JPH01287206A - Porous sintered body for infiltrated complex target material and manufacture thereof - Google Patents

Porous sintered body for infiltrated complex target material and manufacture thereof

Info

Publication number
JPH01287206A
JPH01287206A JP11783188A JP11783188A JPH01287206A JP H01287206 A JPH01287206 A JP H01287206A JP 11783188 A JP11783188 A JP 11783188A JP 11783188 A JP11783188 A JP 11783188A JP H01287206 A JPH01287206 A JP H01287206A
Authority
JP
Japan
Prior art keywords
rare earth
transition metal
sintered body
slurry
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11783188A
Other languages
Japanese (ja)
Inventor
Yuji Horii
堀井 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11783188A priority Critical patent/JPH01287206A/en
Publication of JPH01287206A publication Critical patent/JPH01287206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily manufacture a porous sintered body having fixed porous ratio at good productivity by forming a ground sheet in slurry containing transition metal powder and binder and sintering under reducing atmosphere after laminating this under semidrying condition. CONSTITUTION:By adding and mixing the binder of CMC, etc., and water or organic solvent with the transition metal powder or rare earth metal having about 10-150mum particle size and the rare earth metal-transition metal alloy powder containing <=10 atom %, the slurry is prepared. This slurry is spread to flattened plane to form the ground sheet having the fixed thickness.When this ground sheet is under semi-drying condition, the above slurry is again spread on this and the same operation is repeated and laminated, to form the green compact having the desired thickness. Successively, after drying this green compact, this is sintered at 1,000-1,400 deg.C under reducing atmosphere. By this method, the high density porous sintered body having the fixed porous ratio, such as 40-90%, which is suitable to obtain an infiltrated complex target material infiltrating the transition metal-rare earth metal alloy, is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、希土類金属と遷移金属とからなる複合ター
ゲット材の製造に供される多孔体及びその製造方法に関
する。複合ターゲッl−祠は、光磁気記録用垂直磁化膜
をスパッタリングにより形成する際に使用されるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a porous body used for manufacturing a composite target material comprising a rare earth metal and a transition metal, and a method for manufacturing the porous body. The composite target is used when forming a perpendicularly magnetized film for magneto-optical recording by sputtering.

(従来の技術) 従来、希土類金属と遷移金属とからなる光磁気記録用垂
直磁化膜をスパッタリングにより形成するためのクーケ
ラト材として、前記二種の金属を真空もしくは不活性ガ
ス雰囲気中で溶解して製作した合金ターゲント利、遷移
金属板もしくは希土類金属板上に他の金属チップを置い
た複合ターゲラ1〜)Aがある。
(Prior Art) Conventionally, as a Kukerat material for forming a perpendicular magnetization film for magneto-optical recording consisting of a rare earth metal and a transition metal by sputtering, the two metals are melted in a vacuum or an inert gas atmosphere. There are composite targeters 1 to 1) A in which other metal chips are placed on the fabricated alloy target layer, transition metal plate or rare earth metal plate.

しかし、前者の合金ターゲント祠は脆弱であり損傷し易
く、耐熱衝撃性もほとんどないためスパツタリング中に
割れる虞れがある。また、後者の複合ターゲット材はチ
ップを均一な状態に配置することが困難なため、スパッ
タリング時の磁界が均一でなくなり、膜組成が平面上不
均一になるという欠点があった。
However, the former alloy targent is brittle and easily damaged, and has almost no thermal shock resistance, so there is a risk of cracking during sputtering. In addition, since it is difficult to arrange the chips in the latter composite target material in a uniform state, the magnetic field during sputtering becomes non-uniform, and the film composition becomes non-uniform in a plane.

そこで、これらの欠点を解消した焼結複合ターゲット材
が特開昭61−119648号において開示されている
。この複合ターゲット材は、遷移金属粉末と希土類金属
粉末を混合、成形、焼結したものであり、希土類金属粉
末粒子と遷移金属粉末粒子とをターゲット材中に均一に
分布させると共に両者の界面に反応拡散層を形成させて
一体化し、強度、耐熱衝撃性の向上を図ったものである
Therefore, a sintered composite target material that eliminates these drawbacks is disclosed in Japanese Patent Application Laid-Open No. 119648/1983. This composite target material is made by mixing, molding, and sintering transition metal powder and rare earth metal powder, and the rare earth metal powder particles and transition metal powder particles are uniformly distributed in the target material and react at the interface between the two. A diffusion layer is formed and integrated to improve strength and thermal shock resistance.

(発明が解決しようとする課題) しかしながら、焼結複合ターゲット材は、反応拡散層に
脆弱な金属間化合物が組織全体に存在するため、複合材
に充分な強度を付与することが困難である。また、前記
脆弱な拡散層の生成を可能な限り押える必要があるため
、強力な焼結条件を選択することができず、高密度の複
合材を得ることが困難である。このため、スパッタリン
グ中にガスが発生し易く、異常放電が起り易い。更に、
酸素含有量も高く、所定の磁化特性が得難いという欠点
がある。
(Problems to be Solved by the Invention) However, in the sintered composite target material, a weak intermetallic compound exists in the reaction diffusion layer throughout the structure, so it is difficult to impart sufficient strength to the composite material. Furthermore, since it is necessary to suppress the formation of the fragile diffusion layer as much as possible, strong sintering conditions cannot be selected, making it difficult to obtain a high-density composite material. Therefore, gas is likely to be generated during sputtering, and abnormal discharge is likely to occur. Furthermore,
It also has a drawback that it has a high oxygen content, making it difficult to obtain desired magnetization characteristics.

そこで、出願人はこれらの欠点を解消することができる
ターゲット材を特願昭62−215736号において擢
案した。このターゲット材は、遷移金属又は希土類金属
を10原子%以下含有した希土類金属−遷移金属合金で
形成された多孔体に、真空下又は不活性ガス雰囲気下で
希土類金属を45〜98原子%含有した遷移金属−希土
類金属合金が溶融状態で浸透(溶浸)された複合材であ
って、複合材における希土類金属含有量が20〜45原
子%であるごとを特徴とするものである。
Therefore, the applicant proposed a target material capable of eliminating these drawbacks in Japanese Patent Application No. 62-215736. This target material contains 45 to 98 at% of a rare earth metal in a porous body formed of a rare earth metal-transition metal alloy containing 10 at% or less of a transition metal or a rare earth metal under vacuum or an inert gas atmosphere. A composite material in which a transition metal-rare earth metal alloy is infiltrated (infiltrated) in a molten state, and is characterized in that the rare earth metal content in the composite material is 20 to 45 at.%.

前記多孔体の製作方法として、通常、遷移金属粉末又は
希土類金属−遷移金属合金粉末を成形型内に充填してそ
のまま焼成する方法が試のられている。
As a method for manufacturing the porous body, a method has been generally tried in which a transition metal powder or a rare earth metal-transition metal alloy powder is filled into a mold and fired as it is.

しかしながら、この方法で製作された多孔質焼結体は、
金属粉末の充填密度が不均一になり易く、このため気孔
率も不安定となり、溶浸後のターゲラ1−材において希
土類金属と遷移金属の比が安定せず、ひいてはこのター
ゲット材をスパッタリングして形成した垂直磁化膜の特
性も不均一になり易いという問題がある。
However, the porous sintered body produced by this method is
The packing density of the metal powder tends to be uneven, which makes the porosity unstable, and the ratio of rare earth metals to transition metals in the target material after infiltration is unstable, which in turn makes it difficult to sputter this target material. There is a problem that the characteristics of the formed perpendicularly magnetized film tend to be non-uniform.

本発明はかかる問題点に鑑みなされたもので、気孔率が
一定となる多孔質焼結体及びその好適な製造方法を提供
することを目的とする。
The present invention was made in view of such problems, and an object of the present invention is to provide a porous sintered body having a constant porosity and a suitable manufacturing method thereof.

(課題を解決するための手段) 上記1的を達成するためになされた本発明の溶浸複合タ
ーゲット材用多孔質焼結体は、スラリー状の遷移金属粉
末又は希土類金属を10原子%以下含有した希土類金属
−遷移金属合金粉末によって成形された成形体が焼結−
磁化されてなることを発明の構成とするものである。
(Means for Solving the Problems) The porous sintered body for an infiltrated composite target material of the present invention, which has been made to achieve the above first object, contains 10 atomic % or less of transition metal powder or rare earth metal in the form of a slurry. Rare earth metals made by sintering of compacts formed from transition metal alloy powders
The structure of the invention is that it is magnetized.

また、その製造方法として、遷移金属粉末又は希土類金
属を10原子%以下含有した希土類金属−遷移金属合金
粉末にバインダ、水又は有機溶剤を添加混合してスラリ
ーを調製し、これを平坦面に展開して一定厚さの生地シ
ートを形成し、該生地シートが半乾燥状態にあるときそ
の上に同様の操作を繰り返して所定厚さの成形体を作成
し、これを乾燥後、還元性雰囲気中で焼結することを発
明の構成とするものである。
In addition, as a manufacturing method, a binder, water, or an organic solvent is added to and mixed with transition metal powder or rare earth metal-transition metal alloy powder containing 10 at% or less of rare earth metal to prepare a slurry, and this is spread on a flat surface. to form a dough sheet of a certain thickness, and when the dough sheet is in a semi-dry state, the same operation is repeated on it to create a molded object of a predetermined thickness, and after drying, it is placed in a reducing atmosphere. The structure of the invention is to perform sintering.

(作 用) スラリー状の遷移金属粉末又は希土類金属を10原子%
以下含有した希土類金属−遷移金属合金粉末によって成
形された成形体は、成形時、金属粉末がスラリー状であ
るため流動性に富み、成形体における金属粉末の充填密
度は−様となる。本発明の焼結体はかかる成形体を焼結
−磁化したものであるので、焼結体の相対密度、気孔率
も−様なものとなる。
(Function) 10 atomic % slurry of transition metal powder or rare earth metal
A compact formed from the rare earth metal-transition metal alloy powder contained below has high fluidity during compaction because the metal powder is in the form of a slurry, and the packing density of the metal powder in the compact becomes -like. Since the sintered body of the present invention is obtained by sintering and magnetizing such a molded body, the relative density and porosity of the sintered body are also similar.

また、本発明の製造方法tこよれば、遷移金属粉末等の
スラリーを平坦面に展開して一定厚さの生地シートを形
成し、該生地シー1−が半乾燥状態にあるとき、その上
に同様の操作を繰り返して所定厚さの成形体を作成する
ので、成形型を用いることなく従って脱型することもな
く、金属粉末の充填密度が−様な所定厚さの成形体を容
易に得ることができる。該成形体は、その内部が半乾燥
状態になっているので、乾燥時に割れにくい。乾燥後、
還元性雰囲気中で成形体を焼結するので、原料金属粉末
中に含有する酸素やスラリー形成時に生成する可能性の
ある酸化物が焼結過程で除去されると共に、金属粉末中
の炭素等の不純物も除去される。この結果、高純度の遷
移金属又は希土類金属−遷移金属合金で形成された均質
な多孔体が得られる。
According to the manufacturing method of the present invention, a slurry of transition metal powder or the like is spread on a flat surface to form a dough sheet of a constant thickness, and when the dough sheet 1- is in a semi-dry state, Since a molded body of a predetermined thickness is created by repeating the same operation as before, a molded body of a predetermined thickness with a metal powder packing density of - can be easily produced without using a mold and therefore without demolding. Obtainable. Since the inside of the molded body is semi-dry, it is difficult to crack during drying. After drying,
Since the compact is sintered in a reducing atmosphere, oxygen contained in the raw metal powder and oxides that may be generated during slurry formation are removed during the sintering process, and carbon, etc. in the metal powder is removed. Impurities are also removed. As a result, a homogeneous porous body made of a high purity transition metal or rare earth metal-transition metal alloy is obtained.

(実施例) まず、本発明の多孔質焼結体の製造原料となる遷移金属
粉末について説明する。
(Example) First, the transition metal powder used as a raw material for producing the porous sintered body of the present invention will be described.

遷移金属粉末としては、Fe、 CoおよびNiの単独
又はこれらの合金(例えばFe−12重量%Co)粉末
が使用され、更に希土類金属としてGd、 Th、 D
y。
As the transition metal powder, Fe, Co, and Ni alone or an alloy thereof (for example, Fe-12% by weight Co) powder is used, and rare earth metals such as Gd, Th, and D are used.
y.

tlo、 ErおよびTmの単独又はこれらの合金を1
0原子%以下含有さ−けた希土類金属−遷移金属合金粉
末も使用可能である。10%以下の希土類金属の含有が
許容されるのは、10%以下で金属間化合物TM+7R
IE2(TM :遷移金属、RE:希土類金属)がTM
と共存するが、この程度ではTPJJ性の劣化に与える
影響は小さく、また溶浸合金とのぬれ性が向上するから
である。
tlo, Er and Tm alone or an alloy of these
Rare earth metal-transition metal alloy powders containing less than 0 atomic percent can also be used. The content of rare earth metals of 10% or less is allowed in the intermetallic compound TM+7R.
IE2 (TM: transition metal, RE: rare earth metal) is TM
However, at this level, the influence on deterioration of TPJJ properties is small and the wettability with the infiltrated alloy is improved.

本発明の焼結体を製造するには、まず遷移金属粉末又は
前記希土類金属−遷移金属合金粉末(以下、単に金属粉
末という。)のスラリーによって板状成形体を製作する
To manufacture the sintered body of the present invention, first, a plate-shaped compact is manufactured using a slurry of transition metal powder or the rare earth metal-transition metal alloy powder (hereinafter simply referred to as metal powder).

前記スラリーは、通常、10〜150μmの金属粉末に
カルボキシメチルセルロース等のバインダ、水又は有機
溶剤を添加し、十分混合して調製される。
The slurry is usually prepared by adding a binder such as carboxymethyl cellulose, water, or an organic solvent to metal powder of 10 to 150 μm and thoroughly mixing the mixture.

前記成形体は、通常、該スラリーを平板状成形型に充填
し、乾燥させた後、脱型することによって製作される。
The molded body is usually produced by filling a flat mold with the slurry, drying it, and then removing the mold.

この場合は、脱型時に成形体が1員傷を受けないように
、細心の注意を要する。
In this case, extreme care must be taken to ensure that the molded product is not damaged by one member during demolding.

これに対して、スラリーをポリプロピレンフィルムやポ
リエチレンフィルJ、等の担体の平坦面に展開し、その
肉厚を一定にするためI−フタ−ブレード等を平坦面か
ら一定の間隔を保ちながら展開したスラリーの上を相対
移動させ、一定j¥さの成形体(生地シート)を作る方
法が考えられる。この方法によると、脱型する必要がな
く高効率で成形体を得ることができる。
On the other hand, the slurry was spread on the flat surface of a carrier such as polypropylene film or polyethylene film J, and in order to keep the thickness constant, an I-lid blade or the like was spread while maintaining a constant distance from the flat surface. One possible method is to move the slurry relative to each other to create a molded body (dough sheet) of a constant height. According to this method, a molded article can be obtained with high efficiency without the need for demolding.

しかし、この方法は肉厚が1〜2mm程度以下の薄肉成
形体の形成には適するものの、それ以上になると周縁部
の流れ出しにより成形体に形崩れが生じたり、乾燥時に
割れが発生ずる等の問題がある。ターグツl−材の厚み
は5〜6mmが標準的であり、士数十%の変動を考える
と2.8〜8mmとなる。
However, although this method is suitable for forming thin-walled molded bodies with a wall thickness of approximately 1 to 2 mm or less, if the thickness exceeds that, the molded body may lose its shape due to the peripheral edges flowing out, or cracks may occur during drying. There's a problem. The standard thickness of Targutsu l-material is 5 to 6 mm, and considering the variation of several tens of percent, the thickness is 2.8 to 8 mm.

従って、その焼結前の成形体の肉厚はこの程度以」:必
要となり、前記方法はそのままでは適用できないという
問題がある。
Therefore, the wall thickness of the molded body before sintering must be greater than this range, and there is a problem that the above-mentioned method cannot be applied as is.

そこで、本発明では前記生地シートを作成した後、該生
地ンー]・が半乾燥状態に至った時点で、ドクターブレ
ードと担体との間隔を拡大し、先に作成した生地シート
の上にスラリーを再び展開して新たな生地シートを積層
することを繰り返して必要な厚さの成形体壱作成する。
Therefore, in the present invention, after the dough sheet is created, when the dough reaches a semi-dry state, the gap between the doctor blade and the carrier is expanded, and the slurry is poured onto the previously created dough sheet. The process of rolling out the dough again and laminating a new sheet of dough is repeated to create a molded product of the required thickness.

この際、生地シートが完全に乾燥してからその上に他の
生地シートを積層すると両者の間に隙間が生し易くなり
好ましくない。また、乾燥が極めて不十分な場合では、
周縁部に流れ出しが生じ、厚さが不均一となるので好ま
しくない。
At this time, if another dough sheet is laminated on top of the dough sheet after it has completely dried, a gap will easily form between the two, which is not preferable. In addition, if drying is extremely insufficient,
This is not preferable because it causes flow to occur at the peripheral edge and the thickness becomes non-uniform.

一般に金属粉末の多孔質焼結体を作成する際には焼結ガ
ス雰囲気を還元性又は不活性とするか又は真空下で金属
粉末成形体を焼結すれば良いが、本発明においては還元
性雰囲気で行う。特に11□を含む雰囲気下が良い。こ
れは原料金属粉末中に含まれる酸素あるいはスラリー作
成時に生成する可能性のある酸化物が焼結の過程で除去
され、又同じく原料中の炭素等の不純物も除去される結
果、ターゲラl−tjAとして必要な高純度の金属粉末
焼結体を得ることができるからである。
Generally, when creating a porous sintered body of metal powder, it is sufficient to make the sintering gas atmosphere reducing or inert, or to sinter the metal powder compact under vacuum. Do it in an atmosphere. In particular, an atmosphere containing 11□ is good. This is because oxygen contained in the raw metal powder or oxides that may be generated during slurry creation are removed during the sintering process, and impurities such as carbon in the raw material are also removed. This is because it is possible to obtain a high-purity metal powder sintered body required as a metal powder.

又、焼結完了後の冷却中の焼結体の表面酸化を防くため
には、11□中に含まれるO、l、 II□0を可能な
限り除去した高純度+12を用いることが好ましく、こ
のためには常法に従って、パラジウム等の貴金属系脱酸
素触媒とモレキュラーシーブ等の脱湿剤を併用すること
が有効である。
In addition, in order to prevent surface oxidation of the sintered body during cooling after completion of sintering, it is preferable to use high-purity +12 in which O, L, and II□0 contained in 11□ are removed as much as possible. For this purpose, it is effective to use a noble metal deoxidizing catalyst such as palladium together with a dehumidifying agent such as molecular sieve according to a conventional method.

焼結温度は、金属粉末の粒度が小さくなる程低くても良
いが、ターゲット材用として適当な10〜150μm程
度の粒度のものを使用する場合には1 、000〜1,
400 ’Cが良く、これ以下では焼結強度が低くなり
、以上では焼結時の収縮が大きくなり気孔率の低下を招
き好ましくない。
The sintering temperature may be lower as the particle size of the metal powder becomes smaller, but when using a particle size of about 10 to 150 μm, which is suitable for target material, the sintering temperature is 1,000 to 1,000 μm.
400'C is preferable; below this, the sintering strength will be low, and above this, shrinkage during sintering will increase, leading to a decrease in porosity, which is not preferable.

また、焼結時間は5〜60分程度で十分であり、これ以
下では焼結強度が低くなる可能性があり、以上では焼結
強度を大きくする効果がないのでその必要がない。
Further, a sintering time of about 5 to 60 minutes is sufficient; if it is less than this, the sintering strength may decrease, and if it is more than this, there is no effect of increasing the sintering strength, so it is not necessary.

また、焼結体の気孔率は、通常、金属粉末の粒度、充填
密度によって調整されるが、気孔率を大きくするには、
スラリー中に焼成の際に消失してしまうか、焼結後簡単
な操作で焼結体から除去できる粒子(造孔剤という。)
を添加し、それらが消失した跡を空隙として利用する方
法を採ることができる。造孔剤としては、カーボン、セ
ルロース、プラスチック等の粉末を例示することができ
る。
In addition, the porosity of a sintered body is usually adjusted by the particle size and packing density of the metal powder, but in order to increase the porosity,
Particles that disappear in the slurry during firing or can be removed from the sintered body with a simple operation after sintering (called pore-forming agent).
A method can be adopted in which the traces of their disappearance are used as voids. Examples of the pore-forming agent include powders of carbon, cellulose, plastic, and the like.

造孔剤の粒度は、金属粉末間の細孔(間隙)と同程度と
するのがよい。造孔剤の粒度が金属粉末との比重差が大
きいため、造孔剤の粒度が金属粉末相互の間隙の大きさ
より小さい場合、スラリーの成形、成形体の乾燥の過程
で造孔剤が移動分離するからである。
The particle size of the pore-forming agent is preferably the same as the pores (gaps) between the metal powders. Since the particle size of the pore-forming agent has a large difference in specific gravity from the metal powder, if the particle size of the pore-forming agent is smaller than the size of the gap between the metal powders, the pore-forming agent will move and separate during the process of forming the slurry and drying the compact. Because it does.

焼結体の気孔率は、40〜90%(望ましくは70%)
とするのがよい。40%以下では、ターゲット材として
の必要な希土類金属含有量を確保することができない。
The porosity of the sintered body is 40 to 90% (preferably 70%)
It is better to If it is less than 40%, the rare earth metal content necessary for the target material cannot be secured.

一方、90%以上では、焼結体の強度低下が著しく、溶
浸時の反り、割れ等の原因となるからである。
On the other hand, if it is 90% or more, the strength of the sintered body is significantly lowered, causing warping, cracking, etc. during infiltration.

例えば、Fe−Tb系溶浸複合ターゲット材における希
土類金属の必要含有量が最小のもの(Tb : 20原
子%ずなわち41.6重量%)を製造する場合、純Tb
を溶浸するとすると、気孔率40%のFe焼結体が必要
となる。また、希土類金属の必要含有量が最大のもの(
Tb : 45原子%すなわち70重景%)を製造する
場合、Fe−Tb共共合合金Tb : 72原子%すな
わち88重量%)を溶浸するとすると、気孔率約80%
のFe焼結体が必要となる。
For example, when producing a Fe-Tb based infiltration composite target material with the minimum required rare earth metal content (Tb: 20 atomic % or 41.6 weight %), pure Tb
For infiltration, a Fe sintered body with a porosity of 40% is required. In addition, those with the highest required content of rare earth metals (
When producing Fe-Tb co-conjugated alloy Tb: 72 at% or 88 wt%), the porosity is approximately 80%.
of Fe sintered body is required.

次に具体的実施例を掲げる。Next, specific examples are listed.

(1)電解鉄粉(平均粒度ニア0μm (最大149μ
mL酸素濃度1500ppmw、炭素濃度110ppm
w)を原料金属粉末として用い、次の■〜■の方法でF
e粉末成形体No、 1〜3を夫々8個づつ作成した。
(1) Electrolytic iron powder (average particle size near 0μm (maximum 149μm)
mL oxygen concentration 1500 ppmw, carbon concentration 110 ppm
w) as the raw metal powder, F by the following methods
e Powder compacts Nos. 1 to 3 were produced in eight pieces each.

■ 鉄粉100重量部にバインダ(カルボキシメチルセ
ルロース)を5重量部、水を90重量部添加し、ボール
ミルで5h混合して得られたスラリーを真空脱泡した。
(2) 5 parts by weight of a binder (carboxymethylcellulose) and 90 parts by weight of water were added to 100 parts by weight of iron powder, and the mixture was mixed in a ball mill for 5 hours, and the resulting slurry was defoamed under vacuum.

このスラリーをポリプロピレンシート上に展開し、生地
シートを成形(ドクターブレードとシートとの間隙2m
m)した。生地シートが半乾燥状態になったのち、その
上に重ねて再び生地シート成形を行う操作を2回実施し
、厚み6髄の成形体を得、これを放置し、乾燥させた。
Spread this slurry on a polypropylene sheet and form a dough sheet (gap of 2m between doctor blade and sheet).
m) did. After the dough sheet became semi-dry, the dough sheet was stacked on top of the dough sheet and molded again twice to obtain a molded product with a thickness of 6 mm, which was left to dry.

■ バインダに加えて、造孔剤として粒度44〜74μ
mのカーボンを5重量部添加したものを■と同様の方法
により作成した。
■ In addition to the binder, particle size 44-74μ is used as a pore-forming agent.
A sample to which 5 parts by weight of carbon (m) was added was prepared in the same manner as in (2).

■ 比較例として、電解型物をそのまま鋳型内に充填し
た。
(2) As a comparative example, the electrolyte was filled into the mold as it was.

(2)  これら3種の成形体を電気炉内に入れ、Lガ
ス(0□濃度Q、2ppmw、露点<−80°C)を流
しつつ、1100°Cで15分間焼結し、そのまま室温
まで冷却したのち取り出し、得られた焼結体の見掛密度
からその気孔率を求めた。その結果を第1表に示す。
(2) These three molded bodies were placed in an electric furnace and sintered at 1100°C for 15 minutes while flowing L gas (0□ concentration Q, 2ppmw, dew point <-80°C), and then allowed to cool to room temperature. After cooling, the sintered body was taken out, and its porosity was determined from the apparent density of the obtained sintered body. The results are shown in Table 1.

尚、気孔率−(1−見掛は密度/真密度)X 100’
(%)である。
In addition, porosity - (1 - apparent density/true density) x 100'
(%).

第1表 (注)No、1及びNo、 2は実施例、No3は比較
例第1表より、実施例(No、1及び2)は比較例(N
o、 3 )に比べて焼結体の気孔率が一定に揃い易い
ことが知られる。また、造孔剤を使用することにより、
気孔率を大きくすることができることが知られる。
Table 1 (Note) No. 1, No. 2 is an example, No. 3 is a comparative example. From Table 1, an example (No. 1 and 2) is a comparative example (N.
It is known that the porosity of the sintered body tends to be uniform compared to the case of 3). In addition, by using a pore-forming agent,
It is known that the porosity can be increased.

(3)  (1)■の方法で作成した成形体を相対的に
低純度ノl(2ガス(0□濃度約11ppmw、 n点
<−80’C)を用いて焼結し、上記の高純度112ガ
スを用いて得られた焼結体と、Fe中のO及びC濃度を
比較した。その結果を第2表に示す。分析値ば3試料の
平均値を示す。
(3) The molded body prepared by the method in (1) The O and C concentrations in Fe were compared with the sintered body obtained using purity 112 gas.The results are shown in Table 2.The analyzed values are the average values of three samples.

第2表 第2表より、原料鉄粉中の各成分濃度に比べて含有量が
大幅に低下しているものの、11□ガスの純度による影
響も認められる。
Table 2 From Table 2, although the content is significantly lower than the concentration of each component in the raw iron powder, the influence of the purity of the 11□ gas is also recognized.

(発明の効果) 以上説明した通り、本発明の溶浸複合ターゲット材用多
孔質焼結体は、焼結前の金属粉末成形体がスラリー状の
金属粉末によって成形されたものであり、金属粉末の流
動性が良好なため充填密度の一定化を図るごとができ、
ひいては気孔率の一定な焼結体となる。
(Effects of the Invention) As explained above, the porous sintered body for infiltration composite target material of the present invention is obtained by molding a metal powder compact before sintering with a slurry of metal powder. Because of its good fluidity, it is possible to maintain a constant packing density.
This results in a sintered body with constant porosity.

また、本発明の製造方法によれば、所定の厚さの金属粉
末成形体を、脱型等の慎重な取り扱いをすることなく、
容易に得ることができ、生産性に優れる。また、成形体
の乾燥後、還元性雰囲気中で焼結するので、高純度の金
属粉末焼結体を容易に得ることができる。
Further, according to the manufacturing method of the present invention, a metal powder compact of a predetermined thickness can be produced without careful handling such as demolding.
It is easily obtained and has excellent productivity. Furthermore, since the molded body is sintered in a reducing atmosphere after drying, a highly pure metal powder sintered body can be easily obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)遷移金属を主成分とした多孔質焼結体に遷移金属
−希土類金属合金が溶浸された溶浸複合ターゲット材の
製造に使用される前記焼結体であって、 スラリー状の遷移金属粉末又は希土類金属を10原子%
以下含有した希土類金属−遷移金属合金粉末によって成
形された成形体が焼結一体化されてなることを特徴とす
る溶浸複合ターゲット材用多孔質焼結体。
(1) The sintered body used for manufacturing an infiltrated composite target material in which a porous sintered body mainly composed of a transition metal is infiltrated with a transition metal-rare earth metal alloy, the sintered body being a slurry-like transition material. 10 atomic% metal powder or rare earth metal
A porous sintered body for an infiltrated composite target material, characterized in that a molded body formed from rare earth metal-transition metal alloy powder containing the following is sintered and integrated.
(2)遷移金属粉末又は希土類金属を10原子%以下含
有した希土類金属−遷移金属合金粉末にバインダ、水又
は有機溶剤を添加混合してスラリーを調製し、これを平
坦面に展開して一定厚さの生地シートを形成し、該生地
シートが半乾燥状態にあるときその上に同様の操作を繰
り返して所定厚さの成形体を作成し、これを乾燥後、還
元性雰囲気中で焼結することを特徴とする溶浸複合ター
ゲット材用多孔質焼結体の製造方法。
(2) Prepare a slurry by adding and mixing a binder, water or an organic solvent to transition metal powder or rare earth metal-transition metal alloy powder containing 10 atomic % or less of rare earth metal, and spread it on a flat surface to a constant thickness. When the dough sheet is in a semi-dry state, the same operation is repeated on it to create a molded body of a predetermined thickness, which is dried and then sintered in a reducing atmosphere. A method for producing a porous sintered body for an infiltrated composite target material, characterized in that:
JP11783188A 1988-05-13 1988-05-13 Porous sintered body for infiltrated complex target material and manufacture thereof Pending JPH01287206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11783188A JPH01287206A (en) 1988-05-13 1988-05-13 Porous sintered body for infiltrated complex target material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11783188A JPH01287206A (en) 1988-05-13 1988-05-13 Porous sintered body for infiltrated complex target material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01287206A true JPH01287206A (en) 1989-11-17

Family

ID=14721330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11783188A Pending JPH01287206A (en) 1988-05-13 1988-05-13 Porous sintered body for infiltrated complex target material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01287206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422906A (en) * 1990-05-18 1992-01-27 Hitachi Cable Ltd Production of rare earth element-added waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422906A (en) * 1990-05-18 1992-01-27 Hitachi Cable Ltd Production of rare earth element-added waveguide

Similar Documents

Publication Publication Date Title
JP6590833B2 (en) Method for producing cermet or cemented carbide powder
US5846664A (en) Porous metal structures and processes for their production
EP0406580A1 (en) A composite material and a method for producing the same
JP4513520B2 (en) Titanium alloy sponge sintered body with excellent compressive strength
CN103397256B (en) The sintering Fe-Al base alloy porous material of resistance to high temperature oxidation and filtering element
CN103409678B (en) Sintering Fe-Al base alloy porous material and apply its filtering element
CN103397244B (en) The preparation method of the sintering Fe-Al base alloy porous material of resistance to high temperature oxidation
CN111876625B (en) AlNMg composite material and preparation method thereof
JPH01287206A (en) Porous sintered body for infiltrated complex target material and manufacture thereof
JPS61114505A (en) Manufacture of permanent magnet
US4011076A (en) Method for fabricating beryllium structures
JP2995661B2 (en) Manufacturing method of porous cemented carbide
US3639181A (en) Sintered cobalt-rare earth bodies and method of production
JP3290000B2 (en) Functionally graded molding material and its sintered product
CN114700491B (en) La-Fe-Si based magnetic refrigeration block material based on high-temperature SPS powder self-bonding technology and preparation method thereof
JPS62287027A (en) Manufacture of porous cu-alloy sintered compact
JPH05195110A (en) Production of porous metal body
JPH0289811A (en) Static pressure gas bearing
US20030001320A1 (en) Sintered metal oxide articles and methods of making
KR100431927B1 (en) Method for fabricating High Density Boron carbide-Aluminium Compound By Infiltration
JP2003185346A (en) Crucible for melting rare earth alloy
AU2020376301A1 (en) Refractory filter
JPH05279710A (en) Continuous inclination function metallic material
JPH0289812A (en) Static pressure gas bearing
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof