JPH01289531A - Superplastic forging method - Google Patents
Superplastic forging methodInfo
- Publication number
- JPH01289531A JPH01289531A JP11837988A JP11837988A JPH01289531A JP H01289531 A JPH01289531 A JP H01289531A JP 11837988 A JP11837988 A JP 11837988A JP 11837988 A JP11837988 A JP 11837988A JP H01289531 A JPH01289531 A JP H01289531A
- Authority
- JP
- Japan
- Prior art keywords
- forging
- load
- product
- die
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005242 forging Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims description 15
- 239000000463 material Substances 0.000 claims abstract description 21
- 238000000465 moulding Methods 0.000 description 12
- 230000006835 compression Effects 0.000 description 10
- 238000007906 compression Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 4
- 238000003754 machining Methods 0.000 description 3
- 230000000452 restraining effect Effects 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
- B21J5/008—Incremental forging
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Forging (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、チタン合金、ニッケル合金、アルミニウム合
金など、金属合金の持つ超塑性現象を利用して、恒温下
で圧縮鍛造成形を行い、目的とする製品形状を得る、い
わゆる超塑性鍛造法の改良に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention utilizes the superplastic phenomenon of metal alloys such as titanium alloys, nickel alloys, and aluminum alloys to carry out compression forging under constant temperature. This paper relates to the improvement of the so-called superplastic forging method to obtain the desired product shape.
[従来の技術]
近年、チタン合金等、難加工性材料に対し、たとえば特
開昭62−207526にみられるように、その超塑性
現象を利用して恒温下でmHな形状に加工する超塑性鍛
造が行われている。この方法は、機械加工による削り出
ししか加工できなかった複雑な形状を歩留良く成形出来
る利点があるが、一方欠点として、次のような問題があ
る。[Prior art] In recent years, superplasticity has been developed to process difficult-to-process materials such as titanium alloys into mH shapes at constant temperatures by utilizing their superplasticity phenomenon, as seen in JP-A-62-207526. Forging is being done. This method has the advantage of being able to form complex shapes that could only be processed by machining with a high yield, but has the following drawbacks.
すなわち超塑性現象は低歪速度で発現するため、成形速
度は通常の鍛造に比べれば、極度に低速で行われ、成形
時間は非常に長くなる。またその上、圧縮に用いる鍛造
機の容量に制限がある場合には、その面からの荷重制限
条件が加わる。このとき基本的には、後述するように、
成形速度を低下することによって、荷重を小さくするこ
とが出来るが、一方、成形時間は一層長くなり、生産能
率の低下を来し、あるいは、結果的には大きな寸法製品
の成形が出来ないことになる。That is, since the superplastic phenomenon occurs at a low strain rate, the forming speed is extremely low compared to normal forging, and the forming time is extremely long. Moreover, if there is a limit to the capacity of the forging machine used for compression, load limiting conditions are added from that perspective. At this time, basically, as described later,
By reducing the molding speed, the load can be reduced, but on the other hand, the molding time becomes longer, resulting in a decrease in production efficiency, or, as a result, it is not possible to mold products with large dimensions. Become.
[発明が解決しようとする課題]
本発明は、出来るだけ小さな容量の鍛造機で、大きな寸
法製品形状を、最小の成形時間で鍛造することを目的と
する。[Problems to be Solved by the Invention] An object of the present invention is to forge a large product shape in a minimum forming time using a forging machine with a capacity as small as possible.
[課題を解決するための手段及び作用]本発明とすると
ころは、超塑性鍛造において、成形する材料の一部を金
型で拘束し、残る一部を目標とする製品形状に鍛造成形
した後、ついで該成形、部を金型で拘束し、未成形部を
目標とする製品形状に鍛造成形することを特徴とする超
塑性鍛造法にある。[Means and effects for solving the problem] The present invention provides that, in superplastic forging, a part of the material to be formed is restrained in a die, and the remaining part is forged into the target product shape. The superplastic forging method is characterized in that the formed part is then restrained with a die, and the unformed part is forged into a target product shape.
拘束する部分は原則として成形中の部分以外の全面であ
るが、後工程で差し支えない範囲、あるいは予成形とし
て若干成形する部分は開放するようにしてもよい。In principle, the area to be restrained is the entire surface other than the area that is being formed, but an area that does not cause any problem in the subsequent process or a part that is to be slightly formed as preforming may be left open.
以下、本発明の根拠を明らかにする。The basis of the present invention will be explained below.
超塑性鍛造においての成形荷重Pは、概路次の様に示さ
れる。The forming load P in superplastic forging is roughly shown as follows.
P=σ・S−Q
ここで、σは材料の降伏応力、Sはポンチと材料との投
影接触面積、Qは成形する製品形状等により決まる係数
で、一般に2〜5程度の値をとる。P=σ·S−Q Here, σ is the yield stress of the material, S is the projected contact area between the punch and the material, and Q is a coefficient determined by the shape of the product to be molded, etc., and generally takes a value of about 2 to 5.
この内、降伏応力σは温度、歪ε、歪速度二に影響され
、とくに超塑性材料は歪速度の効果が大きいことが特徴
であり、次のように表わされる。Among these, the yield stress σ is influenced by temperature, strain ε, and strain rate, and superplastic materials are characterized in that the effect of strain rate is particularly large, and is expressed as follows.
σ=A6° ε1
ここで、A;係数、n;歪硬化指数、
m:歪速度指数
上式によれば、他の係数は一定にして、m=0.4とす
れば、圧縮速度を172にすることによって、荷重は1
71.3になることが計算される。しかしながら、逆に
鍛造時間は当然2倍になることが理解される。同じく、
荷重を172にするには、圧縮速度は、1/6にする必
要があり、圧縮時間は6倍にも達する。すなわち、圧縮
速度を小さくすることによって、基本的には、荷重を小
さくすることは可能であるが、反面、生産性が極度に低
下する欠点を伴う。従って、圧縮速度以外に荷重を低減
する方策、例えば荷重を半分にする工夫があれば、その
効果は非常に大きいと言える。σ=A6° ε1 Here, A: coefficient, n: strain hardening index, m: strain rate index According to the above formula, if other coefficients are held constant and m = 0.4, the compression rate is 172 By setting the load to 1
It is calculated to be 71.3. However, it is understood that on the contrary, the forging time naturally doubles. Similarly,
In order to increase the load to 172, the compression speed must be reduced to 1/6, and the compression time will be six times as long. That is, by reducing the compression speed, it is basically possible to reduce the load, but on the other hand, this comes with the drawback that productivity is extremely reduced. Therefore, it can be said that if there is a measure to reduce the load other than the compression speed, such as halving the load, the effect will be very large.
一方、荷重低減策として、Qに着目して、たとえば成形
する形状の肉厚を大きく変更することによって、荷重は
小さくなること等を発明者らは実験的に見いだしたが、
製品形状は予め決まるものであるから、末法を適用する
場合、成形終了後、機械加工により余分な部分を切削切
除することが必要になり、これは製造コストの増大につ
ながり、常に望ましい方法とはいえない。On the other hand, as a measure to reduce the load, the inventors have experimentally found that the load can be reduced by focusing on Q and, for example, significantly changing the wall thickness of the shape to be formed.
Since the shape of the product is predetermined, when applying the final method, it is necessary to cut out the excess part by machining after the molding is completed, which increases manufacturing costs and is not always the preferred method. I can't say that.
発明者らは、2項の接触面積Sに着目し、荷重を減少さ
せる最も効果的な対策は接触面積を減少させることであ
り、このため鍛造工程を複数回に分離して鍛造すること
を考案した。The inventors focused on the contact area S in term 2, and found that the most effective measure to reduce the load was to reduce the contact area, and therefore devised to separate the forging process into multiple steps. did.
しかしながら、超塑性鍛造は、材料、金型共に、恒温下
で行うものであり、単に2分割して鍛造しても、所定の
寸法形状を得ることは出来ない。なぜなら、成形する材
料全体の温度が所定の温度に保たれているので、全体が
超塑性特性を有しているので、成形させるつもりでない
部分も圧力が加わわれば変形してしまうことになる。す
なわち、最初の鍛造で成形しなくとも良い部分が変形さ
れて、最終的に、目的とする製品形状が全体として得ら
れないことになる。However, in superplastic forging, both the material and the die are kept at a constant temperature, and it is not possible to obtain a predetermined size and shape by simply forging the two parts. This is because the temperature of the entire material to be molded is maintained at a predetermined temperature, so the entire material has superplastic properties, so even parts that are not intended to be molded will deform if pressure is applied. In other words, parts that do not need to be formed during the initial forging are deformed, and ultimately the desired product shape cannot be obtained as a whole.
したがフて、成形を欲しない部分は変形しないよう金型
で拘束することが必要となる。このとき、拘束部に加わ
る圧力は、金型内で受は持つようにすれば、特別な圧力
付加装置を必要としない。Therefore, it is necessary to restrain parts that do not want to be molded with a mold so that they do not deform. At this time, if the pressure applied to the restraint part is held within the mold, no special pressure applying device is required.
第1図に、簡単のため矩形板1を2ステツプで圧縮する
場合の手順を示す。先ず、一定の温度に加熱された材料
1は、その材料の長手方向の半分を、同じ所定の温度に
加熱された金型2,3で拘束して、残り半分を金型2と
ポンチ4で圧縮する。成形が終了すれば、既成形部を金
型2,5で拘束して、残り部1をポンチ6で成形する。For simplicity, FIG. 1 shows a procedure for compressing a rectangular plate 1 in two steps. First, a material 1 heated to a constant temperature is restrained in the longitudinal direction by the molds 2 and 3 heated to the same predetermined temperature, and the remaining half is held in the mold 2 and the punch 4. Compress. When the molding is completed, the already molded part is restrained with the molds 2 and 5, and the remaining part 1 is molded with the punch 6.
これによって、接触面積はほぼ半分になり、荷重もほぼ
半減する。As a result, the contact area is approximately halved, and the load is also approximately halved.
なお、2段階の成形でその境界に当る部分が、必ずしも
目的とする製品形状に成形出来ない場合もあるが、後で
若干の機械加工は許せるので、それほど厳密な寸法に成
形する必要はない。むしろ、第1回目の鍛造後、第2回
目の鍛造との境界となる部分の形状がなめらかでないと
、2回目の鍛造によフて、メタルの流れに急激な変化が
生じて、いわゆる折れ込みが生じることもあるので、金
型の寸法を若干変更する必要のある場合もある。すなわ
ち、若ト製品よりも大きく成形して、後で切削する場合
もある。Note that in the two-step molding, the part that corresponds to the boundary may not necessarily be molded into the desired product shape, but since some machining can be allowed later, it is not necessary to mold it to such exact dimensions. Rather, if the shape of the boundary between the first forging and the second forging is not smooth, the second forging will cause a sudden change in the flow of the metal, resulting in what is called folding. may occur, so it may be necessary to slightly change the dimensions of the mold. In other words, there are cases where the product is formed larger than a young product and then cut later.
なお、本発明は、必ずしも2ステツプに限定するもので
はなく、3回以上の複数回で成形する場合も含まれる。Note that the present invention is not necessarily limited to two steps, but also includes cases where molding is performed three or more times.
[実施例]
第2図に示す形状、寸法の製品を、素材寸法;200m
mLX 160nooWX lOu+IIItのTi合
合材材料Ti−10V−2Fe−3AQ)を用いて、7
60℃恒温下、アルゴン雰囲気中1工程で、圧縮速度0
.211IIm/分で底厚6 m+++tまで成形した
ところ、]0OOtonの荷重を要し、成形時間は約3
0分であった。[Example] A product with the shape and dimensions shown in Fig. 2 was manufactured using a material size of 200 m.
mLX 160nooWX 1Ou+IIIt Ti composite material Ti-10V-2Fe-3AQ),
Compression speed 0 in 1 step in argon atmosphere at constant temperature of 60℃
.. When molded to a bottom thickness of 6 m+++t at 211 II m/min, a load of ]000 tons was required, and the molding time was approximately 3
It was 0 minutes.
つぎに、圧縮速度を176に低下させ圧縮したところ、
荷重は約50θtonに減少したが、成形時間は約18
0分要した。Next, when I lowered the compression speed to 176 and compressed it,
Although the load decreased to approximately 50θton, the molding time decreased to approximately 18
It took 0 minutes.
そこで、第3図に示すように、本発明を適用して、成形
を幅方向に2分割して、同じ圧縮速度、2ステツプで成
形した。すなわち、第3図は成形手順を示しており、第
3図(a−1)〜(a−4)は鍛造機で成形中の状態を
示す縦断面図、第3図(b−1)〜(b−3)は成形材
の斜視図、および第3図(C)は第3図(a−2)のA
−A断面図を示している。第3図 (a−1)に示すよ
うに、素材12の周面は金型7の内周面にほぼ接して拘
束されており、金型7の底面と拘束金型8とで素材12
の右半分は上下から拘束されている。このような状態で
、第3図 (a−2)に示すようにポンチ9で素材12
の左半分を圧縮する。このとき、成形部の材料の一部は
拘束金型8とポンチ9との間に形成された穴13および
金型7とポンチ9との間に形成された穴14に流れ込む
。Therefore, as shown in FIG. 3, by applying the present invention, the molding was divided into two parts in the width direction, and molding was performed at the same compression speed in two steps. That is, Fig. 3 shows the forming procedure, Fig. 3 (a-1) to (a-4) are longitudinal sectional views showing the state during forming in the forging machine, and Fig. 3 (b-1) to 3. (b-3) is a perspective view of the molded material, and Figure 3 (C) is A of Figure 3 (a-2).
-A sectional view is shown. As shown in FIG. 3 (a-1), the peripheral surface of the material 12 is restrained in almost contact with the inner peripheral surface of the mold 7, and the material 12 is restrained by the bottom surface of the mold 7 and the restraining mold 8.
The right half of is restrained from above and below. In this state, the material 12 is punched with the punch 9 as shown in Figure 3 (a-2).
Compress the left half of . At this time, a part of the material of the molded part flows into the hole 13 formed between the restraining die 8 and the punch 9 and the hole 14 formed between the die 7 and the punch 9.
第3図 (b−2)はこの段階の中間成形材12’の形
状を示している。つぎに、成形部を拘束金型lOで拘束
し、ポンチ11で未成形部を圧縮する。第3図(a−4
)は成形が終った段階を示しており、第3図(b−3)
は仕上り品12’を示している。FIG. 3(b-2) shows the shape of the intermediate molded material 12' at this stage. Next, the molded part is restrained by a restraining mold lO, and the unformed part is compressed by a punch 11. Figure 3 (a-4
) indicates the stage when molding is completed, as shown in Figure 3 (b-3).
indicates the finished product 12'.
第3図に示す本発明の方法によれば、荷重は500to
nであった。成形時間は2ステツプのため、2倍の60
分必要となったが、生産性は大幅に向上した。According to the method of the present invention shown in FIG. 3, the load is 500 to
It was n. Since the molding time is 2 steps, it is twice as long as 60
However, productivity has improved significantly.
[発明の効果]
本発明によりば、鍛造荷重容量が小さい鍛造機であフて
も、短い成形時間で大型の製品をM1塑性鍛造すること
ができる。[Effects of the Invention] According to the present invention, even if a forging machine with a small forging load capacity is used, a large product can be M1 plastic forged in a short forming time.
第1図は本発明を板の成形例で説明する原理図、第2図
は実施例での製品形状を示す斜視図、ならびに第3図は
第2図に示す製品を成形する手順を説明する図面で、第
3図 (a−1)〜(a−4)は鍛造機で成形中の状態
を示す縦断面図、第3図(b−1)〜(b−3)は成形
材の斜視図、および第3図(C)は第3図 (a−2)
のA−A断面図である。
1 、12.12’ 、 +2”・・・材料、2.7・
・・金型、3.5,8.10・・・拘束金型、4,6.
9.11・・・ポンチ。Fig. 1 is a principle diagram explaining the present invention using an example of forming a plate, Fig. 2 is a perspective view showing the product shape in the embodiment, and Fig. 3 is an explanation of the procedure for forming the product shown in Fig. 2. In the drawings, Figures 3 (a-1) to (a-4) are longitudinal cross-sectional views showing the state during forming in a forging machine, and Figures 3 (b-1) to (b-3) are perspective views of the formed material. Figures and Figure 3 (C) are Figure 3 (a-2)
It is an AA sectional view of. 1, 12.12', +2"...Material, 2.7.
...Mold, 3.5, 8.10...Restriction mold, 4,6.
9.11... Punch.
Claims (1)
拘束し、残る一部を目標とする製品形状に鍛造成形した
後、ついで該成形部を金型で拘束し、未成形部を目標と
する製品形状に鍛造成形することを特徴とする超塑性鍛
造法。1. In superplastic forging, a part of the material to be formed is restrained in a die, the remaining part is forged into the target product shape, and then the formed part is restrained in the die, and the unformed part is A superplastic forging method characterized by forging into a target product shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11837988A JPH01289531A (en) | 1988-05-17 | 1988-05-17 | Superplastic forging method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11837988A JPH01289531A (en) | 1988-05-17 | 1988-05-17 | Superplastic forging method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01289531A true JPH01289531A (en) | 1989-11-21 |
Family
ID=14735241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11837988A Pending JPH01289531A (en) | 1988-05-17 | 1988-05-17 | Superplastic forging method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01289531A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5592847A (en) * | 1993-12-17 | 1997-01-14 | Wyman-Gordon Company | Stepped segmented, closed-die forging |
US5697246A (en) * | 1995-02-10 | 1997-12-16 | Nippondenso Co., Ltd. | Pressing method and pressing apparatus for the same |
US5868026A (en) * | 1994-10-28 | 1999-02-09 | Wyman-Gordon Company | Stepped, segmented, closed-die forging |
US6044685A (en) * | 1997-08-29 | 2000-04-04 | Wyman Gordon | Closed-die forging process and rotationally incremental forging press |
FR2874339A1 (en) * | 2004-08-23 | 2006-02-24 | Snecma Moteurs Sa | Primary part manufacturing method for e.g. turbomachine, involves finish forging primary part using die by press, where forging is effectuated in two successive and complementary stages for two portions of primary part |
-
1988
- 1988-05-17 JP JP11837988A patent/JPH01289531A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5592847A (en) * | 1993-12-17 | 1997-01-14 | Wyman-Gordon Company | Stepped segmented, closed-die forging |
US5950481A (en) * | 1993-12-17 | 1999-09-14 | Wyman-Gordon Company, Inc. | Stepped, segmented, closed-die forging |
US5868026A (en) * | 1994-10-28 | 1999-02-09 | Wyman-Gordon Company | Stepped, segmented, closed-die forging |
US5697246A (en) * | 1995-02-10 | 1997-12-16 | Nippondenso Co., Ltd. | Pressing method and pressing apparatus for the same |
US6240765B1 (en) | 1996-12-06 | 2001-06-05 | Wyman Gordon Corporation | Closed-die forging process and rotationally incremental forging press |
US6044685A (en) * | 1997-08-29 | 2000-04-04 | Wyman Gordon | Closed-die forging process and rotationally incremental forging press |
FR2874339A1 (en) * | 2004-08-23 | 2006-02-24 | Snecma Moteurs Sa | Primary part manufacturing method for e.g. turbomachine, involves finish forging primary part using die by press, where forging is effectuated in two successive and complementary stages for two portions of primary part |
EP1629906A1 (en) * | 2004-08-23 | 2006-03-01 | Snecma Moteurs | Process for manufacturing constituant parts of a hollow turbine blade by press forging |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001314921A (en) | Pressing method for expanding local area thickness | |
US4113522A (en) | Method of making a metallic structure by combined superplastic forming and forging | |
JPH01289531A (en) | Superplastic forging method | |
RU99113931A (en) | METHOD FOR PRODUCING MULTILAYER CELLULAR STRUCTURE | |
US4516419A (en) | Methods of enhancing superplastic formability of aluminum alloys by alleviating cavitation | |
JPH05154598A (en) | Method for forging spur gear | |
JPS61269938A (en) | Manufacture of piston | |
JPH01197020A (en) | Manufacture of formed product having required wall thickness by superplastic blow forming method | |
JPH02165837A (en) | Superplastic forging method | |
JP3674399B2 (en) | Stepped shaft manufacturing method and stepped shaft manufacturing apparatus | |
JP3494349B2 (en) | Helical gear manufacturing method | |
JPH01266922A (en) | Metallic member for radiation or the like and its manufacture | |
JPS6128422B2 (en) | ||
JP3746828B2 (en) | Manufacturing method for cylindrical parts | |
JPS60166137A (en) | Upsetting method of tube end part | |
JP2001286970A (en) | Forging method of material having superplasticity | |
JPH0331538B2 (en) | ||
SU1696085A1 (en) | Method for manufacture of turbine of compressor blades | |
JP3463178B2 (en) | Engine valve cotter groove forming method | |
JP5030084B2 (en) | Molding method | |
JPH04258339A (en) | Method for plastic-working flange member | |
RU1557810C (en) | Method of making axially symmetrical articles | |
JPH01210141A (en) | Pressure forming method | |
SU812403A1 (en) | Shaft forging method | |
JP2808496B2 (en) | Superplastic forming method for metallic composite materials |