JPH01177827A - Superconducting phase destroying device for superconducting wire - Google Patents

Superconducting phase destroying device for superconducting wire

Info

Publication number
JPH01177827A
JPH01177827A JP63001002A JP100288A JPH01177827A JP H01177827 A JPH01177827 A JP H01177827A JP 63001002 A JP63001002 A JP 63001002A JP 100288 A JP100288 A JP 100288A JP H01177827 A JPH01177827 A JP H01177827A
Authority
JP
Japan
Prior art keywords
superconducting
current
wire
capacitor
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63001002A
Other languages
Japanese (ja)
Inventor
Keisuke Imai
今井 敬祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP63001002A priority Critical patent/JPH01177827A/en
Publication of JPH01177827A publication Critical patent/JPH01177827A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/023Current limitation using superconducting elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To shift a superconducting wire from a superconductor to a nonsuperconductor in a short time by employing a circuit for utilizing the charge/discharge of a capacitor, and forcibly applying a magnetic field of its critical magnetic field or more to the wire, thereby destroying its superconducting phase. CONSTITUTION:Before a discharge, a capacitor C is charged. When a switch S2 is closed, a large current flows to a circuit by the discharge of the capacitor C, a winding L is energized to generate a strong magnetic field in the gap of an annular core 20. When a magnetic field of the critical magnetic field or more of a superconducting wire G is applied to the wire G, the superconducting phase of the wire G is destroyed, the lead is shifted from a superconductor to a nonsuperconductor in a short time, thereby breaking a normal current I flowing to the main line 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力系統の線路に接続された限流作用を有す
る超電導線の超電導相を破壊して、超電導線を任意に超
電導体から絶縁体または絶縁体から超電導体に移行させ
て線路を流れる電流を遮断したり流したりするための超
電導線の超電導相破壊装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a method for arbitrarily insulating a superconducting wire from a superconductor by destroying the superconducting phase of a superconducting wire connected to a power system line and having a current-limiting effect. The present invention relates to a superconducting phase breakdown device for a superconducting wire, which interrupts or allows current flowing through the line by transferring it from a body or an insulator to a superconductor.

〔従来の技術〕[Conventional technology]

一般に電力系統は、電力の発生から消費までを一括した
系統で、すなわち発電所において発電し、これを送電線
によって送電し、さらに配電線を利用して方々の工場や
家庭に配電し、負荷機器に至るまでを一括した系統をい
う。送電線によって輸送された電力は送電電圧のままで
、いきなり需要家に供給することはできないから、それ
までには履口か需要負荷に都合のよい電圧に逓降しなけ
ればならない。
In general, an electric power system is a system that integrates everything from generation to consumption of electric power, that is, it generates electricity at a power plant, transmits it through transmission lines, and then distributes it to factories and homes using distribution lines, and then distributes it to the load equipment. It refers to the system that includes everything up to. Electric power transported by transmission lines cannot be suddenly supplied to consumers at the same transmission voltage, so the voltage must be stepped down to a voltage that is convenient for the demand load.

網状に接続された電力系統においては、もし線路のどこ
かに事故が発生すると、その影響はたちまち全地域に波
及する。従って、たとえ事故が発生しても、その影響を
局部的に抑制して他への波及を未然に防ぐことが保守保
安上、また電力を不断に供給する上からも、極めて大切
である。
In a grid-connected power system, if an accident occurs somewhere along the lines, the effects will immediately spread to the entire region. Therefore, even if an accident occurs, it is extremely important to suppress its effects locally and prevent it from spreading to other areas, from the standpoint of maintenance and safety, as well as from the standpoint of ensuring a constant supply of power.

送電線路に発生する事故の種類は千種万様であるが、雷
撃に伴う異常電圧の発生と線路の短絡及び地絡によって
流れる過大電流である。これがために異常電圧に対して
は送tNIAに架空地線や埋設地線を設置して線路を保
護し、また発電所や変電所では線路の引込口または引出
口の付近に各種の避雷器を取付け、異常電圧波が襲来す
ると一時的に接地してこれを大地に導き、電気施設の絶
縁破壊を防止することに努めている。また1itvA路
が断線や接触によって短絡または地絡すると、故障位置
に強大な電流が流れて回路中の電気機器を焼損するので
、このような不時の事態に備えるための措IIどして線
路の一定区間毎に@流線を設ける場合がある。これは、
大電流が線路に流れると同時に限流線の限流作用によっ
て故障区間を切り離して電流を遮断し、事故の影響が波
及するのを未然に防ぐためである。
There are many types of accidents that occur on power transmission lines, but they include abnormal voltage generation due to lightning strikes, and excessive current flowing due to line short circuits and ground faults. For this reason, to protect against abnormal voltages, lines are protected by installing overhead ground wires or buried ground wires at the transmission tNIA, and various types of lightning arresters are installed near the line entrances or exits at power plants and substations. , when abnormal voltage waves attack, they are temporarily grounded and guided to the earth in an effort to prevent insulation breakdown in electrical facilities. In addition, if the 1itvA line is short-circuited or grounded due to disconnection or contact, a huge current will flow to the fault location and burn out the electrical equipment in the circuit. In some cases, @streamlines are provided for each fixed section. this is,
This is to prevent the effects of an accident from spreading by cutting off the faulty section and cutting off the current by the current-limiting action of the current-limiting wire at the same time that a large current flows through the line.

そのような限流線としては、通常は限流作用を有する導
体の周囲に絶縁被覆を被せて電線として構成したもの、
金属系超電導材料からなる超電導線、或いは本発明者が
先に提案したセラミックス系超電導材料からなる超電導
線(特願昭62−248935号参照)がある。
Such current-limiting wires are usually constructed as electric wires by covering a conductor with a current-limiting function with an insulating coating,
There are superconducting wires made of metallic superconducting materials, and superconducting wires made of ceramic superconducting materials previously proposed by the present inventor (see Japanese Patent Application No. 62-248935).

このうち常電導体である電線は別として、金属系または
セラミックス系超電導材料からなる超電導線は、平常時
はその超電導状態により電気抵抗が全くなく電流を損失
なく流すが、事故時の大電流により直ちに超電導体から
絶縁体に移行して限流作用を行うことが特徴である。す
なわち、線路の許容電流に応じて予め設定した超電導線
の臨界電流(たとえば配電系統の線路の本線の場合は電
圧600 Vで許容電流2万Aだから臨界電流は2万A
)以上に事故電流が達すると、超電導線はその超電導相
が破壊して超iIt導体から絶縁体に瞬時に移行して大
電流を遮断する。
Of these, apart from electric wires that are normal conductors, superconducting wires made of metal or ceramic superconducting materials have no electrical resistance at all due to their superconducting state and allow current to flow without loss during normal times, but due to large currents in the event of an accident, It is characterized by immediately transitioning from a superconductor to an insulator to perform a current limiting action. In other words, the critical current of the superconducting wire is set in advance according to the allowable current of the line (for example, in the case of the main line of a distribution system line, the voltage is 600 V and the allowable current is 20,000 A, so the critical current is 20,000 A).
) When the fault current reaches a level higher than 100%, the superconducting phase of the superconducting wire breaks down and instantly changes from a super iIt conductor to an insulator, interrupting the large current.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで電力系統において、網状に張り巡らした線路は
保守・管理上定期的に点検する必要がある。このような
時、発生事故による過大電流を限流線によって自動的に
遮断する他に、点検や復旧作業などの際には事故に関わ
りなく線路に流れる電流を一定区間毎に積極的に遮断し
て、電気施設の運用者をil*から保護することに努め
なければならない、これには、限流線として使用する超
電導線を任意に超電導体から絶縁体または絶縁体から超
電導体に移行させる装置を超電導線と共に施設しておく
ことが好ましい。
By the way, in the power system, the network of lines needs to be periodically inspected for maintenance and management purposes. In such cases, in addition to automatically cutting off excessive current due to an accident using a current limiting line, during inspections or restoration work, the current flowing through the line is actively cut off in certain sections regardless of the accident. We must strive to protect operators of electrical facilities from IL*.This includes devices that can optionally transfer superconducting wires used as current-limiting wires from superconductor to insulator or from insulator to superconductor. It is preferable to install the superconducting wire together with the superconducting wire.

また、産業の発展と共に需要負荷が増大すれば、電源の
開発、施設の増強によって電力系統は次第に規模を拡大
し、かつ複雑化する。電気事業者が良質の電気を豊富、
細塵に供給できるためには、この電力系統全体が常に合
理的かつ経済的に運用されなければならず、負荷に供給
される電気の総合コストを最小にすることが肝要である
Furthermore, as the demand load increases with the development of industry, the power system will gradually expand in scale and become more complex due to the development of power sources and the reinforcement of facilities. Electricity companies provide an abundance of high-quality electricity,
In order to be able to supply electricity to a fine amount of electricity, this entire power system must always be operated rationally and economically, and it is essential to minimize the total cost of electricity supplied to the loads.

従って本発明の目的は、以上の点を鑑みて電力系統の線
路に接続された限流線としての超電導線を発生事故によ
る大電流に関係なく超gL導体から絶縁体または絶縁体
から超電導体に移行させるための手段を提供することに
ある。
Therefore, in view of the above points, it is an object of the present invention to convert a superconducting wire as a current limiting line connected to a power system line into a superconductor from an insulator or from an insulator to a superconductor, regardless of the large current caused by an accident. The purpose is to provide the means to make the transition.

〔課題を解決するための手段] 前記目的は、電力系統の線路に接続された限流作用を有
する超電導線の超電導相を破壊するための装置であって
、巻線を施した環状鉄心と、環状鉄心にギャップを形成
し、直流電流を得るための直流電源と、直流電流を充電
・放電するためのコンデンサと、コンデンサの充電・放
電を行わせるスイッチとを具備し、スイッチの開閉によ
ってコンデンサに直流電流を充電させた後にコンデンサ
を放電させて巻線に放電電流を流す回路で構成され、環
状鉄心のギヤツブに超電導線を配置したことを特徴とす
る超電導線の超電導相破壊装置により達成される。
[Means for Solving the Problem] The object is to provide a device for destroying the superconducting phase of a superconducting wire having a current-limiting action connected to a line of a power system, which comprises: a ring-shaped iron core provided with a winding; A gap is formed in the annular iron core, and it is equipped with a DC power supply for obtaining DC current, a capacitor for charging and discharging DC current, and a switch for charging and discharging the capacitor. This is achieved by a superconducting phase breakdown device for superconducting wires, which is composed of a circuit that charges a direct current and then discharges a capacitor to send a discharge current to the windings, and is characterized in that the superconducting wires are arranged in the gears of a ring-shaped iron core. .

本発明の超電導相破壊装置は金属系またはセラミックス
系超電導材料からなる超電導線の限流作用を積極的に現
出させるものである。すなわち、超電導状態の維持要件
は周知の如く臨界温度、臨界電流、臨界磁界であり、こ
の3条件が共に満足されなければ超電導体とはならない
が、本発明の破壊装置はコンデンサの充電・放電を利用
して3条件のうち臨界磁界を超過させ、超電導線を超電
導体から絶縁体に移行させて限流作用を積極的に現出さ
せるものである。従って、線路の点検や復旧作業などの
時に任意の区間を切り離すには、゛破壊装置を操作して
超電導線の臨界磁界以上の磁界を超電導線に加え、超電
導線の超電導相を破壊し、超電導線を超電導体から絶縁
体に移行させることにより、当該区間の電流を遮断する
ことができる。
The superconducting phase breaking device of the present invention actively brings out the current limiting effect of a superconducting wire made of a metallic or ceramic superconducting material. In other words, as is well known, the requirements for maintaining a superconducting state are a critical temperature, a critical current, and a critical magnetic field, and if all three conditions are not satisfied, the superconductor will not become a superconductor. This is used to exceed the critical magnetic field among the three conditions, to cause the superconducting wire to transition from a superconductor to an insulator, and to actively exhibit a current limiting effect. Therefore, in order to disconnect any section during line inspection or restoration work, ``operate the destruction device to apply a magnetic field greater than the critical magnetic field of the superconducting wire to the superconducting wire, destroy the superconducting phase of the superconducting wire, and By transitioning the wire from a superconductor to an insulator, the current in that section can be interrupted.

〔実施例〕〔Example〕

以下、本発明の超電導線の超電導相破壊装置を実施例に
基づいて具体的に説明する。
Hereinafter, the superconducting phase breaking device for a superconducting wire of the present invention will be specifically described based on examples.

第1図は電力系統の線路の本線10に一実施例の超電導
相破壊袋WDvを取付けた場合の概略回路を示す、前述
した如く、限流作用を有する金属系またはセラミックス
系超電導材料からなる超電導線Gは、本線10の一定区
間毎に取付けられ、短絡や地絡などの発生事故によって
許容値以上の過大電流が本!1llOに流れた時に超電
導体から絶縁体に瞬時に移行して大電流を遮断するもの
である。通常は電気施設の運用者をii撃から保護する
処置として超電導線Gの他に確実に本線10を断路する
ための機構が併設されている。この機構は図からも明ら
かなように、たとえば本vA10に接続された分流抵抗
器r、分流抵抗器rに直列接続されたコイル11、コイ
ル11内に挿入されその励磁・消磁に伴って変位する鉄
棒12、鉄棒12の端部に取付けられたコイルバネ13
、及び鉄棒12の変位に従って本線10を開閉するスイ
ッチ14により構成されている。
FIG. 1 shows a schematic circuit diagram when a superconducting phase breakdown bag WDv according to an embodiment is attached to the main line 10 of a power system line. The line G is installed at certain sections of the main line 10, and if an accident such as a short circuit or ground fault occurs, an excessive current exceeding the allowable value may be generated. When the current flows to 110, it instantaneously changes from a superconductor to an insulator, cutting off the large current. Normally, a mechanism for reliably disconnecting the main line 10 is provided in addition to the superconducting wire G as a measure to protect the operator of the electrical facility from damage. As is clear from the figure, this mechanism includes, for example, a shunt resistor r connected to the main vA10, a coil 11 connected in series to the shunt resistor r, and a coil 11 that is inserted into the coil 11 and is displaced as it is energized and demagnetized. Iron rod 12, coil spring 13 attached to the end of iron rod 12
, and a switch 14 that opens and closes the main line 10 according to the displacement of the iron rod 12.

但し、零線10に取付けられた該本線10の断路機構に
必要に応じてスイッチ14が開状態で固定される付加機
構を設けておくことが好ましい。この機構によれば、超
電導線Gが超電導体であって本線10に平常電流Iが流
れている時は、分流抵抗器rによって零線10から分流
された電流がコイル11を流れることにより、コイル1
1が励磁されて鉄棒12がコイルバネ13の付勢力に勝
って矢印口の方向に変位し、スイッチ14が閉じた状態
にある。超電導線Gの限流作用と同時に本線10の電流
が遮断されるため、分流抵抗器rには電流が流れなくな
り、コイル11が消磁されて鉄棒12がコイルバネ13
の復元力によって矢印イの方向に変位し、スイッチ14
が開いて本線10を断路する。この本線10の断路によ
り、本線10の電流の逆流を防ぐこともできる。最も超
電導線Gは限流作用後には絶縁体になっているので電流
逆流の可能性は極めて少ないが、万一の時の処置となる
。なお超電導線Gは金属系またはセラミックス系のいず
れにせよ超電導材料のもつ臨界温度により異なるが、そ
の超電導状態を維持するために、たとえば冷却材を入れ
である冷却槽15内に収容されて常時冷却されている。
However, it is preferable that the disconnection mechanism for the main line 10 attached to the zero line 10 is provided with an additional mechanism for fixing the switch 14 in an open state as necessary. According to this mechanism, when the superconducting wire G is a superconductor and a normal current I is flowing through the main wire 10, the current shunted from the zero wire 10 by the shunt resistor r flows through the coil 11, and the coil 1
1 is excited, the iron rod 12 overcomes the biasing force of the coil spring 13 and is displaced in the direction of the arrow, and the switch 14 is in a closed state. Since the current in the main line 10 is cut off at the same time as the current limiting action of the superconducting wire G, no current flows through the shunt resistor r, the coil 11 is demagnetized, and the iron bar 12 is connected to the coil spring 13.
is displaced in the direction of arrow A due to the restoring force of switch 14.
opens and disconnects the main line 10. By disconnecting the main line 10, reverse flow of current in the main line 10 can also be prevented. Since the superconducting wire G becomes an insulator after the current limiting action, the possibility of current backflow is extremely small, but this is a measure to be taken in case of an emergency. The superconducting wire G, whether metal-based or ceramic-based, differs depending on the critical temperature of the superconducting material, but in order to maintain its superconducting state, it is housed in a cooling tank 15 containing a coolant and constantly cooled. has been done.

超電導相破壊装置DVは、第2図にも示すように、巻線
りを一部に施した環状鉄心20と、直流電流を得るため
の直流電源DCと、直流電流を充電・放電するためのコ
ンデンサCと、直流電流をコンデンサCに充電させるス
イッチS1と、コンデンサCを放電させるスイッチSz
とを具備する回路で構成されている。この回路にはさら
に直流電源DCの直流電流を抑制する抵抗器Rcとコン
デンサCの放電電流を抑制する抵抗器RLが接続されて
いる。環状鉄心20には一定間隔のギヤノブ21が形成
され、このギャップ21に超電導線Gが配置され、図か
らも明らかな如く巻線りを施した環状鉄心20は超電導
vAGと共に冷却槽15内に収容されている。なお図に
は特に示していないが、スイッチSr、Stは電力系統
の本線の如き大容量高電圧に対しては危険な直接手動に
よる操作を避けて、操作部を破壊装置DVから離して設
置し、機械的または電気的に遠方から制御できるように
しておくことが妥当である。
As shown in Fig. 2, the superconducting phase destruction device DV includes a ring-shaped core 20 partially winding, a DC power supply DC for obtaining direct current, and a DC power supply for charging and discharging the direct current. A capacitor C, a switch S1 that charges the capacitor C with direct current, and a switch Sz that discharges the capacitor C.
It is composed of a circuit comprising: Further connected to this circuit are a resistor Rc for suppressing the direct current of the DC power supply DC and a resistor RL for suppressing the discharge current of the capacitor C. Gear knobs 21 are formed at regular intervals on the annular core 20, and the superconducting wire G is placed in the gap 21. As is clear from the figure, the wound annular core 20 is housed in the cooling tank 15 together with the superconducting vAG. has been done. Although not shown in the diagram, the switches Sr and St should be installed away from the destructive device DV to avoid direct manual operation, which is dangerous for large-capacity, high-voltage systems such as the main line of the power system. , it is appropriate to enable mechanical or electrical control from a distance.

かかる構造の破壊装置DVはスイッチS+、Stを操作
し、回路にコンデンサCの放電電流を流し、放電の大電
流を巻線りに流し、環状鉄心20のギャップ21に超電
導線Gの臨界磁界以上の強磁界を発生させることにより
、ギャップ21に配置された超電導線Gに該磁界を加え
、超電導線Gの超電導相を破壊するものである。
The breaking device DV having such a structure operates the switches S+ and St, causes the discharge current of the capacitor C to flow through the circuit, causes a large discharge current to flow through the winding, and causes the gap 21 of the annular iron core 20 to exceed the critical magnetic field of the superconducting wire G. By generating a strong magnetic field, the magnetic field is applied to the superconducting wire G disposed in the gap 21, and the superconducting phase of the superconducting wire G is destroyed.

この超電導相破壊装置DVを設備した電力系統の運用に
関して、零線10からの給電を行う通常時には破壊袋f
iDVの両スイッチのうち少なくともスイッチS2を開
状態にし、巻線りを消磁しておく。
Regarding the operation of the power system equipped with this superconducting phase destruction device DV, during normal operation when power is supplied from the zero wire 10, the destruction bag f
At least switch S2 of both switches of the iDV is opened to demagnetize the winding.

次に、保守・管理上の点検作業や事故後の復旧作業に当
たって作業従事者を電撃から保護するために作業の行わ
れる区間の本線に流れる電流を遮断して当該区間を切り
離すには、破壊装置DVの開状態にあるスイッチStを
閉じてコンデンサCを放電させる。放電に先立っては当
然コンデンサCを充電しておく必要がある。これには、
スイッチS2の開状態でスイッチS、を閉じ、直流電源
DCの直流′r!l流をコンデンサCに流せばよい、ス
イッチS8の閉動作と同時にコンデンサCの放電によっ
て回路に大電流が流れ、巻線りが励磁されて環状鉄心2
0のギャップ21に強磁界が発生し、この超電導線Gの
臨界磁界以上の磁界が当該超電導線Gに加わると、超電
導線Gは超電導相が破壊し、超電導体から絶縁体に瞬時
に移行して零線10に流れる平常電流■を遮断する。電
流が遮断されれば、前述した如き作用によりスイッチ1
4が開いて本線lOを断路し、当該区間を完全に切り離
すので、作業従事者は電撃の危険性もなく安心して作業
を遂行することができるわけである。
Next, in order to protect workers from electric shock during inspection work for maintenance and management or recovery work after an accident, a destructive device is required to cut off the current flowing through the main line in the section where work is being carried out and isolate the section. Switch St, which is in the open state of DV, is closed to discharge capacitor C. Naturally, it is necessary to charge the capacitor C before discharging it. This includes:
When the switch S2 is open, the switch S is closed, and the DC'r! of the DC power supply DC is turned off. A large current flows through the circuit due to the discharge of the capacitor C at the same time as the closing operation of the switch S8, and the winding is excited and the annular iron core 2
When a strong magnetic field is generated in the gap 21 of 0 and a magnetic field higher than the critical magnetic field of the superconducting wire G is applied to the superconducting wire G, the superconducting phase of the superconducting wire G is destroyed and the superconducting wire G instantly transitions from a superconductor to an insulator. The normal current flowing through the zero wire 10 is cut off. When the current is cut off, switch 1 is activated as described above.
4 opens and disconnects the main line 10, completely separating the section, so workers can carry out their work with peace of mind without the risk of electric shock.

コンデンサCの放電終了後は、回路に電流が流れなくな
り、環状鉄心20のギャップ21に発生していた磁界が
消滅し、超電導線Gが絶縁体から超電導体に移行するが
、スイッチ14が零線10を断路しているため当該区間
に電流が流れることはない。
After the capacitor C has finished discharging, no current flows in the circuit, the magnetic field generated in the gap 21 of the annular iron core 20 disappears, and the superconducting wire G transitions from an insulator to a superconductor, but the switch 14 switches to the zero wire. 10 is disconnected, so no current flows in that section.

一方、平常時の給電状態に復帰させるには、スイッチ1
4を閉じることにより、零線10からの給電が再開され
る。この時に破壊装置DVのスイッチS2を開状態に戻
しておき、また必要に応じてスイッチSIを閉じて再度
コンデンサCを充電しておく。
On the other hand, to return to the normal power supply state, switch 1
4, power supply from the zero wire 10 is restarted. At this time, the switch S2 of the destruction device DV is returned to the open state, and if necessary, the switch SI is closed to charge the capacitor C again.

本発明は上記実施例に限定されることはなく、本発明の
目的を達成する限り種々のM様を採用しても構わない。
The present invention is not limited to the above embodiments, and various types of M may be adopted as long as the purpose of the present invention is achieved.

たとえば上記実施例の回路では、環状鉄心のギャップに
発生する磁界の大きさはコンデンサの放電電流の大きさ
に比例するのでより静電容量の大きいコンデンサを用い
ることが好ましい。また1つのコンデンサを使用した回
路の他に複数のコンデンサを接続した回路を採用しても
よい。
For example, in the circuit of the above embodiment, since the magnitude of the magnetic field generated in the gap of the annular core is proportional to the magnitude of the discharge current of the capacitor, it is preferable to use a capacitor with a larger capacitance. In addition to the circuit using one capacitor, a circuit using a plurality of capacitors may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明の超電導線の超電導相破壊装
置はコンデンサの充電・放電を利用する回路を採用した
ことにより、超電導線にその臨界磁界以上の磁界を強制
的に加えて超電導相を破壊するので、点検や復旧作業な
ど必要な時にいつでも超電導線を超電導体から絶縁体に
瞬時に移行させて線路の電流を速やかにかつ効果的に遮
断することができ、線路の保守・管理上極めて好都合で
あり、電力系統を合理的かつ経済的に運用することを可
能とするものである。
As explained above, the superconducting phase breaking device for superconducting wire of the present invention employs a circuit that utilizes capacitor charging and discharging, thereby forcibly applying a magnetic field greater than the critical magnetic field to the superconducting wire to destroy the superconducting phase. Therefore, whenever necessary for inspection or restoration work, the superconducting wire can be instantly transferred from superconductor to insulator, and the current in the line can be cut off quickly and effectively, which is extremely convenient for line maintenance and management. This makes it possible to operate the power system rationally and economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超電導線の超電導相破壊装置の一実施
例を示し、電力系統における線路の本線に対する取付例
を示す概略回路図、第2図は第1図の破壊装置の環状鉄
心を超電導線の上流側から見た概略正面図である。 D■    :超電導相破壊装置 10:本線 20:環状鉄心 21:ギャップ L     二巻線 DC:直流電源 Sl・S2  :スイッチ RC,RL   二抵抗器 C:コンデンサ G     :超電導線 特許出願人 三菱電線工業株式会社 手続補正書帽釦
Fig. 1 shows an embodiment of the superconducting phase breaking device for superconducting wires of the present invention, and is a schematic circuit diagram showing an example of how the line is attached to the main line in a power system, and Fig. 2 shows the annular core of the breaking device of Fig. 1. FIG. 3 is a schematic front view of the superconducting wire as seen from the upstream side. D: Superconducting phase breaking device 10: Main wire 20: Annular core 21: Gap L Two windings DC: DC power source Sl/S2: Switch RC, RL Two resistors C: Capacitor G: Superconducting wire patent applicant Mitsubishi Cable Industries, Ltd. Company procedure amendment cap button

Claims (1)

【特許請求の範囲】[Claims]  電力系統の線路に接続された限流作用を有する超電導
線の超電導相を破壊するための装置であって、巻線を施
した環状鉄心と、環状鉄心にギャップを形成し、直流電
流を得るための直流電源と、直流電流を充電・放電する
ためのコンデンサと、コンデンサの充電・放電を行わせ
るスイッチとを具備し、スイッチの開閉によってコンデ
ンサに直流電流を充電させた後にコンデンサを放電させ
て巻線に放電電流を流す回路で構成され、環状鉄心のギ
ャップに超電導線を配置したことを特徴とする超電導線
の超電導相破壊装置。
A device for destroying the superconducting phase of a superconducting wire with a current-limiting effect connected to a power system line, which forms a gap between a wound annular core and the annular core to obtain direct current. The device is equipped with a DC power supply, a capacitor for charging and discharging DC current, and a switch for charging and discharging the capacitor.The capacitor is charged with DC current by opening and closing the switch, and then the capacitor is discharged to wind the capacitor. A superconducting phase breaking device for a superconducting wire, which is composed of a circuit that causes a discharge current to flow through the wire, and is characterized in that the superconducting wire is arranged in the gap of an annular iron core.
JP63001002A 1988-01-06 1988-01-06 Superconducting phase destroying device for superconducting wire Pending JPH01177827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63001002A JPH01177827A (en) 1988-01-06 1988-01-06 Superconducting phase destroying device for superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63001002A JPH01177827A (en) 1988-01-06 1988-01-06 Superconducting phase destroying device for superconducting wire

Publications (1)

Publication Number Publication Date
JPH01177827A true JPH01177827A (en) 1989-07-14

Family

ID=11489377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63001002A Pending JPH01177827A (en) 1988-01-06 1988-01-06 Superconducting phase destroying device for superconducting wire

Country Status (1)

Country Link
JP (1) JPH01177827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990014715A1 (en) * 1989-05-15 1990-11-29 University Of Houston Magnetic effect transistor
US9016584B2 (en) 2002-03-28 2015-04-28 Innovation Connection Corporation System, method and apparatus for enabling transactions using a biometrically enabled programmable magnetic stripe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990014715A1 (en) * 1989-05-15 1990-11-29 University Of Houston Magnetic effect transistor
US9016584B2 (en) 2002-03-28 2015-04-28 Innovation Connection Corporation System, method and apparatus for enabling transactions using a biometrically enabled programmable magnetic stripe

Similar Documents

Publication Publication Date Title
KR950003318B1 (en) Downed conductor automatic detecting device
US7154722B1 (en) Loop control for distribution systems
CN107408814A (en) High voltage appearance Surge suppression system
JPS60255012A (en) Protecting relay
CA1073038A (en) Ground fault protection system
Shipp et al. Characteristics of different power systems grounding techniques: Fact and fiction
JPH01177827A (en) Superconducting phase destroying device for superconducting wire
DE3632760A1 (en) PROTECTIVE CIRCUIT ARRANGEMENT
JPH01177828A (en) Superconducting phase destroying device for superconducting wire
JPH01206831A (en) Superconducting phase breaking device for superconducting wire
Beltz et al. High-resistance ground retrofits in pulp and paper mills
JPH01177825A (en) Superconducting phase destroying device for superconducting wire
US6525917B1 (en) Power transforming system and method
JPH01177826A (en) Superconducting phase destroying device for superconducting wire
Beltz et al. Application considerations for high resistance ground retrofits in pulp and paper mills
JP2009219247A (en) Standalone operation preventing system and control apparatus
JPH01149330A (en) Switch with built-in lightening protector
JPH01286737A (en) Current limiting device
Hirahara Malaysia kelana jaya line power supply system
JPH01204327A (en) Circuit breaker
US1705687A (en) Relay system
Chervonchenko et al. Research of potential on the grounding device in the network with low-impendance resistive neutral grounding
Ranjan et al. Design, development and application of smart fuses/spl minus/part 1
DE3844293A1 (en) Safety device for battery charging
SU1138874A1 (en) Device for protecting against earth leakage in isolated neutral system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees