存在
することが好ましい。
Furthermore, if the grain size of the fine crystal grains is too small, the magnetic properties cannot be improved, and if the grain size is too large, the magnetic properties deteriorate. It is preferable that 80% or more of 300A crystals exist.

次に圧粉磁心について述べる。Next, we will discuss the powder magnetic core.

まず、粒径は、粒径があまり小さいと充填率が低下し、
逆に粒径があまり大きいと損失が大きくなり、高周波用
に不適であるため、粒径は1〜100μmの範囲が好ま
しい。
First, regarding the particle size, if the particle size is too small, the filling rate will decrease.
On the other hand, if the particle size is too large, the loss will increase and it will be unsuitable for high frequency applications, so the particle size is preferably in the range of 1 to 100 μm.

また粒形状は、例えば球状、偏平状など何ら規定されな
い。これらの形状は製造方法に依存し、たとえばアトマ
イズ法の場合球状粉が得られるが、これをもとに圧延処
理を行うと偏平状となる。
Furthermore, the shape of the particles is not specified, such as spherical or flat. The shape of these powders depends on the manufacturing method; for example, in the case of an atomization method, a spherical powder is obtained, but when this powder is subjected to a rolling process, it becomes a flat powder.

これらの粉末を通常の加圧成形を行い、450〜650
℃で10分間〜10時間の熱処理を行うと共に焼結を行
う。
These powders are subjected to normal pressure molding to give a powder of 450 to 650
Heat treatment is performed at 10° C. for 10 minutes to 10 hours, and sintering is performed.

この成形の際にはバインダとして、例えば金属アルコキ
シド、水ガラス、低融点ガラスなどの無機系絶縁材を用
いる。
During this molding, an inorganic insulating material such as metal alkoxide, water glass, or low melting point glass is used as a binder.

(実施例) 実施例I F e 75−XCux N b a S i 15B
7なる合金系において、X−1,2,3,4,5,6,
7についてアトマイズ法により10〜50μmの球状粉
を作製した。
(Example) Example I Fe 75-XCux Nba Si 15B
In the alloy system 7, X-1, 2, 3, 4, 5, 6,
Regarding No. 7, spherical powder of 10 to 50 μm was produced by the atomization method.

これを水ガラスをバインダとして38X 19X 12
.5龍のトロイダルコアに加圧成形し、その後X−1〜
3については550℃でBOmin 、 X−4,5に
ついては530℃で80m1n 、 X −6、7につ
いては500℃で80a+inの条件で焼結した。
Using water glass as a binder, 38X 19X 12
.. Pressure molded to the toroidal core of 5 dragons, then X-1~
3 was sintered at BOmin at 550°C, X-4 and 5 were sintered at 530°C and 80m1n, and X-6 and 7 were sintered at 500°C and 80a+in.

これらのコアにつき充填率を調べたところ、第1図に示
すように、Cu量の増加とともに充填率が増大すること
がわかる。
When the filling factor of these cores was investigated, it was found that the filling factor increased as the amount of Cu increased, as shown in FIG.

また、これらの試料のうちX−2およびX−4について
μ”、Q−f特性を測定した。この測定においてはLC
Rメータを用い、磁心に10ターンの巻線を施し、電圧
1vを条件としている。この結果を第2図に示す。第2
図より明らかなように、本発明合金(X−4)は比較と
して示した合金(X−2)に比べ高μ、Qを示しており
、チョークコイルトランスなどの磁心として有効である
In addition, μ'' and Q-f characteristics were measured for X-2 and X-4 among these samples.In this measurement, LC
An R meter is used, a magnetic core is wound with 10 turns, and a voltage of 1 V is set as the condition. The results are shown in FIG. Second
As is clear from the figure, the alloy (X-4) of the present invention exhibits higher μ and Q than the comparative alloy (X-2), and is effective as a magnetic core for choke coil transformers and the like.

また同様の試料を用い直流重畳特性を測定した。Also, the DC superposition characteristics were measured using the same sample.

この結果を第3図に示す。この結果より明らかなように
本発明の磁心が優れていることは明らかである。
The results are shown in FIG. As is clear from these results, it is clear that the magnetic core of the present invention is superior.

実施例2 第1表に示した各合金粉末をアトマイズ法により作製し
た。得られた粉末は球状粉であり、粉径は10〜50μ
mである。
Example 2 Each alloy powder shown in Table 1 was produced by an atomization method. The obtained powder is a spherical powder, and the powder diameter is 10 to 50μ.
It is m.

これを水ガラスをバインダとして、38X19X12.
5mmのトロイダルコアに加圧成形し、1〜6について
は540℃、 80iinで熱処理し測定用試料とした
Using water glass as a binder, add this to 38X19X12.
They were pressure-molded into a 5 mm toroidal core, and samples 1 to 6 were heat-treated at 540°C and 80 iin to prepare measurement samples.

また比較として試料7の試料も同様にして作製した。さ
らに比較例としてF e 79 S 1 to B t
□アモルファス薄帯について、同一形状に巻回、熱処理
、樹脂含浸、ギャップ形成を行なったトロイダルコア試
料8および同一形状の鉄粉ダストコアについても評価゛
している。
For comparison, Sample 7 was also produced in the same manner. Furthermore, as a comparative example, F e 79 S 1 to B t
□A toroidal core sample 8 in which the amorphous ribbon was wound in the same shape, heat treated, resin impregnated, and gap formed, and an iron powder dust core in the same shape were also evaluated.

これらのコアにつきμ 1DKHz ” 100KHz
を測定したところ第1表に示すように、本発明のコアで
、高μ′、高Q値が得られていることが明らかである。
μ 1DKHz” 100KHz per these cores
As shown in Table 1, it is clear that the core of the present invention has a high μ' and a high Q value.

(以下余白) 第1表 実施例3 F e79−XClx Nb251 taBaなる組成
の合金粉末をアトマイズ法により作製した。得られた粉
末は球状粉であり、粒径は10〜50μmである。
(The following is a blank space) Table 1 Example 3 An alloy powder having a composition of Fe79-XClx Nb251 taBa was produced by an atomization method. The obtained powder is a spherical powder with a particle size of 10 to 50 μm.

これを水ガラスをバインダとして38X 19X 12
.5關のトロイダルコアに加圧成形し、500℃、90
fflinの熱処理を行い測定用試料とした。
Using water glass as a binder, 38X 19X 12
.. Pressure molded into a 5-section toroidal core, heated at 500℃, 90℃
fflin was heat-treated and used as a measurement sample.

得られた試料につき飽和磁化をVSMを用いて10KO
eの磁場で測定した。その結果を第4図に示す。
The saturation magnetization of the obtained sample was adjusted to 10KO using VSM.
It was measured in a magnetic field of e. The results are shown in FIG.

第4図より明らかなようにFeのCu置換により飽和磁
化は減少しておりCuが8原子%を越えると実用上問題
となる。
As is clear from FIG. 4, the saturation magnetization decreases due to the substitution of Cu for Fe, and when Cu exceeds 8 at %, it becomes a practical problem.

[発明の効果] 以上、本発明は高飽和磁束密度をもちかつ高周波におい
て優れた軟磁気特性を有し、種々の形状が可能なFe基
圧粉磁心を提供することが可能となる。
[Effects of the Invention] As described above, the present invention makes it possible to provide an Fe-based powder magnetic core that has a high saturation magnetic flux density and excellent soft magnetic properties at high frequencies, and can be formed into various shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

11図はCu量の変化に伴なう充填率の影響を示すグラ
フ、第2図は本発明および比較例のμ′、Q−f特性を
示すグラフ、第3図は本発明および比較例の直流重畳特
性を示すグラフおよび第4図はCu量の変化に伴なう飽
和磁化への影響を示すグラフである。
Fig. 11 is a graph showing the influence of the filling rate as the amount of Cu changes, Fig. 2 is a graph showing μ' and Q-f characteristics of the present invention and comparative examples, and Fig. 3 is a graph showing the effects of the present invention and comparative examples. A graph showing the DC superimposition characteristics and FIG. 4 are graphs showing the influence on saturation magnetization due to a change in the amount of Cu.

Claims (1)

【特許請求の範囲】 Fe_1_0_0_−_a_−_b_−_c_−_d_
−_eCu_aM_bM′_cSi_dB_e M:周期律表IVa族,Va族,VIa族元素から選ば
れる少なくとも1種以上 M′;Mn,Co,Ni,Al,白金族元素から選ばれ
る少なくとも1種以上 3<a≦8 0.1<b≦8 0≦c≦15 8≦d≦22 3≦e≦15 15≦d+e≦28 で表わされ、微細結晶粒を有する合金粉末を用いたこと
を特徴とするFe基圧粉磁心。
[Claims] Fe_1_0_0_-_a_-_b_-_c_-_d_
-_eCu_aM_bM'_cSi_dB_e M: At least one or more elements selected from the IVa, Va, and VIa group elements of the periodic table M': At least one or more elements selected from the group elements Mn, Co, Ni, Al, and platinum group 3<a≦ 8 0.1<b≦8 0≦c≦15 8≦d≦22 3≦e≦15 15≦d+e≦28 Fe-based, characterized by using an alloy powder having fine crystal grains Powder magnetic core.
JP63300686A 1988-05-17 1988-11-30 Fe-based dust core Pending JPH01290206A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63300686A JPH01290206A (en) 1988-11-30 1988-11-30 Fe-based dust core
DE68921021T DE68921021T2 (en) 1988-05-17 1989-05-16 Soft magnetic iron-based alloy and powder core made from it.
EP89304926A EP0342922B1 (en) 1988-05-17 1989-05-16 Fe-based soft magnetic alloy and dust core made therefrom
KR1019890006739A KR930011234B1 (en) 1988-05-17 1989-05-17 Magnetic materials
US07/711,415 US5178689A (en) 1988-05-17 1991-06-05 Fe-based soft magnetic alloy, method of treating same and dust core made therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300686A JPH01290206A (en) 1988-11-30 1988-11-30 Fe-based dust core

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63118336A Division JPH0270039A (en) 1988-05-17 1988-05-17 Fe-based soft-magnetic alloy

Publications (1)

Publication Number Publication Date
JPH01290206A true JPH01290206A (en) 1989-11-22

Family

ID=17887856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300686A Pending JPH01290206A (en) 1988-05-17 1988-11-30 Fe-based dust core

Country Status (1)

Country Link
JP (1) JPH01290206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517026A (en) * 2012-03-23 2015-06-18 アップル インコーポレイテッド Processing process of amorphous alloy powder raw material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517026A (en) * 2012-03-23 2015-06-18 アップル インコーポレイテッド Processing process of amorphous alloy powder raw material

Similar Documents

Publication Publication Date Title
KR101470513B1 (en) Soft Magnetic Cores Having Excellent DC Biased Characteristics in High Current and Core Loss Characteristics, and Manufacturing Methods thereof
JPH044393B2 (en)
JPH03219009A (en) Production of fe-base soft-magnetic alloy
KR930000413B1 (en) Soft magnetic materials
WO2022019335A1 (en) Fe-based nanocrystal soft magnetic alloy and magnetic component
US5178689A (en) Fe-based soft magnetic alloy, method of treating same and dust core made therefrom
JP2894561B2 (en) Soft magnetic alloy
US5192375A (en) Fe-based soft magnetic alloy
KR920007579B1 (en) Soft magnetic materials
JP2823203B2 (en) Fe-based soft magnetic alloy
US5225006A (en) Fe-based soft magnetic alloy
KR930011234B1 (en) Magnetic materials
JP2778697B2 (en) Fe-based soft magnetic alloy
JP2919886B2 (en) Fe-based soft magnetic alloy
JP2704157B2 (en) Magnetic parts
JPH01290206A (en) Fe-based dust core
JP2823204B2 (en) Soft magnetic alloy
JPH0479302A (en) Dust core
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JP2713980B2 (en) Fe-based soft magnetic alloy
JP2760539B2 (en) Fe-based soft magnetic alloy
JPH02138444A (en) Fe-base soft-magnetic alloy and fe-base dust core
JP3032260B2 (en) Fe-based soft magnetic alloy and method for producing the same
JP2777161B2 (en) Fe-based soft magnetic alloy
JPS62167840A (en) Magnetic material and its manufacture