JP2808496B2 - Superplastic forming method for metallic composite materials - Google Patents

Superplastic forming method for metallic composite materials

Info

Publication number
JP2808496B2
JP2808496B2 JP3140619A JP14061991A JP2808496B2 JP 2808496 B2 JP2808496 B2 JP 2808496B2 JP 3140619 A JP3140619 A JP 3140619A JP 14061991 A JP14061991 A JP 14061991A JP 2808496 B2 JP2808496 B2 JP 2808496B2
Authority
JP
Japan
Prior art keywords
plate
stress
forming
hard
superplastic forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3140619A
Other languages
Japanese (ja)
Other versions
JPH0557365A (en
Inventor
隆之 都筑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3140619A priority Critical patent/JP2808496B2/en
Publication of JPH0557365A publication Critical patent/JPH0557365A/en
Application granted granted Critical
Publication of JP2808496B2 publication Critical patent/JP2808496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、変形による欠陥生成が
顕著で延性の乏しい粒子、ウイスカ、短繊維系金属複合
材料に適用される金属系複合材料の超塑性成形方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for superplastic forming a metal composite material applied to particles, whiskers, and short-fiber metal composite materials, which are remarkably defective due to deformation and have poor ductility.

【0002】[0002]

【従来の技術】従来の超塑性成形方法は、図5に示すよ
うに、内面に部品形状を有する下型4と流体圧の導入口
3aを有する上型3の間に被成形板1をセットし、所定
の温度に加熱した後に被成形板1に所定の流体圧を負荷
して張出し成形するものであり、AL合金、Ti合金、
ステンレス鋼等の超塑性変形特性を有する材料に対する
低コストの一体成形方法として用いられている。
2. Description of the Related Art In a conventional superplastic forming method, as shown in FIG. 5, a plate 1 to be formed is set between a lower die 4 having a part shape on an inner surface and an upper die 3 having a fluid pressure inlet 3a. Then, after being heated to a predetermined temperature, a predetermined fluid pressure is applied to the plate 1 to be formed and stretched and formed.
It is used as a low-cost integral molding method for materials having superplastic deformation characteristics such as stainless steel.

【0003】金属系複合材料は低温では延性がなく室温
成形は不可能であるが、高温では超塑性変形特性を有す
ることから上記超塑性成形方法の適用が可能であり、超
塑性成形方法は金属系複合材料の板を成形する唯一の方
法と考えられている。
[0003] Metal-based composite materials are not ductile at low temperatures and cannot be formed at room temperature, but they have superplastic deformation characteristics at high temperatures, so the above superplastic forming method can be applied. It is considered to be the only method of forming a plate of the composite material.

【0004】しかし、金属系複合材料は引張り応力場で
の超塑性変形による内部欠陥(キャビティ)の生成が顕
著であり、また、板材も製造されていないため、金属系
複合材料の板材に対して上記超塑性成形方法を実施した
例はほとんどなく、本材料に対する加工方法は現在鍛造
及び押出しに限定されている。
However, the metal-based composite material has a remarkable generation of internal defects (cavities) due to superplastic deformation in a tensile stress field. Further, since no plate material has been manufactured, the metal-based composite material has a relatively small thickness. There are few examples of the superplastic forming method, and the processing method for the present material is currently limited to forging and extrusion.

【0005】[0005]

【発明が解決しようとする課題】従来の超塑性成形方法
においては、流体圧Pにより被成形板には引張り応力σ
が発生し、これによって板が張出し成形される。従っ
て、引張り変形によりキャビティを生成し易い金属系複
合材料では、図6に示すように低加工度で多くのキャビ
ティが生成する。また、金属系複合材料の板材は素材が
既に欠陥(内部剥離)を内在していることが多く、成形
中に剥離の端部を起点として亀裂が板表面(特に外表
面)に進展して割れが発生する。このことから、金属系
複合材料板材の超塑性成形においては、加工限界が小さ
いため、適用可能な部品形状が極めて制約されるととも
に、成形された部品も多くの欠陥を内在するという課題
があった。
In a conventional superplastic forming method, a tensile stress σ is applied to a plate to be formed by a fluid pressure P.
Occurs, which causes the plate to be stretched. Therefore, in the case of a metal-based composite material in which cavities are easily generated by tensile deformation, many cavities are generated with a low workability as shown in FIG. In addition, in many cases, a metal-based composite material has a defect (internal peeling) inside the material, and a crack propagates from the edge of the peeling to the plate surface (especially the outer surface) during forming, and cracks. Occurs. For this reason, in superplastic forming of a metal-based composite material plate, there is a problem that, since the processing limit is small, an applicable part shape is extremely restricted, and the formed part has many defects therein. .

【0006】本発明は、金属系複合材料に対する超塑性
成形方法適用上のこれらの課題を解決し、加工限界及び
加工品品質を向上させ得る新しい超塑性成形方法を提供
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve these problems in applying a superplastic forming method to a metal-based composite material and to provide a new superplastic forming method capable of improving a processing limit and a quality of a processed product.

【0007】[0007]

【課題を解決するための手段】本発明の金属系複合材料
の超塑性成形方法は、金属系複合材料よりなる被成形板
と同一加工条件で超塑性を示しかつ変形応力の高い材
料よりなる硬質板を下型の上に配設し、同硬質板の上に
上記被成形板を重ねた後、その上に流体圧導入口を有す
る上型を配設し、同流体圧導入口より上記被成形板面に
流体圧を負荷して同被成形板を上記硬質板と共に超塑性
成形することを特徴としている。
Superplastic forming method of the metal-based composite material of the present invention, in order to solve the problem] is made of a material having high illustrated and deformation stress superplasticity in the same processing conditions and the molded plate made of a metal-based composite material After disposing the hard plate on the lower mold and stacking the above-mentioned molded plate on the hard plate, disposing an upper mold having a fluid pressure inlet thereon, The method is characterized in that a fluid pressure is applied to a surface of a forming plate and the forming plate is superplastically formed together with the hard plate.

【0008】[0008]

【作用】上記において、超塑性材料の伸び特性はひずみ
速度に大きく依存するため、超塑性成形では被成形板の
相当ひずみ速度εe が常に適正な一定の値となるよう
に、すなわち、被成形板に発生する相当応力σe が常に
一定の値となるように成形圧力Pをコントロールする
(σe =K・εe m の関係からεe を一定とするために
はσe が一定とする必要がある。ここでK,mは定
数)。
In the above, since the elongation characteristics of the superplastic material greatly depend on the strain rate, in superplastic forming, the equivalent strain rate ε e of the plate to be formed is always an appropriate constant value. equivalent stress sigma e always control the molding pressure P to a constant value (σ e = K · ε e is to the constant epsilon e from the relationship of m sigma e is a constant which is generated in the plate (Where K and m are constants).

【0009】上記相当応力σe は、成形圧力Pによって
被成形板に発生する引張り及び圧縮の主応力σ1
σ2 ,σ3 (σ1 ,σ2 >0,σ3 <0)によって、 σe =((σ1 −σ2 2 +(σ2 −σ3 2 +(σ3
−σ12 1/2 /21/2 と表されることから、板厚方向の圧縮応力σ3 の絶対値
を大きくすると、引張り応力σ1 ,σ2 が変わらなけれ
ば上式の(σ2 −σ3 2 及び(σ3 −σ12 の項は
大きくなり、相当応力σe が増大して適正な相当ひずみ
速度εe が維持されなくなる。
The above-mentioned equivalent stress σ e is the main tensile and compressive stress σ 1 , generated on the plate to be formed by the forming pressure P,
According to σ 2 , σ 31 , σ 2 > 0, σ 3 <0), σ e = ((σ 1 −σ 2 ) 2 + (σ 2 −σ 3 ) 2 + (σ 3
- [sigma] 1) 2) since expressed 1/2 / 2 1/2, increasing the absolute value of compressive stress sigma 3 in the thickness direction, the tensile stress sigma 1, sigma 2 is unless the above equation change The terms (σ 2 −σ 3 ) 2 and (σ 3 −σ 1 ) 2 increase, the equivalent stress σ e increases, and the appropriate equivalent strain rate ε e cannot be maintained.

【0010】従って、板厚方向の圧縮応力σ3 の絶対値
を大きくしたときには、板面内の引張り応力σ1 ,σ2
が小さくなるように成形圧力Pをコントロールして相当
応力σe を所定の一定値としなければならない。
Therefore, when the absolute value of the compressive stress σ 3 in the thickness direction is increased, the tensile stress σ 1 , σ 2
Must correspond stress sigma e to a predetermined constant value by controlling the molding pressure P so decreases.

【0011】このことから、被成形板を硬質板と重ねて
成形することによる板厚方向での圧縮応力の負荷は板面
内の引張り応力の減少の作用をすることとなる。
From the above, the load of the compressive stress in the plate thickness direction due to the forming of the plate to be formed on the hard plate acts to reduce the tensile stress in the plate surface.

【0012】上記により、被成形板の板厚方向に圧縮応
力を作用させ、板面内の引張り応力を小さくすることが
できるため、キャビティ生成及び素材に内圧する剥離部
からの亀裂の進展を防止することが可能となる。
As described above, a compressive stress is applied in the thickness direction of the plate to be formed, so that the tensile stress in the plate surface can be reduced. It is possible to do.

【0013】[0013]

【実施例】本発明の第1実施例を図1により説明する。
図1に示す本実施例は、半径が30mmの半球形状の凹
部を上面に有する下型4上に7475ALよりなり厚さ
t=1.5mmの硬質板2を配設し、同硬質板2の上に
27%SiCウイスカ/7075ALよりなり厚さt=
1.5mmの被成形板1を重ねた後、その上に流体圧導
入口3aの有する上型3を配設し、同流体圧導入口3a
より上記被成形板1の面に流体圧を負荷して同被成形板
1を上記硬質板2と共に成形する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG.
In the present embodiment shown in FIG. 1, a hard plate 2 made of 7475AL and having a thickness t = 1.5 mm is disposed on a lower mold 4 having a hemispherical concave portion having a radius of 30 mm on the upper surface. It is made of 27% SiC whisker / 7075AL and has a thickness t =
After stacking the 1.5 mm shaped plate 1, the upper die 3 having the fluid pressure inlet 3a is disposed thereon, and the fluid pressure inlet 3a
Further, a fluid pressure is applied to the surface of the plate 1 to form the plate 1 together with the hard plate 2.

【0014】上記において、超塑性材料の伸び特性はひ
ずみ速度に大きく依存するため、超塑性成形では被成形
板1の相当ひずみ速度εe が常に適正な一定の値となる
ように、すなわち、被成形板1に発生する相当応力σe
(変形に寄与する応力を比較するのに用いられるもの)
が常に一定の値となるように成形圧力Pをコントロール
する(σe =K・εe m の関係からεe を一定とするた
めにはσe が一定とする必要がある。ここでK,mは定
数)。
In the above description, since the elongation characteristic of the superplastic material greatly depends on the strain rate, in superplastic forming, the equivalent strain rate ε e of the plate 1 to be formed is always an appropriate constant value, that is, Equivalent stress σ e generated in formed plate 1
(Used to compare stresses that contribute to deformation)
There is always to the epsilon e constant from the relationship of constant value and controlling the molding pressure P such that (σ e = K · ε e m is required to be sigma e is constant. Here K, m is a constant).

【0015】上記相当応力σe は、被成形板1の成形形
状が半球形状の場合、図3に示すように成形圧力Pによ
って被成形板1に発生する板面に沿った引張りの主応力
σ1 ,σ2 と板面に垂直な圧縮の主応力σ3 により、次
式で表わされる。 σe =((σ1 −σ2 2 +(σ2 −σ3 2 +(σ3
−σ12 1/2 /21/2 上式においては、板厚方向の圧縮応力σ3 の絶対値を大
きくすると、引張り応力σ1 ,σ2 が変わらなければ上
式の(σ2 −σ3 2 及び(σ3 −σ1 2 の項は大き
くなり、相当応力σe が増大して適正な相当ひずみ速度
εe が維持されなくなる。従って、板厚方向の圧縮応力
σ3 の絶対値を大きくしたときには、板面内の引張り応
力σ1 ,σ2 が小さくなるように成形圧力Pをコントロ
ールして相当応力σe を所定の一定値としなければなら
ない。
[0015] The equivalent stress sigma e, when forming the shape of the molded plate 1 is hemispherical, the main stress of tension along the plate surface generated in the molded plate 1 by a molding pressure P as shown in FIG. 3 sigma 1 and σ 2 and the principal stress σ 3 of compression perpendicular to the plate surface are expressed by the following equation. σ e = ((σ 1 −σ 2 ) 2 + (σ 2 −σ 3 ) 2 + (σ 3
In -σ 1) 2) 1/2 / 2 1/2 above equation, increasing the absolute value of compressive stress sigma 3 in the thickness direction, the tensile stress sigma 1, sigma 2 is changed unless the above formula (sigma The terms 2− σ 3 ) 2 and (σ 3 −σ 1 ) 2 become large, the equivalent stress σ e increases, and the appropriate equivalent strain rate ε e cannot be maintained. Therefore, when the absolute value of the compressive stress σ 3 in the plate thickness direction is increased, the forming stress P is controlled so that the tensile stresses σ 1 and σ 2 in the plate surface are reduced, and the equivalent stress σ e is set to a predetermined constant value. And must be.

【0016】このことから、被成形板1を硬質板2と重
ねて成形することによる板厚方向での圧縮応力の負荷は
板面内の引張り応力の減少の作用をすることとなり、こ
れによってキャビティ生成及び素材に内圧する剥離部か
らの亀裂の進展を防止することができる。
From the above, the load of the compressive stress in the plate thickness direction due to the molding of the plate to be formed 1 on the hard plate 2 acts to reduce the tensile stress in the plate surface, and thereby the cavity is formed. It is possible to prevent the generation and the growth of cracks from the peeling portion which is internally pressed to the material.

【0017】本実施例における27%SiCウイスカ/
7075ALよりなる被成形板1については、その適正
な成形条件は温度500℃、ひずみ速度1.0×10-1
sec-1であり、この条件における変形応力はσe =1
kgf/mm2 ,また硬質板(7475AL)2の同一
条件での変形応力はσe =3kgf/mm2 である。
In this embodiment, 27% SiC whisker /
For the molding plate 1 made of 7075AL, the proper molding conditions are a temperature of 500 ° C. and a strain rate of 1.0 × 10 −1.
sec −1 and the deformation stress under this condition is σ e = 1
kgf / mm 2, also deforming stress at the same conditions of the hard plate (7475AL) 2 is a σ e = 3kgf / mm 2.

【0018】ここで、積層板が曲率半径R=50mmと
なるまで成形されたときの成形圧力及び応力状態を一例
として考えてみる(簡略化のため板厚減少は無視す
る。)。
Here, the forming pressure and stress state when the laminated plate is formed until the radius of curvature R becomes 50 mm will be considered as an example (for the sake of simplicity, the reduction in thickness is ignored).

【0019】半球の成形においては、板面内の主応力σ
1 ,σ2は等価であることから、相当応力σe は、 σe =((σ1 −σ2 2 +(σ2 −σ3 2 +(σ3
−σ12 1/2 /21/2 =|σ1 −σ3 |=σ1 −σ
3 (∵σ1 >0,σ3 <0) となる。
In the formation of a hemisphere, the principal stress σ
Since 1 and σ 2 are equivalent, the equivalent stress σ e is σ e = ((σ 1 −σ 2 ) 2 + (σ 2 −σ 3 ) 2 + (σ 3
-Σ 1) 2) 1/2 / 2 1/2 = | σ 1 -σ 3 | = σ 1 -σ
3 (∵σ 1 > 0, σ 3 <0).

【0020】積層板の成形に必要な圧力をPFROM、その
うち、硬質板2の成形に要する圧力をP1 、被成形板1
の成形に要する圧力をP2 (P1 +P2 =PFROM)とす
ると、硬質板2では、 σ1 =RP1 /2t=50P1 /2×1.5=50P1
/3,σ3 =−P1 /2,σe =50P1 /3+P1
2 となり、σe =3kgf/mm2 よりP1 =0.175
kgf/mm2 となる。
The pressure required for forming the laminated plate is P FROM , of which the pressure required for forming the hard plate 2 is P 1 ,
Assuming that the pressure required for the molding of P2 is P 2 (P 1 + P 2 = P FROM ), in the hard plate 2, σ 1 = RP 1 / 2t = 50 P 1 /2×1.5=50 P 1
/ 3, σ 3 = -P 1 /2, σ e = 50P 1/3 + P 1 /
2 and P 1 = 0.175 from σ e = 3 kgf / mm 2
kgf / mm 2 .

【0021】また、被成形板1では、 σ1 =50P2 /3,σ3 =−(PFROM+P1 )/2=
−(P2 /2+P1 )=−(P2 /2+0.175),
σe =50P2 /3+P2 /2+0.175 となり、σe =1kgf/mm2 よりP2 =0.048
kgf/mm2 となる。
Further, in the molded plate 1, σ 1 = 50P 2/ 3, σ 3 = - (P FROM + P 1) / 2 =
- (P 2/2 + P 1) = - (P 2 /2+0.175),
σ e = 50P 2/3 + P 2 /2+0.175 next, σ e = 1kgf / mm 2 from P 2 = 0.048
kgf / mm 2 .

【0022】従って、積層板の成形に必要な圧力はP
FROM=P1 +P2 =0.223kgf/mm2 となり、
このとき被成形板1に作用している応力はσ1 =σ2
0.8kgf/mm2 ,σ3 =−0.2kgf/mm2
となる。
Therefore, the pressure required for forming the laminate is P
FROM = P 1 + P 2 = 0.223kgf / mm 2 , and the
At this time, the stress acting on the plate 1 is σ 1 = σ 2 =
0.8 kgf / mm 2 , σ 3 = −0.2 kgf / mm 2
Becomes

【0023】一方、従来の図5に示す被成形板1のみを
成形する場合には、 σ1 =50PFROM/3,σ3 =−PFROM/2,σe =5
0PFROM/3+PFROM/2 となり、σe =1kgf/mm2 よりPFROM=0.05
8kgf/mm2 ,σ1 =σ2 =0.97kgf/mm
2 ,σ3 =−0.029kgf/mm2 である。
On the other hand, in the case where only the conventional plate 1 shown in FIG. 5 is formed, σ 1 = 50P FROM / 3, σ 3 = −P FROM / 2, σ e = 5
0P FROM / 3 + P FROM / 2, P FROM = 0.05 from σ e = 1 kgf / mm 2
8 kgf / mm 2 , σ 1 = σ 2 = 0.97 kgf / mm
2 , σ 3 = −0.029 kgf / mm 2 .

【0024】従って、本実施例においては、硬質材2と
重ねて成形することにより、被成形板1の面内に発生す
る最大主応力が約20%低減されたことになる。最大主
応力が20%低減されたことによるキャビティ生成及び
剥離を起点とする亀裂進展の抑制効果は非常に大きく、
図2に示すように半球の成形が可能になるとともに、頂
点部においてもキャビティは全く生成していない。
Therefore, in the present embodiment, the maximum principal stress generated in the plane of the plate 1 to be formed is reduced by about 20% by being formed by overlapping the hard material 2. The effect of suppressing the growth of cracks originating from cavity formation and delamination due to the reduction of the maximum principal stress by 20% is very large,
As shown in FIG. 2, a hemisphere can be formed, and no cavity is formed at the vertex.

【0025】上記により、被成形板の板面内に発生する
引張り応力を小さくすることができるため、被成形板に
おけるキャビティ生成や剥離部を起点とする亀裂の進展
を抑制することが可能となった。
As described above, since the tensile stress generated in the surface of the plate to be formed can be reduced, it is possible to suppress the generation of cavities in the plate to be formed and the growth of cracks originating from the peeled portion. Was.

【0026】なお、加工度が200%程度の半球成形で
あれば、本実施例のように最大主応力を20%程度低減
すればキャビティを生成させずに成形することが可能で
あるが、成形形状及び加工度によって必要な最大主応力
低減量は異なるため、これに合わせて硬質材の材質、板
厚を使い分けることになる。
In the case of hemispherical molding with a working ratio of about 200%, it is possible to form without forming a cavity by reducing the maximum principal stress by about 20% as in this embodiment. The required maximum principal stress reduction amount varies depending on the shape and the working degree, and accordingly, the material and the thickness of the hard material are properly used in accordance with this.

【0027】本発明の第2実施例について以下に説明す
る。第2実施例においては、被成形板1及び硬質板2の
材質は第1実施例と同じであるが、被成形板1を幅60
mm、深さ60mmのコルゲート形状に成形するもので
あり、成形形状が異なるため、被成形板1と硬質板2の
板厚比を変えて実施している。
A second embodiment of the present invention will be described below. In the second embodiment, the materials of the plate 1 and the hard plate 2 are the same as those of the first embodiment, but the plate 1 has a width of 60 mm.
It is formed into a corrugated shape having a depth of 60 mm and a depth of 60 mm. Since the formed shapes are different, the thickness ratio of the plate 1 to be formed and the hard plate 2 is changed.

【0028】上記において、図4に示す引張り主応力σ
1 ,σ2と圧縮主応力σ3 については、 σ1 =RP/t,σ2 =σ1 /2,σ3 =−P/2 であり、最大引張り主応力σ1 と相当応力σe の関係は
(円筒面に発生する圧縮主応力σ3 は引張り主応力
σ1 ,σ2 に対して十分小さいため、簡略化してσ3
0で考えると)半球成形(等2軸引張り)ではσ1 =σ
e ,コルゲート成形(平面ひずみ)ではσ1 =2σe
1/2であり、一定の相当応力に対してはコルゲート成
形の方が最大引張り主応力が大きくなる。また,成形に
要する圧力Pは半球成形ではP=2tσ1 /R=2tσ
e /R,コルゲート成形ではP=tσ1 /R=2tσe
/31/2 Rとなり、コルゲートの方が低い圧力で成形す
ることとなり、板厚方向の圧縮応力も小さくなる。
In the above description, the principal tensile stress σ shown in FIG.
1, for the sigma 2 the principal compressive stress σ 3, σ 1 = RP / t, σ 2 = σ 1/2, a σ 3 = -P / 2, the maximum tensile principal stress sigma 1 and the equivalent stress sigma e The relationship is (Since the compressive principal stress σ 3 generated on the cylindrical surface is sufficiently smaller than the tensile principal stresses σ 1 and σ 2 , the relationship is simplified to σ 3 =
Σ 1 = σ in hemispherical molding (considering 0)
e , σ 1 = 2σ e / in corrugated molding (plane strain)
It is 31/2 , and for a certain equivalent stress, the corrugated molding has a larger maximum tensile principal stress. The pressure P required for molding is P = 2tσ 1 / R = 2tσ in hemispherical molding.
e / R, P = tσ 1 / R = 2tσ e for corrugated molding
/ 3 1/2 R, and the corrugate is molded at a lower pressure, and the compressive stress in the thickness direction is also reduced.

【0029】従って、コルゲート成形では半球成形より
も最大引張り主応力σ1 が大きく、更に、板厚方向圧縮
応力σ3 が小さくなることから、被成形板1の板厚に対
する硬質板2の板厚比を大きくしなければ同等のキャビ
ティ低減効果が得られなくなるのである。
Therefore, in the corrugated forming, the maximum tensile principal stress σ 1 is larger than in the hemispherical forming, and the compressive stress σ 3 in the plate thickness direction is smaller, so that the thickness of the hard plate 2 relative to the plate 1 Unless the ratio is increased, the same cavity reduction effect cannot be obtained.

【0030】本実施例においても、上記の条件にもとづ
いて成形を行うことにより、第1実施例と同様の作用及
び効果が得られた。
Also in this embodiment, the same operation and effect as those of the first embodiment were obtained by performing molding under the above conditions.

【0031】本発明の第3実施例を以下に説明する。第
3実施例においては、被成形板1と硬質板2の材質と基
本的成形形状は第2実施例と同じであるが、コルゲート
の幅が50mm,深さが25mmであって成形加工度
(コルゲートの深さ/幅比)が小さいため、被成形板1
と硬質板2の板厚tをそれぞれ1.3mm,1.4mm
としてその板厚比を変えている。加工度が小さい場合に
はキャビティ生成量も少なくなるため、硬質板2の板厚
を薄くしてもキャビティを防止することが可能になるた
めである。
A third embodiment of the present invention will be described below. In the third embodiment, the material and the basic molding shape of the plate 1 and the hard plate 2 are the same as those of the second embodiment, but the width of the corrugate is 50 mm, the depth is 25 mm, and the forming degree ( Since the depth / width ratio of the corrugate is small,
And the thickness t of the hard plate 2 are 1.3 mm and 1.4 mm, respectively.
The thickness ratio is changed. This is because, when the degree of processing is small, the amount of generated cavities is also small, so that even if the thickness of the hard plate 2 is reduced, cavities can be prevented.

【0032】本実施例においても、上記の条件で成形を
行うことにより、第1,第2実施例と同様の作用及び効
果が得られた。
In this embodiment, the same operation and effect as those of the first and second embodiments were obtained by performing molding under the above conditions.

【0033】上記第2実施例、第3実施例では成形形状
及び加工度の変化に対して、被成形板1に対する硬質板
2の板厚比を変えて同等のキャビティ防止効果を得た
が、硬質板2の材質を変えることにより同等の効果を得
ることも可能である。
In the above-described second and third embodiments, the same cavity prevention effect was obtained by changing the thickness ratio of the hard plate 2 to the plate 1 with respect to changes in the forming shape and the degree of processing. The same effect can be obtained by changing the material of the hard plate 2.

【0034】このように、被成形板の材質、板厚、成形
形状(含加工度)に合わせて硬質板の材質、板厚を適正
化することにより、各種材質の金属複合材料の各種形状
の超塑性成形に対して適用することができる。
As described above, by optimizing the material and thickness of the hard plate in accordance with the material, thickness and forming shape (including the degree of processing) of the plate to be molded, various shapes of metal composite materials of various materials can be obtained. It can be applied to superplastic forming.

【0035】なお、被成形板と硬質板の組合せは、18
%SiCウイスカ/2024ALよりなる被成形板と2
001AL(スプラール)よりなる硬質板の組合せ、2
0%SiCウイスカ/6061ALよりなる被成形板と
8090ALよりなる硬質板の組合せ、23%SiCウ
イスカ/2014ALよりなる被成形板と2090AL
よりなる硬質板の組合せ等多数考えられる。
The combination of the plate to be formed and the hard plate is 18
2% SiC Whisker / 2024AL
001AL (Spral) hard plate combination, 2
A combination of a molded plate made of 0% SiC whisker / 6061AL and a hard plate made of 8090AL, a molded plate made of 23% SiC whisker / 2014AL and 2090AL
There are many possible combinations of hard plates.

【0036】[0036]

【発明の効果】本発明の金属系複合材料の超塑性成形方
法は、金属系複合材料よりなる被成形板をそれよりも変
形応力の高い板材よりなる硬質材と重ねて超塑性成形す
ることにより、被成形板の板厚方向に圧縮応力を作用さ
せることができ、これによって板面内に発生する引張り
応力(最大主応力)を小さくすることができ、金属系複
合材料の超塑性成形におけるキャビティ生成及び剥離部
を起点とする亀裂の進展を抑制することが可能になる。
The method for superplastic forming of a metal-based composite material according to the present invention is characterized in that a plate to be formed of a metal-based composite material is superplastically formed by superimposing it on a hard material made of a plate material having a higher deformation stress. Compressive stress can be applied in the thickness direction of the plate to be formed, thereby reducing the tensile stress (maximum principal stress) generated in the plate surface. It is possible to suppress the growth of the crack originating from the generation and separation parts.

【0037】このキャビティ生成及び亀裂進展が抑制さ
れると加工限界が向上して、超塑性成形適用可能な部品
形状が拡大するとともに、成形された部品に内圧する欠
陥も大幅に減少する。
If the formation of the cavity and the growth of the cracks are suppressed, the processing limit is improved, the shape of the part applicable to superplastic forming is expanded, and the defect of the formed part under the internal pressure is greatly reduced.

【0038】従って、本発明は金属系複合材料板材の超
塑性成形を可能とし、更に、加工限界、加工品品質を大
幅に向上させるという効果を有している。
Therefore, the present invention has an effect of enabling superplastic forming of a metal-based composite material plate, and further greatly improving the processing limit and the quality of the processed product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の説明図である。FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】上記第1実施例により成形された被成形板の金
属組織の写真である。
FIG. 2 is a photograph of a metal structure of a plate formed according to the first embodiment.

【図3】上記第1実施例により成形された被成形板に発
生する応力の説明図である。
FIG. 3 is an explanatory diagram of stress generated in a plate to be formed formed by the first embodiment.

【図4】本発明の第2実施例により成形された被成形板
に発生する応力の説明図である。
FIG. 4 is an explanatory diagram of stress generated in a plate to be formed formed according to a second embodiment of the present invention.

【図5】従来の成形方法の説明図である。FIG. 5 is an explanatory view of a conventional molding method.

【図6】上記従来の成形方法により成形された被成形板
の金属組織の写真である。
FIG. 6 is a photograph of a metal structure of a plate formed by the conventional forming method.

【符号の説明】[Explanation of symbols]

1 被成形板 2 硬質板 3 上型 3a 流体圧導入口 4 下型 DESCRIPTION OF SYMBOLS 1 Molded plate 2 Hard plate 3 Upper die 3a Fluid pressure inlet 4 Lower die

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属系複合材料よりなる被成形板と同一
加工条件でも超塑性示しかつ変形応力の高い材料より
なる硬質板を下型の上に配設し、同硬質板の上に上記被
成形板を重ねた後、その上に流体圧導入口を有する上型
を配設し、同流体圧導入口より上記被成形板面に流体圧
を負荷して同被成形板を上記硬質板と共に超塑性成形す
ることを特徴とする金属系複合材料の超塑性成形方法。
1. A hard plate made of a material exhibiting superplasticity and having a high deformation stress under the same processing conditions as a plate made of a metal-based composite material is disposed on a lower mold, and the hard plate is made on the hard plate. Suffered
An upper mold with a fluid pressure inlet on it after stacking the forming plates
From the fluid pressure inlet to the surface of the plate to be molded.
Superplastic forming method of the metal-based composite material of the same the molded plate was loaded, characterized in that superplastic forming with the hard plate.
JP3140619A 1991-05-17 1991-05-17 Superplastic forming method for metallic composite materials Expired - Fee Related JP2808496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3140619A JP2808496B2 (en) 1991-05-17 1991-05-17 Superplastic forming method for metallic composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3140619A JP2808496B2 (en) 1991-05-17 1991-05-17 Superplastic forming method for metallic composite materials

Publications (2)

Publication Number Publication Date
JPH0557365A JPH0557365A (en) 1993-03-09
JP2808496B2 true JP2808496B2 (en) 1998-10-08

Family

ID=15272923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3140619A Expired - Fee Related JP2808496B2 (en) 1991-05-17 1991-05-17 Superplastic forming method for metallic composite materials

Country Status (1)

Country Link
JP (1) JP2808496B2 (en)

Also Published As

Publication number Publication date
JPH0557365A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
US4882823A (en) Superplastic forming diffusion bonding process
CA1039008A (en) Method of superplastic forming with concurrent diffusion bonding
US5056209A (en) Process for manufacturing clad metal tubing
US7416105B2 (en) Superplastically forming of friction welded structural assemblies
US20090008428A1 (en) Method of manufacturing an article by superplastic forming and diffusion welding
US4811890A (en) Method of eliminating core distortion in diffusion bonded and uperplastically formed structures
US6296170B1 (en) Method of producing metal composites which can be processed at high temperatures
SE469927B (en) Methods for the preparation of superplastically formed and diffusion-bonded articles and the articles produced thereby
KR20110106787A (en) Monolithic aluminum alloy target and method of manufacturing
US7533794B2 (en) Superplastic forming and diffusion bonding of fine grain titanium
US20060230807A1 (en) Creep forming a work piece
JP4776866B2 (en) Method for forming structure made of aluminum alloy
US5330093A (en) Manufacture of articles by diffusion bonding and superplastic forming
JP2808496B2 (en) Superplastic forming method for metallic composite materials
Heydari Vini et al. Mechanical and Bonding Properties of Bi-Metal Al/Cu Bulk Composites Produced via Apb Technique
KR101465090B1 (en) Grain refining method for tubular metallic material
JP4843401B2 (en) Forging method and anvil used for the forging method
CN117161277A (en) Rolling forming process for shell flange
JPS5916644A (en) Forging die
JPH07171650A (en) Hot swaging forging method
RU2583567C1 (en) METHOD FOR PRODUCING HIGHLY THIN SHEET OF TITANIUM ALLOY Ti-6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si
JPH01289531A (en) Superplastic forging method
CN108889828B (en) Superplastic forming method
JPH06508794A (en) Superplastic deformation of diffusion bonded aluminum structures
EP0638382A1 (en) Method of manufacturing a rotor made of aluminum powder alloy having a steel shaft

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980609

LAPS Cancellation because of no payment of annual fees