JPH0128626B2 - - Google Patents

Info

Publication number
JPH0128626B2
JPH0128626B2 JP59040523A JP4052384A JPH0128626B2 JP H0128626 B2 JPH0128626 B2 JP H0128626B2 JP 59040523 A JP59040523 A JP 59040523A JP 4052384 A JP4052384 A JP 4052384A JP H0128626 B2 JPH0128626 B2 JP H0128626B2
Authority
JP
Japan
Prior art keywords
treated
water
phosphorus
liquid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59040523A
Other languages
Japanese (ja)
Other versions
JPS60187392A (en
Inventor
Izumi Hirasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP4052384A priority Critical patent/JPS60187392A/en
Publication of JPS60187392A publication Critical patent/JPS60187392A/en
Publication of JPH0128626B2 publication Critical patent/JPH0128626B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は被処理液特に廃水中からリンを除去す
る方法に関する。 〔技術的背景〕 近年、閉鎖水域の富栄養化が問題となており、
富栄養化防止策として液中のリンを除去する方法
の開始が進められている。 リンを除去する方法の中で、被処理系をリン酸
塩鉱物と接触させる方法は、汚泥発生量を極小化
できることから優れた方法であるとして一般に知
られている。また、被処理液中には、通常、
HCO3 -、CO3 2-などの炭酸物質が存在している
が、これらの炭酸物質を可及的に除去することに
より、リンの除去反応速度の低下および接触剤で
あるリン酸塩鉱物の炭酸カルシウムによる汚染を
防止しうることも公知である。また、この炭酸物
質を除去する手段として被処理液に酸を加えかつ
空気を吹き込む酸性ストリツピング法も公知であ
る。 しかしながら、この酸性ストリツピング法によ
り被処理液中の炭酸物質を可及的に除去するため
には多量の酸および空気を必要とし、ランニング
コストに占める薬品費および動力費の割合が高い
といつた重大な問題があつた。 〔発明の目的〕 本発明は、前記酸性ストリツピング法における
問題を解決し、低ランニングコストで長期間高い
リン除去率を保ちうる合理的なリン除去方法を提
供することを目的とする。 〔発明の構成〕 本発明は、被処理液を、該被処理液中の全炭酸
濃度とリン濃度の比が6〜10となるように炭酸物
質を除去した後、カルシウムの存在下にヒドロキ
シアパタイトを含有する固体と接触させることを
特徴とする液中のリンを除去する方法である。 本発明者は、前に述べた酸性ストリツピング法
におけ問題を解決すべく鋭意研究を行つたとこ
ろ、カルシウムの存在下にリン鉱石等に被処理液
を接触させてリンを除去する場合、被処理液中の
全炭酸濃度とリン濃度の比を6〜10にする場合、
リンを効率的に除去しうることを実験的に見出だ
した。 本発明を図面に基いて詳しく説明する。 第1図は本発明の一実施の態様を示すもので、
図面中符号1は被処理水供給管、2は脱炭酸槽、
3は酸供給管、4は空気導入管、5は散気管、6
は採水管、7は全炭酸分析計、8はリン濃度分析
計、9はpH調節槽、10は撹拌機、11は消石
灰(石灰)供給管、12,21はアンスラサイト
層、13,22は砂槽、14,17はリン鉱石
槽、15は脱リン槽、16,23は処理水排出
管、18は流動床式脱リン槽、19は循環ポン
プ、20は水循環用配管を示す。 第1図に基いて説明すると、酸供給管3より硫
酸を供給しながら、被処理水供給管1を経て被処
理水例えば下水二次処理水を脱炭酸槽2に供給
し、空気導入管4より導入される空気を散気管5
を経て脱炭酸槽2の底部に吹き込む。そして脱炭
酸槽2から流出する液の一部を採水管6より取り
出し、該液を全炭酸濃度分析計7とリン濃度分析
計8の夫々に通液して流出液中の全炭酸濃度とリ
ン濃度を連続的に計測し、全炭酸濃度とリン濃度
の比が10以下になるように管3より導入される硫
酸の注入量および管4を経て供給される空気の量
を制御する。 この場合、該濃度の比を6〜10になるようにす
ればランニングコストが低くなり経済的であり、
硫酸注入量が著しく削減でき、かつ長期間高いリ
ン除去率を保つことができるが、前記濃度の比が
6未満だと、液のpH緩衝性が過度に低下するた
めpHの変動巾が大きく、微生物質のヒドロキシ
アパタイト含有固体への付着等により長期間のう
ちには水質が悪化し、10を超えるとヒドロキシア
パタイト含有固体に炭酸カルシウムが付着し、リ
ン除去率が悪化する。脱炭酸槽2からの流出液
は、次いでpH調節槽9に導入し、撹拌機10で
撹拌しながら管11より消石灰等を導入し接触脱
リンに好適なpH例えばpH6.5〜9.5にpHを調節し
た後、図中aで示す系列でアンスラサイト12を
充填した砂過槽13中で液中のSSを除去し、
ついでリン鉱石14を充填した脱リン槽15中に
下降流として通液することにより脱リンした後処
理水を管16より排出する。 一方、し尿二次処理水等比較的リン濃度の高い
被処理水を処理する場合には、前述の前処理工程
で被処理水の全炭酸濃度とリン濃度の比を10倍以
下とし硝石灰等でpHを前述のように調整した後、
図中bで示す系列でリン鉱石17を流動化せしめ
ている流動層式脱リン槽18の下部より被処理水
を導入する。この場合流動層式脱リン槽からの流
水液の一部をポンプ19により管20を経て循環
せしめ、槽18に流入する水の量を多くし、水の
流速がリン鉱石17の流動化速度となるように調
節する。流動床式脱リン槽からの流出液はついで
アンスラサイト21を充填した過槽22に導入
し処理水中のSSを除去した後処理水排出管23
を経て排出される。 全炭酸濃度の測定には、液中の炭酸濃度を選択
的に検出できる隔膜式の炭酸電極を用いるのが望
ましいが、液中の炭酸物質の量を表わすアルカリ
度計を用いてもよい。 また、リン濃度計としては、モリブデンブルー
法による比色を自動化した自動分析計を使用する
のが望ましい。 そして、前記各分析計により測定した全炭酸濃
度とリン濃度とは出力電圧の形で検出し、全炭酸
濃度とリン濃度の比が6〜10になるようにデータ
処理演算を行い、その結果得られる出方により硫
酸注入ポンプあるいはブロワーの回転数を制御す
ることにより、脱炭酸槽に導入する硫酸の注入量
および/または空気量を自動的に制御するのが好
ましい。 第1図に示す処理工程における(a)系列または(b)
系列は被処理水中のリン濃度に基いて適宜選択さ
れるものであつて、被処理水中のリン濃度が5
mg/以下の場合には(a)系列を、5mg/を超え
る場合には(b)系列の処理方法を選択するのが好ま
しい。 つぎに本発明の実施例を記載する。 実施例 1 各種の下水二次処理水1000c.c.を1ビーカーに
とり硫酸を添加してpH4.5以下にして曝気し、そ
の後消石灰20〜40mg/と石膏100〜160mg/を
添加して被処理水中のCa濃度を70〜80mg/、
pHを8.5〜9.0に調整した後、200〜300メツシユに
粉砕したリン鉱石1gを添加し100r.p.m.で撹拌
し3時間後に上澄液のリン濃度を測定した。 結果を次の表−1に示す。
[Industrial Field of Application] The present invention relates to a method for removing phosphorus from a liquid to be treated, especially wastewater. [Technical background] In recent years, eutrophication of closed water bodies has become a problem.
As a measure to prevent eutrophication, a method to remove phosphorus from liquids is being introduced. Among the methods for removing phosphorus, the method of bringing the treated system into contact with phosphate minerals is generally known as an excellent method because it can minimize the amount of sludge generated. In addition, the liquid to be treated usually contains
Carbonic substances such as HCO 3 - and CO 3 2- are present, but by removing these carbonic substances as much as possible, the phosphorus removal reaction rate will be reduced and the phosphate minerals used as contact agents will be reduced. It is also known that calcium carbonate contamination can be prevented. Furthermore, as a means for removing carbonic substances, an acid stripping method is also known in which acid is added to the liquid to be treated and air is blown into the liquid. However, this acid stripping method requires a large amount of acid and air in order to remove as much carbon dioxide as possible from the liquid to be treated, and there are serious problems such as the high proportion of chemical costs and power costs in running costs. I had a problem. [Object of the Invention] An object of the present invention is to solve the problems in the acid stripping method and provide a rational phosphorus removal method that can maintain a high phosphorus removal rate for a long period of time at low running costs. [Structure of the Invention] The present invention involves removing carbonated substances from a liquid to be treated so that the ratio of total carbonate concentration to phosphorus concentration in the liquid to be treated is 6 to 10, and then forming hydroxyapatite in the presence of calcium. This is a method for removing phosphorus from a liquid, which is characterized by bringing the liquid into contact with a solid containing phosphorus. The present inventor conducted intensive research to solve the problems in the acid stripping method described above, and found that when removing phosphorus by bringing the liquid to be treated into contact with phosphate rock in the presence of calcium, When setting the ratio of total carbonate concentration to phosphorus concentration in the liquid to 6 to 10,
It was experimentally discovered that phosphorus can be removed efficiently. The present invention will be explained in detail based on the drawings. FIG. 1 shows an embodiment of the present invention.
In the drawing, numeral 1 is a water supply pipe to be treated, 2 is a decarbonation tank,
3 is an acid supply pipe, 4 is an air introduction pipe, 5 is an aeration pipe, 6
is a water sampling pipe, 7 is a total carbon dioxide analyzer, 8 is a phosphorus concentration analyzer, 9 is a pH adjustment tank, 10 is a stirrer, 11 is a slaked lime (lime) supply pipe, 12 and 21 are anthracite layer, 13 and 22 are A sand tank, 14 and 17 are phosphate rock tanks, 15 is a dephosphorization tank, 16 and 23 are treated water discharge pipes, 18 is a fluidized bed dephosphorization tank, 19 is a circulation pump, and 20 is a water circulation pipe. To explain based on FIG. 1, while supplying sulfuric acid from the acid supply pipe 3, water to be treated, such as secondary treated sewage water, is supplied to the decarbonation tank 2 via the water supply pipe 1, and the air introduction pipe 4 The air introduced from the diffuser pipe 5
It is blown into the bottom of the decarboxylation tank 2. Then, a part of the liquid flowing out from the decarboxylation tank 2 is taken out from the water sampling pipe 6, and the liquid is passed through a total carbon dioxide concentration analyzer 7 and a phosphorus concentration analyzer 8, respectively, to determine the total carbonate concentration and phosphorus concentration in the effluent. The concentration is continuously measured, and the amount of sulfuric acid introduced through tube 3 and the amount of air supplied through tube 4 are controlled so that the ratio of total carbon dioxide concentration to phosphorus concentration is 10 or less. In this case, if the ratio of the concentrations is set to 6 to 10, the running cost will be low and it will be economical.
The amount of sulfuric acid injected can be significantly reduced, and a high phosphorus removal rate can be maintained for a long period of time. However, if the ratio of the above concentrations is less than 6, the pH buffering ability of the solution will be excessively reduced, resulting in a large pH fluctuation range. Water quality deteriorates over a long period of time due to the adhesion of microorganisms to the hydroxyapatite-containing solid, and when it exceeds 10, calcium carbonate adheres to the hydroxyapatite-containing solid, deteriorating the phosphorus removal rate. The effluent from the decarbonation tank 2 is then introduced into a pH adjustment tank 9, and while being stirred by a stirrer 10, slaked lime or the like is introduced through a pipe 11 to adjust the pH to a pH suitable for catalytic dephosphorization, for example, pH 6.5 to 9.5. After the adjustment, the SS in the liquid was removed in a sand filter tank 13 filled with anthracite 12 in the series indicated by a in the figure.
The post-treated water, which has been dephosphorized by flowing downward into the dephosphorization tank 15 filled with phosphate rock 14, is then discharged from the pipe 16. On the other hand, when treating water with a relatively high phosphorus concentration, such as secondary treated human waste water, the ratio of the total carbonate concentration and phosphorus concentration of the water to be treated is set to 10 times or less in the pre-treatment process, such as nitrate lime, etc. After adjusting the pH as described above,
Water to be treated is introduced from the lower part of the fluidized bed type dephosphorization tank 18 in which the phosphate rock 17 is fluidized in the series indicated by b in the figure. In this case, a part of the flowing water from the fluidized bed dephosphorization tank is circulated through the pipe 20 by the pump 19 to increase the amount of water flowing into the tank 18 so that the flow rate of the water matches the fluidization rate of the phosphate rock 17. Adjust as desired. The effluent from the fluidized bed dephosphorization tank is then introduced into a supertank 22 filled with anthracite 21 to remove SS from the treated water, and then to a treated water discharge pipe 23.
It is then discharged. To measure the total carbonic acid concentration, it is desirable to use a diaphragm-type carbonic acid electrode that can selectively detect the carbonic acid concentration in the liquid, but an alkalinity meter that indicates the amount of carbonic substances in the liquid may also be used. Furthermore, as the phosphorus concentration meter, it is desirable to use an automatic analyzer that automates colorimetry using the molybdenum blue method. Then, the total carbonate concentration and phosphorus concentration measured by each analyzer are detected in the form of output voltage, and data processing calculations are performed so that the ratio of total carbonate concentration to phosphorus concentration is 6 to 10. It is preferable to automatically control the amount of sulfuric acid and/or the amount of air introduced into the decarboxylation tank by controlling the rotational speed of the sulfuric acid injection pump or blower depending on the way in which the sulfuric acid is introduced. (a) series or (b) in the processing steps shown in Figure 1
The series is appropriately selected based on the phosphorus concentration in the water to be treated.
It is preferable to select the (a) series treatment method when the amount is less than 5 mg/, and to select the (b) series treatment method when the amount exceeds 5 mg/. Next, examples of the present invention will be described. Example 1 Take 1000 c.c. of secondary treated sewage water of various types in one beaker, add sulfuric acid, aerate to pH 4.5 or less, then add slaked lime 20 to 40 mg/ and gypsum 100 to 160 mg/ to prepare the treated water. Reduce the Ca concentration in water to 70 to 80 mg/,
After adjusting the pH to 8.5 to 9.0, 1 g of phosphate rock crushed to 200 to 300 mesh was added and stirred at 100 rpm. After 3 hours, the phosphorus concentration of the supernatant was measured. The results are shown in Table 1 below.

【表】 表−1中各処理水の全炭酸濃度〓リン濃度が異なるの
は曝気時間の相違による。
実施例 2 し尿二次処理水(リン濃度10〜2mg/)に硫
酸を添加しpHを4〜5に調整した後曝気し、つ
いで消石灰70〜150mg/と石膏10〜60mg/を
添加してpHを8.5〜9.0、Ca含有量70〜80mg/
とした液をヨルダン産リン鉱石(有効径0.3mm、
均等係数1.40)を1mの厚さに充填した100mmφ
×3000mmのカラムに上向きに通水した。また処理
水の一部を流入水量の2倍量の割合で循環し流入
水に混合した。処理水量は2m2/日であつた。カ
ラムからの流出水はアンスラサイト(有効径1
mm,均等係数1.50)を充填した砂過槽に通水し
SSを除去した後処理水中のリン濃度を分析した。 結果を次の表2に示す。
[Table] The difference in total carbonate concentration and phosphorus concentration of each treated water in Table 1 is due to the difference in aeration time.
Example 2 Sulfuric acid was added to secondary treated human waste water (phosphorus concentration 10-2 mg/) to adjust the pH to 4-5, followed by aeration, and then slaked lime 70-150 mg/ and gypsum 10-60 mg/ were added to adjust the pH. 8.5-9.0, Ca content 70-80mg/
The liquid was mixed with Jordanian phosphate rock (effective diameter 0.3 mm,
100mmφ filled with uniformity coefficient 1.40) to a thickness of 1m
Water was passed upward through a x3000 mm column. In addition, a portion of the treated water was circulated at a rate twice the amount of inflow water and mixed with the inflow water. The amount of water treated was 2 m 2 /day. The outflow water from the column is anthracite (effective diameter 1
Water is passed through a sand filter tank filled with
The phosphorus concentration in the treated water after removing SS was analyzed. The results are shown in Table 2 below.

〔発明の効果〕〔Effect of the invention〕

本発明は、被処理水をカルシウムの存在下にヒ
ドロキシアパタイトを含有する固体と接触させて
リンを除去する際の前処理工程である酸性ストリ
ツピング工程において、被処理液の全炭酸濃度と
リン濃度の比が6〜10になるように全炭酸濃度を
制御することにより低ランニングコストで高いリ
ン除去率を保つこととができる。
The present invention aims to reduce the total carbonate concentration and phosphorus concentration of the treated liquid in the acid stripping step, which is a pretreatment step when the treated water is brought into contact with a solid containing hydroxyapatite in the presence of calcium to remove phosphorus. By controlling the total carbon dioxide concentration so that the ratio is between 6 and 10, a high phosphorus removal rate can be maintained at low running costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を説明するための工程
図である。 1……被処理水供給管、2……脱炭酸槽、3…
…酸供給管、5……散気管、6……採水管、7…
…全炭酸分析計、8……リン濃度分析計、9……
pH調節槽、13,22……砂槽、15……脱
リン槽、18……流動床式脱リン槽。
FIG. 1 is a process diagram for explaining an embodiment of the present invention. 1...Water supply pipe to be treated, 2...Decarbonation tank, 3...
...Acid supply pipe, 5...Aeration pipe, 6...Water sampling pipe, 7...
...Total carbon dioxide analyzer, 8...Phosphorus concentration analyzer, 9...
pH adjustment tank, 13, 22...sand tank, 15...dephosphorization tank, 18...fluidized bed dephosphorization tank.

Claims (1)

【特許請求の範囲】 1 被処理液を、該被処理液中の全炭酸濃度とリ
ン濃度の比が6〜10となるように炭酸物質を除去
した後、カルシウムの存在下にヒドロキシアパタ
イトを含有する固体と接触させることを特徴とす
る液中のリンを除去する方法。 2 全炭酸濃度およびリン濃度を連続的に検出し
つゝ空気吹込量および/または酸の注入量を制御
する手段によつて炭酸物質を除去する特許請求の
範囲第1項記載の液中のリンを除去する方法。
[Scope of Claims] 1. After removing carbonic substances from the liquid to be treated so that the ratio of the total carbonate concentration to phosphorus concentration in the liquid to be treated is 6 to 10, hydroxyapatite is added in the presence of calcium. A method for removing phosphorus from a liquid, the method comprising contacting the liquid with a solid. 2. The phosphorus in the liquid according to claim 1, wherein carbonic substances are removed by means of continuously detecting the total carbon dioxide concentration and phosphorus concentration and controlling the amount of air blowing and/or the amount of acid injection. How to remove.
JP4052384A 1984-03-05 1984-03-05 Method for removing phosphorus in liquid Granted JPS60187392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4052384A JPS60187392A (en) 1984-03-05 1984-03-05 Method for removing phosphorus in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4052384A JPS60187392A (en) 1984-03-05 1984-03-05 Method for removing phosphorus in liquid

Publications (2)

Publication Number Publication Date
JPS60187392A JPS60187392A (en) 1985-09-24
JPH0128626B2 true JPH0128626B2 (en) 1989-06-05

Family

ID=12582858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4052384A Granted JPS60187392A (en) 1984-03-05 1984-03-05 Method for removing phosphorus in liquid

Country Status (1)

Country Link
JP (1) JPS60187392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329121U (en) * 1989-08-01 1991-03-22

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543359A (en) * 1977-06-10 1979-01-11 Ebara Infilco Co Ltd Removal of phosphates in liquid
JPS567860A (en) * 1979-07-02 1981-01-27 Hitachi Condenser Co Ltd Taping method for band-shaped member
JPS57102284A (en) * 1980-12-18 1982-06-25 Toukiyouto Treatment of waste liquid containing phosphorus compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543359A (en) * 1977-06-10 1979-01-11 Ebara Infilco Co Ltd Removal of phosphates in liquid
JPS567860A (en) * 1979-07-02 1981-01-27 Hitachi Condenser Co Ltd Taping method for band-shaped member
JPS57102284A (en) * 1980-12-18 1982-06-25 Toukiyouto Treatment of waste liquid containing phosphorus compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329121U (en) * 1989-08-01 1991-03-22

Also Published As

Publication number Publication date
JPS60187392A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
US4810386A (en) Two-stage wastewater treatment
US5076928A (en) Process for biological wastewater treatment
CA1331896C (en) Two-stage batch wastewater treatment
EP0408878B1 (en) Enhanced phosphate removal in an activated sludge wastewater treatment process
US3928190A (en) Method of biological purification of sewage
JPS6384696A (en) Dephosphorization device
JPH07100486A (en) Method for treating drainage
JPH05169090A (en) Device for supplying nitrification bacteria in biological activated carbon treatment tower
JPH0128626B2 (en)
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
CN106430549A (en) Sewage ordered treatment method
JP3042118B2 (en) Activated carbon supply device in advanced water purification treatment
JPH0148834B2 (en)
JPS6154296A (en) Treatment of sewage
JP3387718B2 (en) Wastewater treatment method and apparatus
JP3763551B2 (en) Water treatment system
JPH0520160B2 (en)
Chiesa et al. Evaluation of activated sludge oxygen uptake rate test procedures
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
JPH05277475A (en) Treatment method for water containing organic substance
JP3837758B2 (en) Nitrification denitrification equipment
JPH0630784B2 (en) Treatment method for human waste
JPH0751691A (en) Treatment of sewage
JP2000254684A (en) Treatment of reduced sulfur in anaerobic biological treatment waste water