JPH01289588A - Laser beam device - Google Patents

Laser beam device

Info

Publication number
JPH01289588A
JPH01289588A JP63117202A JP11720288A JPH01289588A JP H01289588 A JPH01289588 A JP H01289588A JP 63117202 A JP63117202 A JP 63117202A JP 11720288 A JP11720288 A JP 11720288A JP H01289588 A JPH01289588 A JP H01289588A
Authority
JP
Japan
Prior art keywords
laser
optical device
condensing
laser beam
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63117202A
Other languages
Japanese (ja)
Inventor
Yukio Nishikawa
幸男 西川
Yuji Uesugi
雄二 植杉
Kunio Oshima
大嶋 邦雄
Masahiro Nakashiro
正裕 中城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63117202A priority Critical patent/JPH01289588A/en
Publication of JPH01289588A publication Critical patent/JPH01289588A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing

Abstract

PURPOSE:To execute a multipoint simultaneous working and to shorten the working time by arranging a laser oscillator and lens on plane and providing the converging optical device installed in the optical path of the laser beam emitted from the oscillator. CONSTITUTION:The laser beam 2a emitted out of a laser oscillator 1 is made incident on the converging optical device 8 which arranges the lenses 3, 4 whose one part of the faces at least is a plane in one or plural rows on the plane and which is installed at the optical path inside of the laser beam emitted from the laser oscillator 1. A multipoint simultaneous working is available in the state of taking the distance between the converging optical device 8 and work 10 by arranging the focal point thereof to locate at the vicinity of the surface of the work 10, the working time is shortened and the working can be done with good pitch and accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ加工装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a laser processing device.

従来の技術 以下図面を参照しながら、上述した従来のレーザ加工装
置の一例について説明する。
2. Description of the Related Art An example of the above-mentioned conventional laser processing apparatus will be described below with reference to the drawings.

第5図は従来のレーザ加工装置のうち、X−Yテーブル
型の構成図である。第6図において、2゜はレーザ発振
器、21はレーザ・ビーム、22は反射鏡、23は集光
レンズ、24は被加工物、25はX−Yテーブルである
。レーザ発振器20がら出たレーザ・ビーム21は反射
鏡22を経由して集光レンズ23にて被加工物24に照
射される。
FIG. 5 is a configuration diagram of an X-Y table type of conventional laser processing apparatus. In FIG. 6, 2° is a laser oscillator, 21 is a laser beam, 22 is a reflecting mirror, 23 is a condenser lens, 24 is a workpiece, and 25 is an X-Y table. A laser beam 21 emitted from a laser oscillator 20 passes through a reflecting mirror 22 and is irradiated onto a workpiece 24 by a condensing lens 23 .

被加工物24はX−Yテーブル26にて移動され、所定
の加工が施される。
The workpiece 24 is moved by an X-Y table 26 and subjected to a predetermined process.

第6図は従来のレーザ加工装置のうち、ガルバノ・メー
タ型ビーム走査装置の構成図である。第6図において、
26はガルバノ・メータ、27はガルバノ・ミラーであ
る。レーザ発振器20から出たレーザ・ビーム21はガ
ルバノ・メータ26によって動かされる2枚のガルバノ
・ミラー27によって平面上を走査されながらfθレン
ズ28によって被加工物24上に集光照射され、所定の
加工が施される。
FIG. 6 is a configuration diagram of a galvanometer type beam scanning device among conventional laser processing devices. In Figure 6,
26 is a galvano meter, and 27 is a galvano mirror. A laser beam 21 emitted from a laser oscillator 20 is scanned on a plane by two galvano mirrors 27 moved by a galvano meter 26, and is condensed onto a workpiece 24 by an fθ lens 28 to perform predetermined processing. will be applied.

発明が解決しようとする課題 しかしながら上記のような加工跡を1本のレーザ・ビー
ムで形成する方法では、同一形状の加工を繰シ返し被加
工物に施す場合には加工に時間がかがシ十分な生産能力
が得られない。すなわち、レーザ・ビームをパルス状に
照射する場合には、パルスの繰シ返し数の限界によって
連続加工できる速度が制限されてしまう。また、X−Y
テーブルの移動速度やガルバノ・ミラー等の走査光学系
の能力によっても制限を受ける。さらに、X−Yテーブ
ルや走査光学系を高速で動かすほど、加工の位置決め精
度が悪くなるという問題点を有していた。
Problems to be Solved by the Invention However, with the above-mentioned method of forming machining marks using a single laser beam, the machining process takes a long time when the same shape is repeatedly applied to the workpiece. Insufficient production capacity. That is, when irradiating a laser beam in a pulsed manner, the speed at which continuous processing can be performed is limited by the limit on the number of pulse repetitions. Also, X-Y
It is also limited by the moving speed of the table and the capabilities of scanning optical systems such as galvanometer mirrors. Furthermore, there is a problem in that the faster the X-Y table or scanning optical system is moved, the worse the positioning accuracy during processing becomes.

また上記した加工方法の課題に対して、特公昭51−2
7919号公報には、集光球体を複数個並設した加工光
学装置が用いられている。第7図は、その集光光学装置
を示している。第7図において、29は集光球体、30
は被加工物、31は形成された穴である。レーザ・ビー
ムを集光球体29の列に照射すると、各々の集光球体2
9において集光され、被加工物30に対して多点同時加
工することができる。しかしながら、この集光球体を用
いた方法では、集光球体と被加工物の間隔が高々1〜2
mmと短く、加工後の飛散物が集光球体に付着し易い等
の作業性の悪さがある。また集光性が悪く、例えば直径
2mmの集光球体のスポット径は180μmである。従
って、集光点におけるレーザ・ビームのエネルギー密度
が低下し、加工性が低下する。第8図は、スポット径と
エネルギー密度の関係を模式的に示した図である。第8
図において、aはスポット径大、bはスポット径小の場
合である。32と33はスポットの外周、34と35は
加工跡、36と37はエネルギー分布、38は加工され
るエネルギー密度のしきい値である。同じエネルギーを
与えた場合、スポット径が大きくなるaとエネルギー分
布の高さが低くなる。被加工物が加工されるためには、
エネルギー分布36が加工のしきい値38を越えなけれ
ばならず、加工跡の外周34は小さくなり、周辺の温度
上昇するだけの部分が大きくなる。スポット径が小さい
場合すにはエネルギー分布の高さが高くなシ、加工のし
きい値38を越えた加工跡は大きくなる。前記した直径
2mmの集光球体を用いて、Al膜厚1ooo人の蒸着
フィルムを、連続発振YAGレーザをQスイッチでパル
ス化して照射した場合、20m/パルスの条件で最大加
工幅50μmであった。第9図は、集光球体の大きさと
ビーム光路の関係を模式的に示した図である。dは球径
大、bは球径小の場合である。第9図において、39は
集光球体小、40は集光球体大、41はビーム光路、4
2と43はスポット径である。
In addition, in response to the above-mentioned problems with the processing method,
No. 7919 uses a processing optical device in which a plurality of condensing spheres are arranged in parallel. FIG. 7 shows the condensing optical device. In FIG. 7, 29 is a condensing sphere, 30
is a workpiece, and 31 is a formed hole. When a laser beam is irradiated onto a row of condensing spheres 29, each condensing sphere 2
The light is focused at 9, and the workpiece 30 can be processed at multiple points simultaneously. However, in this method using a condensing sphere, the distance between the condensing sphere and the workpiece is 1 to 2 at most.
It is short (mm) and has poor workability, such as the fact that scattered objects after processing tend to adhere to the condensing sphere. In addition, the light focusing property is poor, for example, the spot diameter of a condensing sphere with a diameter of 2 mm is 180 μm. Therefore, the energy density of the laser beam at the focal point is reduced, and processability is reduced. FIG. 8 is a diagram schematically showing the relationship between spot diameter and energy density. 8th
In the figure, a shows a case where the spot diameter is large, and b shows a case where the spot diameter is small. 32 and 33 are the outer periphery of the spot, 34 and 35 are machining marks, 36 and 37 are energy distributions, and 38 is a threshold of energy density to be processed. When the same energy is applied, the spot diameter becomes larger and the height of the energy distribution becomes lower. In order for the workpiece to be processed,
The energy distribution 36 must exceed the machining threshold 38, the outer circumference 34 of the machining mark becomes smaller, and the area where the surrounding temperature increases becomes larger. When the spot diameter is small, the height of the energy distribution is high, and the machining mark exceeding the machining threshold 38 becomes large. When a continuous wave YAG laser was pulsed with a Q switch and irradiated on an Al film with a thickness of 100 mm using the above-mentioned condensing sphere with a diameter of 2 mm, the maximum processing width was 50 μm under the condition of 20 m/pulse. . FIG. 9 is a diagram schematically showing the relationship between the size of the condensing sphere and the beam optical path. d is the case where the ball diameter is large, and b is the case where the ball diameter is small. In FIG. 9, 39 is a small condensing sphere, 40 is a large condensing sphere, 41 is a beam optical path, and 4
2 and 43 are spot diameters.

ビーム光路41は集光球体40の外周に近づくほど大き
く屈折する。従って第9図に示すように、集光球体の直
径が大きくなるほど、さらに集光性が悪くなる。そのた
め、ピッチ2mm以上の多点加工の場合に、集光性を考
慮して直径の小さな集光球体を用いると、集光球体間に
隙間が生じ、レーザの利用効率が低くなるという問題点
のあることが判明した。
The beam optical path 41 is refracted more as it approaches the outer periphery of the condensing sphere 40. Therefore, as shown in FIG. 9, the larger the diameter of the condensing sphere, the worse the light condensing ability becomes. Therefore, in the case of multi-point processing with a pitch of 2 mm or more, if condensing spheres with a small diameter are used in consideration of light condensing properties, gaps will be created between the condensing spheres, reducing the efficiency of laser use. It turns out that there is something.

本発明は上記問題点に鑑み、多点同時加工することによ
って加工時間を短縮し、また加工のピッチや精度が良好
で、レンズと被加工物の距離を十分にと夛、作業性が易
く、また利用効率の高いレーザ加工装置を提供するもの
である。
In view of the above problems, the present invention shortens the processing time by processing multiple points simultaneously, has good processing pitch and accuracy, and maintains a sufficient distance between the lens and the workpiece, making workability easy. It also provides a laser processing device with high utilization efficiency.

課題を解決するための手段 上記問題点を解決するために本発明のレーザ加工装置は
、レーザ発振器と、少なくとも一方の面が平面であるレ
ンズを平面上に一列もしくは複数列に配置し、かつ前記
レーザ発振器からのレーザ・ビームの光路内に設置され
ている集光光学装置を構成として備えたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, a laser processing apparatus of the present invention includes a laser oscillator and a lens having at least one plane that is arranged in one or more rows on a plane, and It is equipped with a condensing optical device installed in the optical path of the laser beam from the laser oscillator.

作  用 本発明は上記した構成によって、レーザ発振器から出た
レーザ・ビームを、少なくとも一方の面が平面であるレ
ンズを平面上に一列もしくは複数列に配置し、かつ前記
レーザ発振器からのレーザ・ビームの光路内に設置され
ている集光光学装置に入射させることによシ、多点同時
加工し加工時間の短縮ができる。加工ピッチは集光光学
装置の組立精度で決まるので、加工中に加工位置がずれ
ることもなく、安定した加工形状が得られる。さらに平
凸レンズを用いることによって、レンズと被加工物の距
離を十分にとシ、作業性を向上させることができる。ま
た、凸型円柱レンズを平行にならべ、2段に重ねること
によって、レンズ間の隙間がなく、レーザの利用効率を
高めることができ、スポット形状も円または楕円を選択
することができる。
Effects The present invention has the above-described configuration, in which lenses having at least one surface having a flat surface are arranged in one row or in a plurality of rows on a flat surface, and the laser beam emitted from the laser oscillator is By making the light incident on a condensing optical device installed in the optical path of the light source, it is possible to simultaneously process multiple points and shorten the processing time. Since the machining pitch is determined by the assembly accuracy of the condensing optical device, the machining position does not shift during machining, and a stable machined shape can be obtained. Furthermore, by using a plano-convex lens, the distance between the lens and the workpiece can be made sufficiently, and workability can be improved. Further, by arranging the convex cylindrical lenses in parallel and stacking them in two stages, there is no gap between the lenses, and the efficiency of laser use can be increased, and the spot shape can be selected to be circular or elliptical.

実施例 以下本発明の一実施例のレーザ加工装置と加工方法につ
いて、図面を参照しながら説明する。
EXAMPLE Hereinafter, a laser processing apparatus and a processing method according to an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例におけるレーザ加工装置
の構成図を示すものである。第1図において、1はレー
ザ発振器、2aは発振器1から出たレーザ・ビーム、3
と4はレーザ・ビームの断面形状を変形するための凸レ
ンズ、5と6はレーザ・ビームの断面形状を変形するた
めの凸型円柱レンズ、7は反射ミラー、8は集光光学装
置、9はマスク、10は被加工物、11はX −Yテー
ブル、12は平凸レンズ、13は集光ビームである。
FIG. 1 shows a configuration diagram of a laser processing apparatus according to a first embodiment of the present invention. In FIG. 1, 1 is a laser oscillator, 2a is a laser beam emitted from oscillator 1, and 3 is a laser beam emitted from oscillator 1.
and 4 are convex lenses for changing the cross-sectional shape of the laser beam, 5 and 6 are convex cylindrical lenses for changing the cross-sectional shape of the laser beam, 7 is a reflecting mirror, 8 is a focusing optical device, and 9 is a condensing optical device. 10 is a mask, 10 is a workpiece, 11 is an X-Y table, 12 is a plano-convex lens, and 13 is a condensed beam.

以上のように構成されたレーザ加工装置について、その
動作を説明する。レーザ発振器1から出たレーザ・ビー
ム2aは凸レンズ3を通過した後、−旦集光して再び拡
がシ、凸レンズ3よシも焦点距離の長い凸レンズ4によ
って、レーザ・ビーム2aよシも直径が大きく平行なレ
ーザ・ビーム2bとなる。レーザ・ビーム2bは凸型円
柱レンズ5によって水平方向が一旦集光して再び拡がり
、凸型円柱レンズ5よシも焦点距離の長い凸型円柱レン
ズ6によって、レーザ・ビーム2bよりも水平方向が拡
大された平行なレーザ・ビーム2cとなる。レーザ・ビ
ーム2Cは、反射ミラー7によって集光光学装置8に入
射され、構成する平凸レンズ12によって多点スポット
として、集光されない不要なビームがマスク9によって
しゃへいされた後、被加工物1oに照射される。平凸レ
ンズの曲率半径は10mm以上にすることによって、直
径が2mm以上でも焦点位置におけるスポット径が10
0μm以下で、レンズと被加工物の距離を15mm以上
とることができる。被加工物10はX−Yテーブル11
によって移動され、所定の加工が施される。
The operation of the laser processing apparatus configured as described above will be explained. After the laser beam 2a emitted from the laser oscillator 1 passes through the convex lens 3, it is condensed and expanded again. becomes a largely parallel laser beam 2b. The laser beam 2b is focused once in the horizontal direction by the convex cylindrical lens 5 and then expanded again. This results in an expanded parallel laser beam 2c. The laser beam 2C is incident on the condensing optical device 8 by the reflection mirror 7, is converted into a multi-point spot by the constituting plano-convex lens 12, and unnecessary beams that are not condensed are blocked by the mask 9, and then directed to the workpiece 1o. irradiated. By setting the radius of curvature of the plano-convex lens to 10 mm or more, the spot diameter at the focal position can be reduced to 10 mm even if the diameter is 2 mm or more.
When the distance is 0 μm or less, the distance between the lens and the workpiece can be 15 mm or more. The workpiece 10 is an X-Y table 11
is moved and subjected to predetermined processing.

以上のように本実施例によれば、レーザ発振器と曲率半
径が10mm以上の平凸レンズを配置した集光光学装置
をレーザ・ビームの光路内に設けることにより、その焦
点が被加工物の表面近傍に位置するように配置すること
によって集光光学装置と被加工物の距離をとった状態で
多点同時加工することができる。また、平凸レンズによ
って集光されないレーザ・ビームが被加工物に対して悪
影響を与えない場合には、マスク9のようなしゃへい装
置を設ける必要は特にない。
As described above, according to this embodiment, by providing a condensing optical device in which a laser oscillator and a plano-convex lens with a radius of curvature of 10 mm or more are arranged in the optical path of the laser beam, the focal point is near the surface of the workpiece. By arranging the converging optical device and the workpiece at a distance from each other, it is possible to perform simultaneous multi-point processing with a distance between the condensing optical device and the workpiece. Furthermore, if the laser beam that is not focused by the plano-convex lens does not have any adverse effect on the workpiece, there is no particular need to provide a shielding device such as the mask 9.

第2図は本発明の第2の実施例を示すレーザ加工装置の
集光光学装置と加工状態の構成図である。
FIG. 2 is a configuration diagram of a condensing optical device and a processing state of a laser processing apparatus showing a second embodiment of the present invention.

同図において、第1図の構成と異なるのは、集光光学装
置8の平凸レンズ12の配列を方眼状に設けた点である
In the figure, the difference from the configuration in FIG. 1 is that the plano-convex lenses 12 of the condensing optical device 8 are arranged in a grid pattern.

以上のように平凸レンズ12を方眼状に設けることによ
シ、被加工物10に対して、−度に方眼状の加工を行う
ことができる。
By providing the plano-convex lenses 12 in a grid shape as described above, it is possible to process the workpiece 10 in a grid shape at a -degree angle.

第3図は本発明の第3の実施例を示すレーザ加工装置の
集光光学装置と加工状態を上面から見た図である。同図
において、14は加工跡である。
FIG. 3 is a top view of the condensing optical device and processing state of a laser processing apparatus showing a third embodiment of the present invention. In the figure, 14 is a machining mark.

第1図あるいは第2図の構成と異なるのは、平凸レンズ
12の列をx−Yテーブル11の移動方向(矢印)に対
し、横方向に所定の間隔だけずらせて設けた点である。
The difference from the configuration in FIG. 1 or FIG. 2 is that the rows of plano-convex lenses 12 are provided so as to be shifted by a predetermined interval in the lateral direction with respect to the moving direction (arrow) of the x-y table 11.

上記のように構成されたレーザ加工装置について、以下
その動作を説明する。平凸レンズ12の列が、整形され
たレーザ・ビームの光路内に入るようにビームを入射さ
せる。x−Yテーブル11を矢印方向に移動させると、
図中に示すように、平凸レンズ12の列を横にずらした
長さに相轟してピッチのあいた加工跡14が形成される
The operation of the laser processing apparatus configured as described above will be described below. An array of plano-convex lenses 12 directs the beam into the optical path of the shaped laser beam. When the x-y table 11 is moved in the direction of the arrow,
As shown in the figure, the rows of plano-convex lenses 12 are laterally shifted to form machining marks 14 with a gap in pitch.

以上のように平凸レンズの列を所定の間隔だけずらせて
設けることによシ、任意のピッチ間隔で加工跡を形成す
ることができる。
By providing the rows of plano-convex lenses shifted by a predetermined interval as described above, it is possible to form processing marks at arbitrary pitch intervals.

第4図は本発明の第4の実施例を示すレーザ加工装置の
集光光学装置の構成図である。第1〜3図の構成と異な
るのは、複数の凸型円柱レンズを平行にならべたものを
、上段16の方が下段16よシも焦点距離が長く、かつ
直交するように間隔17で設けた点である。
FIG. 4 is a configuration diagram of a condensing optical device of a laser processing apparatus showing a fourth embodiment of the present invention. What is different from the configuration shown in FIGS. 1 to 3 is that a plurality of convex cylindrical lenses are arranged in parallel, and the upper stage 16 has a longer focal length than the lower stage 16, and they are arranged at intervals of 17 so that they are perpendicular to each other. This is the point.

上記のように構成されたレーザ加工装置について、以下
その動作を説明する。円柱レンズの列16が全部レーザ
・ビームの光路内に納まるように整形して照射する。集
光に用いられるビームは、円柱レンズの列15によって
5分割され、図面上の横方向に集光される18oさらに
、このビームは、円柱レンズの列16によって4分割さ
れ、横方向に集光されながら同時に直角方向にも集光さ
れる19゜間隔17を上下段のレンズの焦点距離が一致
するように設置すれば被加工物10上で、2゜点のスポ
ットとして集光され加工される。また、間隔17を変化
させると、上段15と下段16の集光位置が一致しない
ので、被加工物1Q上で楕円状スポットとして集光され
る。
The operation of the laser processing apparatus configured as described above will be described below. The array 16 of cylindrical lenses is shaped and irradiated so that they all fall within the optical path of the laser beam. The beam used for condensing is divided into five parts by a row 15 of cylindrical lenses, and is focused laterally on the drawing 18o.Furthermore, this beam is divided into four parts by a row 16 of cylindrical lenses, and is focused laterally. If the 19° interval 17 is set so that the focal lengths of the upper and lower lenses are the same, the light will be focused as a 2° spot on the workpiece 10 and processed. . Furthermore, when the interval 17 is changed, the light focusing positions of the upper stage 15 and the lower stage 16 do not match, so that the light is focused as an elliptical spot on the workpiece 1Q.

以上のように、集光光学装置を、複数の凸型円柱レンズ
を平行にならべたもの2段で構成し、上下段の間隔を変
化させることにより、1度に方眼状にスポットを集光で
き、形状も円形だけでなく楕円状にも変化させることが
できる。また、各段の円柱レンズ間に隙間がないので、
レーザ・ビームの利用効率が高い。
As described above, the condensing optical device is composed of two stages in which multiple convex cylindrical lenses are arranged in parallel, and by changing the interval between the upper and lower stages, a spot can be focused in a grid shape at one time. , the shape can be changed not only to a circle but also to an ellipse. Also, since there is no gap between the cylindrical lenses of each stage,
High efficiency in laser beam usage.

発明の効果 以上のように本発明は、レーザ発振器と、少なくとも一
方の面が平面であるレンズを平面上に一列もしくは複数
列に配置し、かつ前記レーザ発振器からのレーザ・ビー
ムの光路内に設置されている集光光学装置とを設けるこ
とにより、多点同時加工することによって加工時間を短
縮し、また加工のピッチや精度が良好で、レンズと被加
工物の距離を十分にとり、作業性が良く、またレーザ・
ビームの利用効率も高くすることができる。
Effects of the Invention As described above, the present invention provides a method in which a laser oscillator and a lens whose at least one surface is flat are arranged in one or more rows on a plane, and are placed in the optical path of the laser beam from the laser oscillator. By installing a condensing optical device, the machining time can be shortened by simultaneously machining multiple points, and the machining pitch and precision are good, with a sufficient distance between the lens and the workpiece, and work efficiency is improved. Okay, laser again.
Beam utilization efficiency can also be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例におけるレーザ加工装置
の構成図、第2図は本発明の第2の実施例を示すレーザ
加工装置の集光光学装置と加工状態の構成図、第3図は
本発明の第3の実施例を示すレーザ加工装置の集光光学
装置と加工状態の上面図、第4図は本発明の第4の実施
例を示すレーザ加工装置の集光光学装置の構成図、第5
図は従来のレーザ加工装置のうちX−Yテーブル型の構
成図、第6図は従来のレーザ加工装置のうちガルバノ・
メータ型ビーム走査装置の構成図、第7図は集光球体を
用いた集光光学装置、第8図はスポット径とエネルギー
密度の模式的関係を示す図、第9図は集光球体の大きさ
とビーム光路の関係の模式図である。 1・・・・・レーザ発振器、3,4・・・・・・レンズ
、5゜6・・・・・・円柱レンズ、8・・・・・・集光
光学装置、9・・・・・・マスク、12・・・・・・平
凸レンズ、15.16・・・・・・凸型円柱レンズ、1
7・・・・・・円柱レンズの間隔。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名(−
+、−fそ仮巻 3.4−−−レ′J人′ 5.6−−−@不tレコス“ f2−一平イコレシで イ 第5図 第8( (CLり ’J9  図 (α)
FIG. 1 is a block diagram of a laser processing apparatus according to a first embodiment of the present invention, and FIG. 2 is a block diagram of a focusing optical device and processing state of a laser processing apparatus according to a second embodiment of the present invention. 3 is a top view of a condensing optical device of a laser processing device and a processing state showing a third embodiment of the present invention, and FIG. 4 is a condensing optical device of a laser processing device showing a fourth embodiment of the present invention. Configuration diagram, 5th
The figure shows the configuration of an X-Y table type of conventional laser processing equipment, and Figure 6 shows the configuration of a galvano type of conventional laser processing equipment.
A configuration diagram of a meter-type beam scanning device, Fig. 7 is a condensing optical device using a condensing sphere, Fig. 8 is a diagram showing the schematic relationship between spot diameter and energy density, and Fig. 9 is a diagram showing the size of the condensing sphere. FIG. 1... Laser oscillator, 3, 4... Lens, 5°6... Cylindrical lens, 8... Condensing optical device, 9...・Mask, 12...Plano-convex lens, 15.16...Convex cylindrical lens, 1
7... Distance between cylindrical lenses. Name of agent: Patent attorney Toshio Nakao and one other person (-
+, -f Sokari Volume 3.4--Re'Jjin'5.6---@Notrecos'

Claims (6)

【特許請求の範囲】[Claims] (1)レーザ発振器と、少なくとも一方の面が平面であ
るレンズを平面上に一列もしくは複数列に配置し、かつ
前記レーザ発振器からのレーザ・ビームの光路内に設置
されている集光光学装置とを備えていることを特徴とす
るレーザ加工装置。
(1) A condensing optical device comprising a laser oscillator and a lens whose at least one surface is flat, arranged in one or more rows on a plane, and installed in the optical path of the laser beam from the laser oscillator. A laser processing device characterized by comprising:
(2)集光光学装置は、曲率半径が10mm以上の平凸
レンズで構成された特許請求の範囲第1項記載のレーザ
加工装置。
(2) The laser processing apparatus according to claim 1, wherein the condensing optical device is constituted by a plano-convex lens having a radius of curvature of 10 mm or more.
(3)集光光学装置は、複数の凸型円柱レンズを平行に
配置したもの2段で構成され、上段の凸型円柱レンズの
方が焦点距離が長く、2段の集光方向は異なり、また、
間隔が可変である特許請求の範囲第1項記載のレーザ加
工装置。
(3) The condensing optical device is composed of two stages in which a plurality of convex cylindrical lenses are arranged in parallel, the convex cylindrical lens in the upper stage has a longer focal length, and the condensing directions of the two stages are different. Also,
The laser processing apparatus according to claim 1, wherein the interval is variable.
(4)焦点距離が異なる2枚のレンズもしくは円柱レン
ズを両者の焦点距離の和もしくは差の間隔で設置したレ
ンズの組み合わせを1組以上有し、前記レーザ発振器の
発生するレーザ・ビームを所定の断面形状とする整形光
学装置を備えている特許請求の範囲第1項記載のレーザ
加工装置。
(4) It has one or more combinations of two lenses or cylindrical lenses with different focal lengths installed at an interval equal to the sum or difference of their focal lengths, and the laser beam generated by the laser oscillator is directed to a predetermined direction. The laser processing apparatus according to claim 1, further comprising a shaping optical device for shaping the cross-sectional shape.
(5)集光されない不要なビームを被加工物に照射させ
ないしゃへい装置とを備えている特許請求の範囲第1項
記載のレーザ加工装置。
The laser processing apparatus according to claim 1, further comprising: (5) a shielding device that prevents the workpiece from being irradiated with unnecessary unfocused beams.
(6)集光光学装置は、その焦点が被加工物の表面近傍
に位置するよう配置された特許請求の範囲第1項記載の
レーザ加工装置。
(6) The laser processing apparatus according to claim 1, wherein the condensing optical device is arranged so that its focal point is located near the surface of the workpiece.
JP63117202A 1988-05-13 1988-05-13 Laser beam device Pending JPH01289588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63117202A JPH01289588A (en) 1988-05-13 1988-05-13 Laser beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63117202A JPH01289588A (en) 1988-05-13 1988-05-13 Laser beam device

Publications (1)

Publication Number Publication Date
JPH01289588A true JPH01289588A (en) 1989-11-21

Family

ID=14705917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63117202A Pending JPH01289588A (en) 1988-05-13 1988-05-13 Laser beam device

Country Status (1)

Country Link
JP (1) JPH01289588A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030317A1 (en) * 1997-01-10 1998-07-16 Morphometrix Technologies Inc. Membrane microfilter manufacturing process
JP2010269371A (en) 2009-05-20 2010-12-02 Samsung Mobile Display Co Ltd Light radiating device and method of fabricating organic light emitting diode display using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56500529A (en) * 1979-05-07 1981-04-23 Baasel Carl Lasertech
JPS62107890A (en) * 1985-11-07 1987-05-19 Toshiba Corp Laser beam machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56500529A (en) * 1979-05-07 1981-04-23 Baasel Carl Lasertech
JPS62107890A (en) * 1985-11-07 1987-05-19 Toshiba Corp Laser beam machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030317A1 (en) * 1997-01-10 1998-07-16 Morphometrix Technologies Inc. Membrane microfilter manufacturing process
JP2010269371A (en) 2009-05-20 2010-12-02 Samsung Mobile Display Co Ltd Light radiating device and method of fabricating organic light emitting diode display using the same
US8848749B2 (en) 2009-05-20 2014-09-30 Samsung Display Co., Ltd. Light radiating device and method of fabricating organic light emitting diode display device using the same

Similar Documents

Publication Publication Date Title
KR930004999B1 (en) Laser processing device
JPH02104487A (en) Laser beam machine
KR20010049570A (en) Laser machining device for piercing substrate
JP2021513951A (en) Methods and devices for inserting dividing lines into transparent brittle materials, as well as elements with dividing lines that can be manufactured by this method.
JPH049293A (en) Projecting device
JP5861494B2 (en) Laser processing apparatus and laser processing method
JP2009178725A (en) Laser beam machining apparatus and method
CN112475638B (en) Laser micropore machining system and method based on axicon lens
US5285320A (en) Mirror for changing the geometrical form of a light beam
JPS6293095A (en) Laser beam machine
JP2000334594A (en) Laser beam machine and method for laser beam machining
JPH01289588A (en) Laser beam device
KR20060012396A (en) Multi laser processing apparatus
JP4453112B2 (en) Laser processing method
CN2847319Y (en) Laser beam equalizer for obtaining large area uniform square flare
JPS6121193Y2 (en)
CN212083832U (en) Laser grooved optical system, laser and equipment with laser
CN114178687A (en) Plug-in laser inclination angle control module and laser scanning processing device
JPH07151910A (en) Method for exposing diffraction grating
JP3526165B2 (en) Optical processing machine and method of manufacturing orifice plate using the same
CN112355484A (en) Surface periodic conical microstructure processing method based on Gaussian beam focusing direct writing
JPH03184687A (en) Laser beam machining apparatus
JP3530769B2 (en) Illumination device and optical processing machine using the same
US20230339047A1 (en) Assembly for material processing using a laser beam, in particular for laser drillilng
KR102630745B1 (en) Apparatus of forming groove