JPH01286737A - Current limiting device - Google Patents
Current limiting deviceInfo
- Publication number
- JPH01286737A JPH01286737A JP63115918A JP11591888A JPH01286737A JP H01286737 A JPH01286737 A JP H01286737A JP 63115918 A JP63115918 A JP 63115918A JP 11591888 A JP11591888 A JP 11591888A JP H01286737 A JPH01286737 A JP H01286737A
- Authority
- JP
- Japan
- Prior art keywords
- current
- wire
- current limiting
- line
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000670 limiting effect Effects 0.000 title claims abstract description 62
- 239000000919 ceramic Substances 0.000 claims abstract description 17
- 230000007246 mechanism Effects 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 16
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 4
- 230000009471 action Effects 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 16
- 229910052742 iron Inorganic materials 0.000 abstract description 8
- 238000001816 cooling Methods 0.000 abstract description 4
- 239000002887 superconductor Substances 0.000 description 24
- 230000005540 biological transmission Effects 0.000 description 7
- 230000005611 electricity Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052574 oxide ceramic Inorganic materials 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 206010014357 Electric shock Diseases 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
- H02H9/023—Current limitation using superconducting elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電力系統の線路の本線に取付ける限流装置に
関し、詳細には電力系統のうちで特に需要家に直結して
電力を供給する部分である配電系統の本線に接続して、
本線に定格を越える過大電流が流れた場合にその過大電
流の流れを遮断するための限流装置に関するものである
。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a current limiting device installed on the main line of a power system line, and in particular, a current limiting device that is directly connected to a consumer in the power system to supply power. Connect to the main line of the distribution system that is part of the
This relates to a current limiting device that cuts off the flow of excessive current when it flows through the main line in excess of its rating.
一触に電力系統は、電力の発生から消費までを一括した
系統で、すなわち発電所において発電し、これを送電線
によって送電し、さらに配電線を利用して方々の工場や
家庭に配電し、負荷機器に至るまでを一括した系統をい
う、送電線によって輸送された電力は送電電圧のままで
、いきなり需要家に供給することはできないから、それ
までには履口か需要負荷に都合のよい電圧に逓降しなけ
ればならない。In a nutshell, an electric power system is a system that integrates everything from electricity generation to consumption, that is, it generates electricity at power plants, transmits it through transmission lines, and then distributes it to factories and homes using distribution lines. This is a system that includes everything up to the load equipment. Electric power transported by transmission lines cannot be suddenly supplied to consumers at the same transmission voltage, so it is necessary to change the voltage to a voltage that is convenient for the demand load. must descend to.
綱状に接続された電力系統においては、もし線路のどこ
かに事故が発生すると、その影響はたちまち全地域に波
及する。従って、たとえ事故が発生しても、その影響を
局部的に抑制して他への波及を未然に防ぐことが保守保
安上、また電力を不断に供給する上からも、極めて大切
である。In a power system connected in the form of a cable, if an accident occurs somewhere along the line, the effects will immediately spread to the entire region. Therefore, even if an accident occurs, it is extremely important to suppress its effects locally and prevent it from spreading to other areas, from the standpoint of maintenance and safety, as well as from the standpoint of ensuring a constant supply of power.
送電線路に発生する事故の種類は千種万様であるが、雷
撃に伴う異常電圧の発生と線路の短絡及び地絡によって
流れる過大電流である。これがために異常電圧に対して
は送電線に架空地線や埋設地線を設置して線路を保護し
、また発電所や変電所では線路の引込口または引出口の
付近に各種の避雷器を取付け、異常電圧波が襲来すると
一時的に接地してこれを大地に導き、電気施設の絶縁破
壊を防止することに努めている。また電線路が断線や接
触によって短絡または地絡すると、故障位置に強大な電
流が流れて回路中の電気機器を焼損するので、このよう
な不時の事態に備えるための措置として線路の一定区間
毎に限流線を設ける場合がある。これは、大電流が線路
に流れると同時に限流線の限流作用によって故障区間を
切り離して電流を遮断し、事故の影響が波及するのを未
然に防ぐためである。There are many types of accidents that occur on power transmission lines, but they include abnormal voltage generation due to lightning strikes, and excessive current flowing due to line short circuits and ground faults. For this reason, to protect against abnormal voltages, overhead ground wires or buried ground wires are installed on power transmission lines to protect the lines, and various types of lightning arresters are installed near the entrances or exits of the lines at power plants and substations. , when abnormal voltage waves attack, they are temporarily grounded and guided to the earth in an effort to prevent insulation breakdown in electrical facilities. In addition, if a power line is short-circuited or grounded due to disconnection or contact, a strong current will flow to the fault location and burn out the electrical equipment in the circuit, so as a measure to prepare for such an unexpected situation, certain sections of the line A current limiting line may be provided for each area. This is to prevent the effects of an accident from spreading by cutting off the faulty section and cutting off the current by the current-limiting action of the current-limiting wire at the same time that a large current flows through the line.
そのような限流線としては、通常は限流作用を有する導
体の周囲に絶縁被覆を被せてit線として構成したもの
、または金属系超電導体からなるものなどが主に使用さ
れている。As such current limiting wires, those constructed as an IT wire by covering a conductor having a current limiting function with an insulating coating, or those made of a metallic superconductor are mainly used.
前者の限流線は、良導体でかつ抵抗温度が大きく温度上
昇により抵抗が増大する材料、たとえば鉄、鉄コバルト
合金、タングステン、鉄ニツケル合金、銅被鋼線などの
ような金属からなるものである。ところが、限流作用時
には温度上昇が要件であり、温度は急激に上昇するとい
ってもその過程は漸増であるため、十分な限流作用が発
揮される抵抗に至るまでには成る一定時間を要する。こ
の限流作用の緩慢さ故、短絡などの故障時に大電流が流
れた場合に限流作用が十分に出現するまでに相当量の電
流が線路に流れてしまい、大電流の流れを完全に防止す
ることは不可能である。このことは発生事故の波及を防
止することからすると甚だ好ましくないことである。The former type of current limiting wire is made of a material that is a good conductor and has a large resistance temperature and whose resistance increases as the temperature rises, such as metals such as iron, iron-cobalt alloy, tungsten, iron-nickel alloy, copper-coated steel wire, etc. . However, temperature rise is a requirement for current-limiting action, and even though the temperature rises rapidly, the process is a gradual increase, so it takes a certain amount of time to reach a resistance that provides sufficient current-limiting action. . Because of the slowness of this current limiting effect, if a large current flows during a fault such as a short circuit, a considerable amount of current will flow through the line before the current limiting effect fully appears, completely preventing the flow of large current. It is impossible to do so. This is extremely undesirable from the standpoint of preventing the spread of accidents.
金属系超電導体からなる限流線では、平常時はその超電
導状態により電流は損失なく流れるが、故障時の大電流
により短時間に超電導体から非超電導体に移行して限流
作用を行う、ところが、金属系超電導材料として使用さ
れているニオブ、チタン、ジルコニウム、バナジウム、
タンタルなどの金属はそれ自体が成る程度の導電性を呈
するので、たとえ非超電導体に移行しても大電流の流れ
を完全に食い止めることはできず、それどころか故障電
流で導体の温度が過度に上昇してついには溶断してしま
うこともある。溶断後は限流線は当然再使用不可能であ
り、しかも溶断時の発熱で火災の危険性すらある。In a current-limiting wire made of a metallic superconductor, current flows without loss due to its superconducting state during normal times, but due to the large current during a fault, the current-limiting wire shifts from a superconductor to a non-superconductor in a short period of time and performs a current-limiting action. However, niobium, titanium, zirconium, vanadium, and
Metals such as tantalum exhibit a certain degree of conductivity, so even if they become non-superconducting, they cannot completely stop the flow of large currents; on the contrary, the temperature of the conductor may rise excessively due to fault current. Eventually, it may melt. Naturally, the current limiting wire cannot be reused after it is fused, and there is even a risk of fire due to the heat generated when it is fused.
上記限流線の欠点を克服するために本発明者はセラミッ
クス系起電導材料からなる限流線を提供した(特願昭6
2−248935号参照)、この限流線はセラミックス
系超電導材料からなる超電導線の超電導体と非超電導体
の両方の特性を専ら利用するもので、セラミックス材料
は本来優秀な高電気抵抗体すなわち非超電導体であるか
ら、過電流を効果的に遮断できる。In order to overcome the above-mentioned drawbacks of the current-limiting wire, the present inventor provided a current-limiting wire made of ceramic-based electromotive conductive material (Japanese patent application No. 6
2-248935), this current limiting line utilizes both the superconducting and non-superconducting properties of a superconducting wire made of ceramic-based superconducting materials. Since it is a superconductor, it can effectively block overcurrent.
ところで、先の特願昭62−248935号明細書に開
示の限流線は、その超電導相が破壊されて超電導体から
非超電導体に移行した時に完全な非超電導状態になるこ
とを前提としている。すなわち、非超電導体に移行した
時の抵抗が無限大になる理想的な限流線を要旨としてい
る。By the way, the current limiting line disclosed in the specification of Japanese Patent Application No. 62-248935 is based on the premise that when the superconducting phase is destroyed and the superconductor transitions from a superconductor to a non-superconductor, it becomes a complete non-superconductor. . In other words, the gist is an ideal current-limiting line where the resistance becomes infinite when it transitions to a non-superconductor.
しかしながら、現段階では限流線は非超電導体になった
時にその抵抗が無限大にはならず、低抵抗を有するなめ
過大電流を完全に遮断せず、実際には低抵抗特性により
相当の電流が負荷側に流れることになる。However, at present, current limiting wires do not have infinite resistance when they become a non-superconductor, and do not completely block excessive current due to their low resistance. will flow to the load side.
この点から、セラミックス系超電導材料からなる限流線
を使用した限流装置では、過大電流の遮断時に負荷側に
電流の影響が及ばないように対処しておくことが好まし
い。From this point of view, in a current limiting device using a current limiting wire made of a ceramic superconducting material, it is preferable to take measures so that the load side is not affected by the current when cutting off an excessive current.
また、産業の発展と共に需要負荷が増大すれば、電源の
開発、施設の増強によって電力系統は次第に規模を拡大
し、かつ複雑化する。電気事業者が良質の電気を豊富、
低度に供給できるためには、この電力系統全体が常に合
理的かつ経済的に運用されなければならず、負荷に供給
される電気の総合コストを最小にすることが肝要である
。Furthermore, as the demand load increases with the development of industry, the power system will gradually expand in scale and become more complex due to the development of power sources and the reinforcement of facilities. Electricity companies provide an abundance of high-quality electricity,
In order to be able to supply electricity at low levels, this entire power system must always be operated rationally and economically, and it is essential to minimize the total cost of electricity supplied to the loads.
従って本発明の目的は、以上の点を鑑みて、セラミック
ス系超電導材料からなる限流線が限流作用を発揮した時
にその低抵抗によって負荷側に流れる電流を抑制するよ
うにした限流装置を提供することにある。Therefore, in view of the above points, it is an object of the present invention to provide a current limiting device that suppresses the current flowing to the load side due to its low resistance when a current limiting wire made of a ceramic superconducting material exhibits a current limiting effect. It is about providing.
本発明の別の目的は、セラミックス系超電導材料からな
る限流線を使用した限流装置を小型化し、かつ安酒なも
のにすることにある。Another object of the present invention is to miniaturize a current limiting device using current limiting wires made of ceramic superconducting material and to make it inexpensive.
前記目的は、セラミックス系超電導材料からなる限流線
を備え、限流線の上流側に抵抗器を接続し、限流線の下
流側に限流線が限流作用を発揮した時に線路を断つ断路
機構を設けたことを特徴とする限流装置により達成され
る。The purpose is to provide a current limiting line made of ceramic superconducting material, connect a resistor on the upstream side of the current limiting line, and disconnect the line when the current limiting line exerts a current limiting action on the downstream side of the current limiting line. This is achieved by a current limiting device characterized by being provided with a disconnection mechanism.
本発明の限流装置はセラミックス系超電導材料からなる
限流線の低抵抗特性に対して抵抗器と断路機構とを具備
しているため、平常時は限流線の超電導状態で電送損失
がなく、事故による大電流が流れると限流線が過大電流
によってその超電導状態を維持不可能になるため超電導
体から非超電導体に短時間に移°行し、限流線と抵抗器
の合成抵抗によって過大電流を負荷機器が焼損するなど
の悪影響が及ばない程度にまで抑制する。Since the current limiting device of the present invention is equipped with a resistor and a disconnection mechanism for the low resistance characteristics of the current limiting wire made of ceramic superconducting material, there is no transmission loss in the superconducting state of the current limiting wire during normal times. When a large current flows due to an accident, the current-limiting wire becomes unable to maintain its superconducting state due to the excessive current, so it changes from a superconductor to a non-superconductor in a short time, and due to the combined resistance of the current-limiting wire and the resistor, To suppress excessive current to a level that does not cause negative effects such as burning out load equipment.
本発明において使用するセラミックス系超電導材料には
特に制限はなく、たとえば希土類元素を含む酸化物のセ
ラミックス材料としてはバリウム・イツトリウム・銅・
酸素、バリウム・ランタン・ランタン・銅・酸素を組成
とするセラミックスなどで、希土類元素を含まない酸化
物のセラミックス材料ではビスマス・ストロンチウム・
カルシウム・銅・酸素を組成とするセラミックスが例示
される。There are no particular restrictions on the ceramic superconducting material used in the present invention. For example, oxide ceramic materials containing rare earth elements include barium, yttrium, copper,
Ceramics containing oxygen, barium, lanthanum, lanthanum, copper, and oxygen, and oxide ceramic materials that do not contain rare earth elements include bismuth, strontium,
An example is ceramics whose composition is calcium, copper, and oxygen.
なお限流線の製法は、上記セラミックス系超電導材料を
使用し、常套手段で行えばよいが、限流線の超電導相が
破壊して限流線が超電導体から非超電導体に移行する時
の臨界電流を適宜設定する必要がある。たとえば電力系
統のうちで特に需要家に直結して電力を供給する部分で
ある配電系統の本線では、本線の定格電流600Aで遮
断電流2万Aである。換言すると本線には2万Aの時に
臨界電流となって超電導体から非超電導体に移行して限
流作用が現出するような断面積の限流線を使用する。The current limiting wire can be manufactured using conventional methods using the ceramic superconducting materials mentioned above, but when the superconducting phase of the current limiting wire is destroyed and the current limiting wire transitions from a superconductor to a non-superconductor, It is necessary to set the critical current appropriately. For example, in the main line of the power distribution system, which is the part of the power system that is directly connected to supply electricity to consumers, the rated current of the main line is 600 A and the breaking current is 20,000 A. In other words, for the main line, a current limiting line is used that has a cross-sectional area such that a critical current occurs at 20,000 A, and a current limiting effect occurs by transitioning from a superconductor to a non-superconductor.
また、限流線はその超電導材料により異なるが、超電導
状態を維持するために冷媒(たとえば液体窒素など)に
よって冷却する場合は限流線を冷媒中に浸漬するので限
流線を水から防護するための防水層を限流線に特に設け
る必要はないが、冷媒によって冷却しない常温環境で使
用する場合には防水層を設けておくことが好ましい。Also, although the current limiting wire varies depending on the superconducting material, if it is cooled with a refrigerant (such as liquid nitrogen) to maintain the superconducting state, the current limiting wire is immersed in the refrigerant, so it is protected from water. Although there is no particular need to provide a waterproof layer on the current limiting line, it is preferable to provide a waterproof layer when used in a normal temperature environment without cooling with a refrigerant.
以下、本発明の限流装置を実施例に基づいて説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the current limiting device of this invention is demonstrated based on an Example.
第1図に示す限流装置は、セラミックス系超電導材料か
らなる限流線Gを備え、限流線Gの上流側に可変抵抗器
Rが接続され、限流線Gの下流側に限流線Gが限流作用
を発揮した時に線路を断つ断路機構が設けられている。The current limiting device shown in FIG. 1 includes a current limiting line G made of ceramic superconducting material, a variable resistor R is connected to the upstream side of the current limiting line G, and a current limiting line G is connected to the downstream side of the current limiting line G. A disconnection mechanism is provided that disconnects the line when G exerts a current limiting effect.
断路機構は図からも明らかなように、分流可変抵抗器r
、分流可変抵抗器rに直列接続されたコイル1、コイル
1内に挿入されその励磁・消磁に伴って変位する鉄棒2
、鉄棒2の端部に取付けられたコイルバネ3、及び鉄棒
2の変位に従って線路を開閉するスイッチ4により構成
されている。さらに、可変抵抗器Rと断路機構の分流可
変抵抗器rとは連動機構6によって連結されている。な
お限流線Gは、その超電導状態を維持するために、冷媒
を入れである冷却槽8内に収容されて常時冷却されてい
る。As is clear from the figure, the disconnection mechanism is a shunt variable resistor r
, a coil 1 connected in series to a shunt variable resistor r, and an iron rod 2 inserted into the coil 1 and displaced as the coil is energized and demagnetized.
, a coil spring 3 attached to the end of the iron rod 2, and a switch 4 that opens and closes the line according to the displacement of the iron rod 2. Further, the variable resistor R and the shunt variable resistor r of the disconnection mechanism are connected by an interlocking mechanism 6. In order to maintain its superconducting state, the current limiting line G is housed in a cooling tank 8 containing a refrigerant and is constantly cooled.
かかる限流装置は、たとえば配電系統の零線10に設備
する。ここに限流装置では、平常時には限流線Gは超電
導体であり、電気抵抗がOであるためジュール熱の発生
がなく、従って電送損失が全くない、また平常時は、分
流可変抵抗器「によって零線10から分流された電流が
コイルlを流れることにより、コイルlが励磁されて鉄
棒2がコイルバネ3の付勢力に勝って矢印口の方向に変
位し、スイッチ4が閉じた状態にある。Such a current limiting device is installed, for example, in the zero line 10 of the power distribution system. Here, in the current limiting device, in normal times, the current limiting line G is a superconductor, and the electrical resistance is O, so there is no generation of Joule heat, and therefore there is no transmission loss. When the current shunted from the zero wire 10 flows through the coil l, the coil l is excited, and the iron bar 2 overcomes the biasing force of the coil spring 3 and is displaced in the direction of the arrow, and the switch 4 is in a closed state. .
ここで何らかの原因により線路に短絡や地絡などの異常
が発生して大電流が木線10を通じて限流線Gに流れる
と、短時間に限流線Gが超電導体からセラミックス材料
の本来の特性である高電気抵抗体すなわち非超電導体に
移行する。If an abnormality such as a short circuit or ground fault occurs in the line for some reason and a large current flows through the wooden wire 10 to the current-limiting line G, the current-limiting line G changes from the superconductor to the original characteristics of the ceramic material in a short time. transitions to a high electrical resistance material, that is, a non-superconductor.
しかして、過大電流による限流線Gの超電導体から非超
電導体への移行に伴う高電気抵抗体と可変抵抗器Rとの
合成抵抗により大電流を絞り込むと、分流可変抵抗器r
の分流電流も小さくなり、コイル1の励磁力も弱くなり
、鉄棒2がコイルバネ3の復元力によって矢印イの方向
に変位し、スイッチ4が開いて零線10を断路する。Therefore, if the large current is narrowed down by the combined resistance of the high electrical resistance element and the variable resistor R due to the transition of the current limiting line G from a superconductor to a non-superconductor due to an excessive current, the shunt variable resistor r
The shunt current also becomes smaller, the excitation force of the coil 1 becomes weaker, the iron rod 2 is displaced in the direction of arrow A by the restoring force of the coil spring 3, and the switch 4 opens to disconnect the zero wire 10.
事故復旧後に本線lOからの給電を再開するには、スイ
ッチ4を閉じると通電が開始される。In order to resume power supply from the main line 1O after the accident has been restored, the switch 4 is closed and power supply is started.
ここにおいて可変抵抗器Rの具体的な抵抗値は、限流線
Gのクエンチ時の抵抗値及び零線10の許容電流に依り
、またこれに伴い分流抵抗を流れる分流電流も変化する
ので分流可変抵抗器rも可変抵抗器Rと連動して変化さ
せる必要があるが、たとえば配電系統の本線の許容電流
2万Aでは、最大0.04Ω程度あれば十分である。断
路機構の分流可変抵抗器rの抵抗値も上記値に連動した
ものとなる。Here, the specific resistance value of the variable resistor R depends on the resistance value of the current-limiting line G at the time of quenching and the allowable current of the zero wire 10, and the shunt current flowing through the shunt resistor changes accordingly, so the shunt current is variable. It is also necessary to change the resistor r in conjunction with the variable resistor R, but for example, if the allowable current of the main line of the power distribution system is 20,000 A, a maximum resistance of about 0.04 Ω is sufficient. The resistance value of the shunt variable resistor r of the disconnection mechanism is also linked to the above value.
なお上記限流装置には零線10が断路状態にあることを
容易に視認できる付加機構を設けておくことが好ましい
、これは復旧作業など電気施設を運用する人を電撃の危
険性から保護する処置である。Furthermore, it is preferable that the above-mentioned current limiting device is provided with an additional mechanism that can easily visually confirm that the zero wire 10 is in a disconnected state.This protects people who operate electrical facilities such as restoration work from the risk of electric shock. It is a treatment.
また限流装置の断路機構は実施例に示したものに限定さ
れるものではなく、全く異なる機構であっても差し支え
ない。Furthermore, the disconnection mechanism of the current limiting device is not limited to that shown in the embodiments, and may be a completely different mechanism.
本発明の限流装置は、以上説明したように構成されてい
るので、以下に記載されるような効果を奏する。Since the current limiting device of the present invention is configured as described above, it produces the effects described below.
セラミックス系超電導材料からなる限流線の他に抵抗器
及び断路機構を具備しているから、限流線が異常時の過
大電流により短時間に超電導体から非超電導体に移行し
た時に、抵抗器との合成抵抗によって過電流を効果的に
絞り込むことができ、低抵抗を育するセラミックスの限
流線に対して有効な処置となるだけでなく、限流装置を
小型化かつ安価なものにすることができる。In addition to the current-limiting wire made of ceramic-based superconducting material, it is equipped with a resistor and a disconnection mechanism, so when the current-limiting wire transitions from a superconductor to a non-superconductor in a short period of time due to an abnormal overcurrent, the resistor Overcurrent can be effectively narrowed down by the combined resistance with the current limiter, which is not only an effective treatment for ceramic current limiting wires that develop low resistance, but also makes the current limiting device smaller and cheaper. be able to.
従うて、本発明の限流装置は、電力系統を合理的かつ経
済的に運用することを可能にするものである。Therefore, the current limiting device of the present invention makes it possible to operate the power system rationally and economically.
第1図は本発明の限流装置の一実施例の回路図である。 G :限流線 R:可変抵抗器 r :分流可変抵抗器 1 :コイル 2 :鉄棒 3 :コイルバネ 4 :スイッチ 6 :連動機構 8 :冷却槽 第1図 FIG. 1 is a circuit diagram of an embodiment of the current limiting device of the present invention. G: Current-limiting line R: Variable resistor r: Shunt variable resistor 1: Coil 2: Iron bar 3: Coil spring 4: Switch 6: Interlocking mechanism 8: Cooling tank Figure 1
Claims (1)
線の上流側に抵抗器を接続し、限流線の下流側に限流線
が限流作用を発揮した時に線路を断つ断路機構を設けた
ことを特徴とする限流装置。Equipped with a current-limiting wire made of ceramic superconducting material, a resistor is connected to the upstream side of the current-limiting wire, and a disconnection mechanism is installed downstream of the current-limiting wire to disconnect the line when the current-limiting wire exerts a current-limiting action. A current limiting device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63115918A JPH01286737A (en) | 1988-05-11 | 1988-05-11 | Current limiting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63115918A JPH01286737A (en) | 1988-05-11 | 1988-05-11 | Current limiting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01286737A true JPH01286737A (en) | 1989-11-17 |
Family
ID=14674436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63115918A Pending JPH01286737A (en) | 1988-05-11 | 1988-05-11 | Current limiting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01286737A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101015048B1 (en) * | 2010-08-11 | 2011-02-16 | (주)세아이에프 | Safety device of construction machinery that use electricity power |
-
1988
- 1988-05-11 JP JP63115918A patent/JPH01286737A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101015048B1 (en) * | 2010-08-11 | 2011-02-16 | (주)세아이에프 | Safety device of construction machinery that use electricity power |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7035066B2 (en) | Arc-default detecting circuit breaker system | |
US3873887A (en) | Alternating-current power delivery system | |
US4119866A (en) | High voltage electrical network with DC ice-melting device and current return through ground | |
KR960003362B1 (en) | Downed conductor automatic detecting device | |
CA2178356C (en) | A high voltage electric power line current limiter | |
CN101964519A (en) | Device for the protection of an electrical installation against voltage surges | |
CA1194105A (en) | Open circuit current transformer protection circuit | |
JPH01286737A (en) | Current limiting device | |
EP0691046B1 (en) | Arrangement for disconnecting branches of a low voltage supply network under short circuit conditions | |
JPH01286734A (en) | Current limiting device | |
JPH01286733A (en) | Current limiting unit | |
JPH01149330A (en) | Switch with built-in lightening protector | |
JPH01286732A (en) | Current limiting unit | |
JPH01177825A (en) | Superconducting phase destroying device for superconducting wire | |
Schaffer et al. | Ensuring switchgear integrity in High-Power installations | |
JPH01204327A (en) | Circuit breaker | |
JPH01286735A (en) | Current limiting device | |
JPH01177828A (en) | Superconducting phase destroying device for superconducting wire | |
JPH01206831A (en) | Superconducting phase breaking device for superconducting wire | |
JPH01303020A (en) | Current limiter | |
JPH01206839A (en) | Current limiter and current limiter for branch line | |
JPH01177827A (en) | Superconducting phase destroying device for superconducting wire | |
JPH01286736A (en) | Connecting unit | |
JPH01177826A (en) | Superconducting phase destroying device for superconducting wire | |
SU1756970A1 (en) | Method of cleaning of electric contacts of automatic switch |