JPH01286113A - Magnetic disk and its production - Google Patents

Magnetic disk and its production

Info

Publication number
JPH01286113A
JPH01286113A JP11472888A JP11472888A JPH01286113A JP H01286113 A JPH01286113 A JP H01286113A JP 11472888 A JP11472888 A JP 11472888A JP 11472888 A JP11472888 A JP 11472888A JP H01286113 A JPH01286113 A JP H01286113A
Authority
JP
Japan
Prior art keywords
magnetic
film
substrate
carbon film
hard carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11472888A
Other languages
Japanese (ja)
Inventor
Makoto Kito
鬼頭 諒
Yuichi Kokado
雄一 小角
Makiko Ito
伊藤 真貴子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11472888A priority Critical patent/JPH01286113A/en
Publication of JPH01286113A publication Critical patent/JPH01286113A/en
Priority to US07/755,589 priority patent/US5275850A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain excellent wear resistance, exfoliation resistance and crack resistance by providing a thin magnetic metallic film layer on a nonmagnetic body and forming a protective film consisting of a hard carbon film contg. metal elements selected from a specific group thereon. CONSTITUTION:The protective film 4 consisting of the hard carbon film contg. >=1 kinds of the metal elements selected from the group consisting of Si, Ge, Se, Sn, and Pb is formed on the layer 2 of a substrate 3 formed by providing the thin magnetic metallic film layer 2 on the nonmagnetic base body 1. The above-mentioned hard carbon film contg. at least one kind of the metal elements among the Si, Ge, Sn, and Pb has high hardness and is highly resistant to exfoliation and crack. The internal stress is decreased and bonds are formed between the additive metal elements and the magnetic layer as well as carbon by adding the above-mentioned metal elements to the magnetic layer, by which the resistance to exfoliation and crack is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク及びその製造方法に係り、特に薄
膜磁気ディスクに好適な硬質炭素膜を保護層とする磁気
ディスク及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic disk and a method for manufacturing the same, and more particularly to a magnetic disk having a hard carbon film as a protective layer suitable for thin-film magnetic disks and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

一般に記録再生磁気ヘッド(以下ヘッドと呼ぶ)と磁気
記録媒体で構成する磁気記録装置の記録再生方法には次
のような方法がある。すなわち操作開始前にヘッドと磁
気記録媒体面とを接触状態でセットした後、磁気記録媒
体に回転を与えることによりヘッドと磁気記録媒体面と
の間に空気層のギャップを作り、この状態で記録再生す
る方法である(コンタクト・スタート・ストップ方式、
以下C8Sと呼ぶ)、C8Sでは、磁気記録媒体の回転
開始時・回転停止時にヘッドと磁気記録媒体面は接触・
摩擦状態になる。
In general, there are the following methods for recording and reproducing a magnetic recording device comprising a recording and reproducing magnetic head (hereinafter referred to as a head) and a magnetic recording medium. That is, before starting the operation, the head and the magnetic recording medium surface are set in contact, and then an air gap is created between the head and the magnetic recording medium surface by giving rotation to the magnetic recording medium, and recording is performed in this state. (contact start-stop method,
(Hereafter referred to as C8S), in C8S, the head and the magnetic recording medium surface come into contact when the magnetic recording medium starts and stops rotating.
It becomes a state of friction.

この接触摩擦状態におけるヘッドと磁気記録媒体との間
に生ずる接触摩擦力はヘッドおよび磁気記録媒体を摩耗
させ、ついにはヘッドおよび磁性媒体に傷を生じせしめ
、いわゆるヘッドクラッシュに至る。また、上記接触摩
擦状態においてヘッドのわずかな姿勢の変化がヘッドに
かかる荷重を不均一にさせ、ヘッドおよび磁気記録媒体
表面に傷をつける場合もある。
The contact friction force generated between the head and the magnetic recording medium in this contact friction state wears out the head and the magnetic recording medium, and eventually causes scratches on the head and the magnetic medium, resulting in a so-called head crash. Further, in the above-mentioned contact friction state, a slight change in the posture of the head causes the load applied to the head to become uneven, which may cause damage to the head and the surface of the magnetic recording medium.

この摩耗を防ぐために、従来から保護膜として磁性層の
上にグラファイトをスパッタリングで形成したいわゆる
スパッタ膜やプラズマ・インジェクションCVD (P
I−CVDと略称)による硬質炭素膜を形成する方法が
提案されている。なお。
In order to prevent this wear, conventional methods have been used, such as sputtering films in which graphite is sputtered on top of the magnetic layer as a protective film, and plasma injection CVD (Plasma Injection CVD).
A method of forming a hard carbon film by I-CVD (abbreviated as I-CVD) has been proposed. In addition.

この種の炭素質保護膜に関するものとしては、例えばア
イ・イ・イ・イツトランスアクション・オン・マグネテ
ィックス、ボリューム・マグ−17゜第4巻、7月号、
 1376〜1379頁、 1981 ”データポイン
ト、スイン、フィルム、メディア” (IEETRAN
SACTION on MAGNETIC5,VOL 
MAG−17,No、4゜Page 1376〜137
9. JULY 1981 ”DATAPOINT T
HINFILM MEDIA”〕及び特開昭61−21
0518号等が挙げられる。
Regarding this type of carbonaceous protective film, for example, I.I.I.'s Transaction on Magnetics, Volume Mag-17゜Volume 4, July issue;
pp. 1376-1379, 1981 “Data Points, Switches, Films, Media” (IEETRAN
SACTION on MAGNETIC5, VOL
MAG-17, No, 4゜Page 1376-137
9. JULY 1981 “DATAPOINT T
HINFILM MEDIA”] and JP-A-61-21
No. 0518 etc. are mentioned.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記PI−CVDによる炭素膜はビッカース硬度が20
00〜3000 kg/am”と硬質であるためグラフ
ァイトのスパッタ膜より耐摩耗性がすぐれているが磁気
ディスクとして十分な寿命を確保するには約500人の
膜厚を必要とする。高記録密度化のためにはさらに膜厚
の薄いことが好ましく、薄くても十分な耐摩耗寿命を確
保するためには炭素膜の硬質化をはかる必要がある。
The carbon film produced by PI-CVD has a Vickers hardness of 20.
00 to 3000 kg/am", so it has better wear resistance than sputtered graphite film, but it requires a film thickness of about 500 kg/am to ensure a sufficient lifespan as a magnetic disk. High recording density. It is preferable that the carbon film be thinner in order to reduce the carbon film thickness, and it is necessary to harden the carbon film in order to ensure a sufficient wear-resistant life even if it is thin.

しかしながら高硬質化をはかると内部歪みのために磁性
膜との間で剥れたり、衝撃強度が低下するためにヘッド
がディスクに接触した時にクラックが生じるので、この
点の改善が必要である。磁性膜と炭素保護膜の間にSi
、B、Ti、Zr、Hf。
However, if the hardness is increased, internal distortion may cause separation between the head and the magnetic film, and a decrease in impact strength may cause cracks when the head contacts the disk, so improvements are needed in this respect. Si between the magnetic film and the carbon protective film
, B, Ti, Zr, Hf.

V、Nb、Ta、Cr、Mo、Wなどの炭素と強い結合
を形成する中間膜を設けることが考案されているが、こ
の方法は成膜工程が一工程ふえてコスト高になると共に
、磁性膜とヘッドとの距離が長くなるため記録密度が低
下するという欠点がある。
It has been proposed to provide an intermediate film that forms a strong bond with carbon such as V, Nb, Ta, Cr, Mo, and W, but this method requires one additional step in the film formation process, resulting in high costs and magnetic properties. This has the disadvantage that the recording density decreases because the distance between the film and the head becomes longer.

したがって、炭素保護膜としては薄くても耐摩耗性、耐
クラツク性に優れしかも、磁性層と強い結合を形成する
膜の開発が、当面の解決すべき課題である。
Therefore, the current problem to be solved is to develop a carbon protective film that is thin but has excellent wear resistance and crack resistance, and also forms a strong bond with the magnetic layer.

本発明の目的は、上記課題を解決することにあり、その
第1の目的は改良された硬質炭素保護膜を有する磁気デ
ィスクを提供することにあり、第2の目的は、それを製
造する改良された磁気ディスクの製造方法を提供するこ
とにある。
The purpose of the present invention is to solve the above problems, the first purpose of which is to provide a magnetic disk having an improved hard carbon protective film, and the second purpose of the present invention is to provide an improved method for manufacturing the magnetic disk. An object of the present invention is to provide a method for manufacturing a magnetic disk.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、上記本発明の第1の目的は、非磁性基体上に
金属薄膜磁性層を有し、前記金属薄膜磁性層上にケイ素
、ゲルマニウム、スズ及び鉛から成る群から選ばれる少
なくとも1種の金属元素を含む硬質炭素膜より成る保護
膜が形成されて成ることを特徴とする磁気ディスクによ
って達成される。
That is, the first object of the present invention is to have a metal thin film magnetic layer on a nonmagnetic substrate, and at least one metal selected from the group consisting of silicon, germanium, tin, and lead on the metal thin film magnetic layer. This is achieved by a magnetic disk characterized in that a protective film is formed of a hard carbon film containing elements.

上記硬質炭素膜に含まれる金属元素は、前記炭素膜中に
均一に分散されていることが望ましく、また、その含有
量は、通常原子%で2θ%以下、好ましくは1〜15%
、より好ましくは3〜10%である。つまり、金属元素
の添加は、耐剥離性、耐クラツク性の向上に寄与し、少
しでも含有せしめればそれ相当の効果は認められるが、
余り多くなると膜の硬度が低下し耐摩耗性が低下するこ
とから上記の範囲が望ましい、また膜厚は、500Å以
下、実用的には200〜300人とすることができる。
It is desirable that the metal elements contained in the hard carbon film are uniformly dispersed in the carbon film, and the content thereof is usually 2θ% or less in atomic %, preferably 1 to 15%.
, more preferably 3 to 10%. In other words, the addition of metal elements contributes to improving peeling resistance and cracking resistance, and even a small amount of metal elements can have a considerable effect.
If the amount is too large, the hardness and abrasion resistance of the film will decrease, so the above range is desirable.The film thickness can be set to 500 Å or less, and practically 200 to 300 thicknesses.

さらにまた、上記硬質炭素膜は非晶質で、硬度はビッカ
ース硬度で少なくとも2000を有することが望ましく
、より望ましくは2500〜6000である。
Furthermore, the hard carbon film is preferably amorphous and has a Vickers hardness of at least 2000, more preferably 2500 to 6000.

上記金属元素は、前述のようにいずれも炭素膜の強度向
上と、下地磁性層との結合力の強化に好ましい作用を発
揮するが、とりわけケイ素を含有するものが好ましい。
As mentioned above, all of the above metal elements have a favorable effect on improving the strength of the carbon film and strengthening the bonding force with the underlying magnetic layer, but those containing silicon are particularly preferred.

金属薄膜磁性層としては、周知の強磁性層でよく、例え
ばGo−Ni、Co−N1−P、Co−Ni−Cr、C
o−Pt、Co−Ni−Pt、Co−Ni−Mo。
The metal thin film magnetic layer may be a well-known ferromagnetic layer, such as Go-Ni, Co-N1-P, Co-Ni-Cr, C
o-Pt, Co-Ni-Pt, Co-Ni-Mo.

Go−V等が形成される。Go-V etc. are formed.

非磁性基体としては、アルミニウム合金、ステンレスス
チール、例えば窒化ケイ素や炭化ケイ素等のセラミック
ス、ガラスなどからなる非磁性材が用いられる。
As the non-magnetic substrate, a non-magnetic material such as aluminum alloy, stainless steel, ceramics such as silicon nitride or silicon carbide, glass, etc. is used.

また、上記硬質炭素膜上には必要に応じ更に例えばパー
フルオロアルキル系の液体潤滑剤を被覆することができ
る。
Further, the hard carbon film may be further coated with, for example, a perfluoroalkyl liquid lubricant, if necessary.

上記本発明の第2の目的は、非磁性基体上に磁性金属層
が形成された基板を、高周波プラズマ処理室内に設けら
れた試料台上に載置し、前記室内を高真空に排気したの
ち、前記室内に飽和炭化水素化合物と、ケイ素、ゲルマ
ニウム、スズ及び鉛から成る群から選ばれる少なくとも
1種の金属元素の水素化物、アルキル化合物及びアルコ
キシ化合物の少なくとも1種とを含む混合ガスを送給し
、ガス圧1〜500 m T orr下でバイアスプラ
ズマCVD処理することにより、前記基板の磁性金属層
上に前記金属元素を含む硬質炭素膜を形成することを特
徴とする磁気ディスクの製造方法によって達成される。
The second object of the present invention is to place a substrate in which a magnetic metal layer is formed on a non-magnetic substrate on a sample stage provided in a high-frequency plasma processing chamber, and after evacuating the chamber to a high vacuum. , feeding into the chamber a mixed gas containing a saturated hydrocarbon compound and at least one of a hydride, an alkyl compound, and an alkoxy compound of at least one metal element selected from the group consisting of silicon, germanium, tin, and lead. and forming a hard carbon film containing the metal element on the magnetic metal layer of the substrate by performing bias plasma CVD treatment under a gas pressure of 1 to 500 m Torr. achieved.

ここに述べるバイアスプラズマCVD処理とは、通常、
基板に向っての電圧降下が100〜3KVあり、高周波
、低周波などの交流電圧を基板に印加し基板側に自己バ
イアスを生じさせることにより実現するプラズマCVD
処理を意味する。特に、高周波放電は電極上に絶縁性の
炭素膜が形成されても放電が安定しており、本発明の硬
質炭素膜を形成するのに適している。つまり、通常の蒸
着、スパッタリング、バイアスのないCVDなどの他の
方法では、本発明の硬質炭素膜の形成は困難である。し
たがって、本発明の製造方法において、このバイアスプ
ラズマCVD処理は極めて重要な手段である。
The bias plasma CVD treatment described here is usually
Plasma CVD has a voltage drop of 100 to 3 KV towards the substrate and is realized by applying alternating current voltage such as high frequency or low frequency to the substrate and creating a self-bias on the substrate side.
means processing. In particular, high-frequency discharge is stable even when an insulating carbon film is formed on the electrode, and is suitable for forming the hard carbon film of the present invention. In other words, it is difficult to form the hard carbon film of the present invention using other methods such as ordinary vapor deposition, sputtering, and CVD without bias. Therefore, in the manufacturing method of the present invention, this bias plasma CVD treatment is an extremely important means.

硬質炭素膜の形成に用いる炭素と金属元素との原料ガス
成分について以下、詳述する。
The raw material gas components of carbon and metal elements used for forming the hard carbon film will be described in detail below.

(1)炭素成分については、例えばメタンCH4゜エタ
ンC2H6,プロパンC,H,,ブタンC4H1゜など
の飽和炭化水素ガスを、そして (2)金属元素成分については、Si、 Qe、 Sn
(1) For carbon components, for example, saturated hydrocarbon gases such as methane CH4, ethane C2H6, propane C, H, and butane C4H1, and (2) for metal element components, Si, Qe, Sn.
.

sbの水素化物、アルキル化合物、アルコキシ化合物の
いずれか1種もしくは2種以上の混合ガスを用いること
ができる。これら水素化物、アルキル化合物、アルコキ
シ化合物についてSiを代表例としてさらに具体的に説
明すると、水素化物については例えばモノシランSiH
4,ジシランSi、H,などが、アルキル化合物につい
ては、−般式S I R41アルコキシ化合物について
は、一般式5i(OR)4(ただし、いずれの一般式に
おいてもRは例えばメチル基CH,,エチル基C2H,
Any one or a mixed gas of two or more of sb hydrides, alkyl compounds, and alkoxy compounds can be used. To explain these hydrides, alkyl compounds, and alkoxy compounds in more detail using Si as a representative example, examples of hydrides include monosilane, SiH,
4, disilane Si, H, etc., for alkyl compounds - general formula S I R41 for alkoxy compounds, general formula 5i (OR) 4 (However, in any general formula, R is a methyl group, Ethyl group C2H,
.

プロピル基C,H,,ブチル基C4H5などで表わせる
アルキル基)で表わせるシラン化合物が用いられる。他
のGe、Sn、Sbの原料成分についても、Siの化合
物とほぼ同様に類似しているので説明を省略する。
A silane compound represented by a propyl group (C, H, alkyl group represented by a butyl group, C4H5, etc.) is used. The other raw material components of Ge, Sn, and Sb are also similar to the Si compound, so their explanation will be omitted.

バイアスプラズマCVDによる成膜は、これら炭素原料
成分の少なくとも1種と金属元素成分の少なくとも1種
とをプラズマ処理室内に所定の流量比で送給し、前述の
とおりガス圧1〜500mTorr、好ましくは10〜
200m Torr下で、放電電力は例えば20〜20
00W、通常好ましくは50〜1000Wで処理すれば
目的とする所定の金属元素を含む硬質炭素膜を磁性層上
に容易に形成することが出来る。
Film formation by bias plasma CVD involves feeding at least one of these carbon raw material components and at least one metal element component into a plasma processing chamber at a predetermined flow rate ratio, and as described above, the gas pressure is 1 to 500 mTorr, preferably 10~
Under 200 m Torr, the discharge power is e.g.
If the treatment is carried out at 00 W, usually preferably from 50 to 1000 W, a hard carbon film containing the desired desired metal element can be easily formed on the magnetic layer.

得られる硬質炭素膜を構成する炭素と金属元素との成分
比は、処理室内に送給される原料ガス成分中の炭素及び
金属元素の原子比にほぼ比例するので、これらのガス流
量を所定流量比に調整すれば目的の成分比の炭素膜を容
易に得ることが出来る。つまり、上記第1の目的を達成
する磁気ディスクの発明を満足するように炭素原子に対
する上記金属原子の組成比を20%以下、好ましくは1
〜15%、より好ましくは3〜10%となるように流量
比を設定すればよい6 〔作用〕 本発明のSL、Ge、Sn、Pbの少なくとも1種の金
属元素を含む硬質炭素膜が硬度が高く、耐剥離性・耐ク
ラツク性にすぐれていることは後に述べる実施例で具体
的に示すが、上記金属元素を加えることによって内部歪
みが低減され添加金属元素と磁性層および炭素との間に
結合が形成され、それにより耐剥離性・耐クラツク性を
良好にしていると考えられる。
The component ratio of carbon and metal elements constituting the obtained hard carbon film is approximately proportional to the atomic ratio of carbon and metal elements in the raw material gas components fed into the processing chamber. By adjusting the ratio, a carbon film having a desired component ratio can be easily obtained. That is, in order to satisfy the invention of the magnetic disk that achieves the first object, the composition ratio of the metal atoms to carbon atoms is set to 20% or less, preferably 1.
The flow rate ratio may be set to ~15%, more preferably 3 to 10%6 [Operation] The hard carbon film containing at least one metal element of SL, Ge, Sn, and Pb of the present invention has a hardness As will be specifically shown in the examples described later, the addition of the above-mentioned metal elements reduces the internal strain and improves the bond between the added metal elements, the magnetic layer, and carbon. It is thought that a bond is formed between the two, thereby improving the peeling resistance and cracking resistance.

〔実施例〕〔Example〕

実施例1゜ 以下、図面を用いて本発明の詳細な説明する。 Example 1゜ Hereinafter, the present invention will be explained in detail using the drawings.

第1図は、本発明の磁気ディスクの一実施例を示す断面
図で、同図の1はアルミニウム合金から成る非磁性基体
、2はその上に形成されたN1−Pめっき膜を下地とし
その上に形成されたCo−Ni合金磁性層、3はいわゆ
る磁気ディスク基板、4は本発明の特徴部分であるS1
含有硬質炭素保護膜、そして5は、潤滑層である。
FIG. 1 is a sectional view showing an embodiment of the magnetic disk of the present invention, in which 1 is a non-magnetic substrate made of an aluminum alloy, 2 is a non-magnetic substrate made of an aluminum alloy, and 2 is a non-magnetic substrate with an N1-P plating film formed thereon as a base. Co-Ni alloy magnetic layer formed thereon, 3 is a so-called magnetic disk substrate, 4 is S1 which is a characteristic part of the present invention.
contains a hard carbon protective film, and 5 is a lubricating layer.

第2図は、上記磁気ディスクを製造するためのバイアス
プラズマCVD装置の概略図を示す。
FIG. 2 shows a schematic diagram of a bias plasma CVD apparatus for manufacturing the above magnetic disk.

以下、このCVD装置を用いて、第1図の磁気ディスク
を製造するプロセスについて説明する。
Hereinafter, a process for manufacturing the magnetic disk shown in FIG. 1 using this CVD apparatus will be explained.

予め、アルミニウム合金基体1上にN1−Pめっき膜が
被覆され1表面粗さ0.005μmに仕上げされ、その
上に磁気記録再生用媒体の磁性層2としてCo−Ni合
金を0.06μmスパッタリングで形成したディスク基
板3を準備し、これを第2図のバイアスプラズマCVD
処理室を構成する真空槽21内の高周波電源26に接続
された高周波電極25の上に載置する。そして、アース
電極22を高周波電極25と平行に設置する1次に真空
ポンプ24を動作させつつ炭素成分原料ガスとしてメタ
ンCH4ガス29をガス導入口B28から、Siの原料
ガスとしてモノシランSiH4ガス30をガス導入口A
27から真空槽21内に導入する0次に、高周波電極2
5とアース電極22との間に13.56MHzの高周波
の電圧500〜100OVを印加し、電極間にプラズマ
を発生させる。そして、これら混合ガス圧1〜500 
m T orr 。
In advance, an N1-P plating film was coated on the aluminum alloy substrate 1 and finished to a surface roughness of 0.005 μm, and a Co-Ni alloy was sputtered to a thickness of 0.06 μm as the magnetic layer 2 of the magnetic recording/reproducing medium. The formed disk substrate 3 is prepared and subjected to bias plasma CVD as shown in FIG.
It is placed on a high frequency electrode 25 connected to a high frequency power source 26 in a vacuum chamber 21 constituting a processing chamber. Then, the ground electrode 22 is installed parallel to the high-frequency electrode 25, and while the vacuum pump 24 is operated, methane CH4 gas 29 is supplied as a carbon component raw gas from the gas inlet B28, and monosilane SiH4 gas 30 is supplied as a Si raw material gas. Gas inlet A
27 into the vacuum chamber 21, the high frequency electrode 2
A high frequency voltage of 500 to 100 OV of 13.56 MHz is applied between the ground electrode 22 and the ground electrode 22 to generate plasma between the electrodes. And these mixed gas pressures are 1 to 500
m T orr.

放電電力20〜2000Wの範囲で適度な条件を設置し
、ディスク基板上にケイ素含有硬質炭素膜を0.025
μmの厚さに被覆し磁気ディスクを作成した。
A silicon-containing hard carbon film of 0.025% was deposited on the disk substrate under appropriate conditions with a discharge power of 20 to 2000W.
A magnetic disk was prepared by coating it to a thickness of μm.

この場合、高周波電極側には自動的に負のバイアス電圧
すなわち自己バイアスが生じることが知られており(例
えば、N 、 Chapman著、岡本幸雄訳「プラズ
マプロセシングの基礎」130頁)、この300〜60
0vの負のバイアスによって、炭素イオン、ケイ素イオ
ンが加速されて成膜されるため硬質の膜を得ることがで
きる。
In this case, it is known that a negative bias voltage, that is, self-bias, is automatically generated on the high-frequency electrode side (for example, N. Chapman, "Fundamentals of Plasma Processing", translated by Yukio Okamoto, p. 130); 60
Carbon ions and silicon ions are accelerated and formed into a film by the negative bias of 0V, so that a hard film can be obtained.

ガス導入口A27とガス導入口828からのメタンCH
4ガス29とモノシランSiH4ガス30の流量を変え
て膜中の炭素に対するケイ素の組成比率の異なるケイ素
含有硬質炭素膜を作成し、耐C8S性を評価した。第3
図はその例を示す特性曲線図である。この図から、ケイ
素含有量が20%(原子比)以下でその有効性が認めら
れ、好ましい1〜15%の範囲内で、ケイ素を含まない
場合の2倍以上の効果が、そしてより好ましい3〜10
%においては3倍以上の効果が認められた。
Methane CH from gas inlet A27 and gas inlet 828
By changing the flow rates of SiH4 gas 29 and monosilane SiH4 gas 30, silicon-containing hard carbon films having different composition ratios of silicon to carbon in the film were prepared, and C8S resistance was evaluated. Third
The figure is a characteristic curve diagram showing an example. From this figure, its effectiveness is recognized when the silicon content is 20% (atomic ratio) or less, and within the preferred range of 1 to 15%, it is more than twice as effective as when it does not contain silicon, and more preferably 3%. ~10
%, more than three times the effect was observed.

実施例2゜ 実施例1と同様にして炭素成分原料としてメタンCH4
ガス60%、Si原料成分としてテトラメチルシラン5
i(CHz)4ガス8%の割合で混合したガス10mT
orrの条件下でバイアスプラズマCVD処理を行ない
目的とするケイ素含有硬質炭素保護膜を形成した。この
結果については、第1表に示すとおり非常に良好なC8
S特性を示した。
Example 2゜Methane CH4 was used as the carbon component raw material in the same manner as in Example 1.
60% gas, 5% tetramethylsilane as Si raw material component
i (CHZ) 4 gases mixed at a ratio of 8% 10mT
Bias plasma CVD treatment was performed under the conditions of 0.05 to 0.05 to form the intended silicon-containing hard carbon protective film. Regarding this result, as shown in Table 1, very good C8
It showed S characteristics.

実施例3゜ 実施例1と同様にして、CH,ガス92%。Example 3゜ CH, gas 92% in the same manner as in Example 1.

GeH4ガス8%の割合で混合したガス10mTorr
の条件下でバイアスプラズマCVD処理を行ない目的と
するゲルマニウム含有硬質炭素膜を形成した。この結果
は、第1表に示すとおりであり、実施例2とほぼ同様に
非常に良好なC8S特性を示した。
Gas mixed at a ratio of 8% GeH4 gas 10mTorr
Bias plasma CVD treatment was performed under these conditions to form the desired germanium-containing hard carbon film. The results are shown in Table 1, and showed very good C8S characteristics, almost the same as in Example 2.

実施例4゜ 実施例3と同様にして、CH4ガス92%。Example 4゜ Same as Example 3, CH4 gas 92%.

SnH,ガス8%の割合で混合したガス10mTorr
の条件下でバイアスプラズマCVD処理を行ない目的と
するスズ含有硬質炭素膜を形成した。この結果は、第1
表に示すとおりであり、実施例2とほぼ同様に非常に良
好なC8S特性を示した。
SnH, gas mixed at a ratio of 8% at 10 mTorr
Bias plasma CVD treatment was performed under these conditions to form the intended tin-containing hard carbon film. This result is the first
As shown in the table, almost the same as Example 2, very good C8S characteristics were exhibited.

実施例5゜ 実施例3と同様にして、CH4ガス92%。Example 5゜ Same as Example 3, CH4 gas 92%.

PbH,ガス8%の割合で混合したガスIQmTorr
の条件下でバイアスプラズマCVD処理を行ない目的と
する鉛含有硬質炭素膜を形成した。この結果は、第1表
に示すとおりであり、実施例2とほぼ同様に非常に良好
なC8S特性を示した。
PbH, gas mixed at a ratio of 8% IQmTorr
Bias plasma CVD treatment was performed under these conditions to form the intended lead-containing hard carbon film. The results are shown in Table 1, and showed very good C8S characteristics, almost the same as in Example 2.

実、流側 6゜ 実施例2のS i(CH,)4ガス8%のうちの4%を
GeH42%、5nH42%で置換し、上記実施例2と
全く同様に処理したところ、目的とするケイ素、ゲルマ
ニウム及びスズ含有の硬質炭素膜を形成した。この結果
は、第1表に示すとおりであり、実施例2とほぼ同様の
C8S特性を示した。
In fact, when 4% of the 8% Si(CH,)4 gas in Example 2 was replaced with 42% GeH and 42% 5nH on the flow side and treated in exactly the same manner as in Example 2, the desired result was obtained. A hard carbon film containing silicon, germanium, and tin was formed. The results are shown in Table 1, and showed almost the same C8S characteristics as in Example 2.

実施例7゜ 実施例3のG e H4ガス8%のうちの4%をSnH
,2%、PbH42%で置換し、上記実施例3と全く同
様に処理したところ、目的とするゲルマニウム、スズ及
び鉛含有の硬質炭素膜を形成した。
Example 7゜4% of the 8% G e H4 gas in Example 3 was replaced with SnH.
, 2% and PbH 42% and treated in exactly the same manner as in Example 3, forming the desired hard carbon film containing germanium, tin, and lead.

この結果は、第1表に示すとおりであり、実施例3とほ
ぼ同様のC8S特性を示した。
The results are shown in Table 1, and showed almost the same C8S characteristics as Example 3.

比較例 1゜ 実施例2と同様にしてCH4ガスのみを10mTorr
とし、その他の金属元素成分を導入せずに実施例2と全
く同様に処理して、炭素成分のみからなる硬質炭素膜を
比較のために形成した。この結果は第1表に示すとおり
であり著しく特性が劣化した。
Comparative example 1゜Similar to Example 2, only CH4 gas was heated to 10 mTorr.
A hard carbon film consisting only of carbon components was formed for comparison by processing in exactly the same manner as in Example 2 without introducing any other metal element components. The results are shown in Table 1, and the characteristics were significantly deteriorated.

比較例2゜ 実施例2と同様にして、ただし5i(CH,)、ガス8
%の代りにSiH4ガス40%を用いてCH,ガス60
%と混合して実施例2と全く同様に処理して、ケイ素を
38%(原子%)と多量に含有する硬質炭素膜を比較の
ために形成した。この結果は第1表に示すとおりであり
著しく特性が劣化した。
Comparative Example 2゜Similar to Example 2, except that 5i (CH,) and gas 8
CH, gas 60% using SiH4 gas 40% instead of %
% and treated in exactly the same manner as in Example 2 to form a hard carbon film containing a large amount of silicon, 38% (atomic %), for comparison. The results are shown in Table 1, and the characteristics were significantly deteriorated.

比較例3゜ メタンCH,ガス100mTorrをプラズマ化し、こ
れをsoo vの電圧をかけ、プラズマ中のイオンを加
速電界によってディスク基板上に噴射するプラズマイン
ジェクションCVD (pI−CVD)でディスク基板
上に炭素膜を0.025μm(上記各実施例と同一厚さ
)被覆し磁気ディスクを作成した。
Comparative Example 3 Carbon was formed on the disk substrate by plasma injection CVD (pI-CVD), in which methane CH gas at 100 mTorr was turned into plasma, a voltage of soo v was applied, and ions in the plasma were injected onto the disk substrate by an accelerating electric field. A magnetic disk was prepared by coating the magnetic disk with a film of 0.025 μm (same thickness as in each of the above examples).

これは従来例を示したものであるが、その結果は第1表
に示すように本発明実施例の約172の試験回数でクラ
ッシュが発生した。
This shows a conventional example, but as shown in Table 1, a crash occurred after about 172 tests in the example of the present invention.

第  1  表 試験(C8S試験)を測定したもの 以上、本発明の一実施例を比較例と対比して示したが、
上記実施例はごく一部の炭素成分原料及び金属元素成分
の原料を用いた例にすぎない。その他のアルキル化合物
、アルコキシ化合物を原料としたものにおいても同様の
結果が得られることは云うまでもない。金属元素成分と
して、例えば。
Table 1 Measurements of the test (C8S test) Above, an example of the present invention was shown in comparison with a comparative example.
The above-mentioned embodiments are merely examples in which a small number of raw materials for carbon components and raw materials for metal element components are used. It goes without saying that similar results can be obtained using other alkyl compounds and alkoxy compounds as raw materials. As a metal element component, for example.

Si(CH3)4のごときアルキル化合物。Alkyl compounds such as Si(CH3)4.

Si(OCH3)4のごときアルコキシ化合物を用いた
場合には、金属元素の導入と同時にアルキル基やアルコ
キシ基から炭素成分の一部をも導入することができると
いう副次的効果もある。
When an alkoxy compound such as Si(OCH3)4 is used, a secondary effect is that a part of the carbon component can also be introduced from the alkyl group or alkoxy group at the same time as the metal element is introduced.

また、上記実施例では、製造装置として、平行平板形の
バイアスプラズマCVD装置を用いたが。
Further, in the above embodiment, a parallel plate type bias plasma CVD apparatus was used as the manufacturing apparatus.

本発明においてはプラズマ発生手段としてその他周知の
マイクロ波イオン源を用いたプラズマCvD処理装置を
も使用できることは云うまでもない。
It goes without saying that in the present invention, a plasma CvD processing apparatus using a well-known microwave ion source can also be used as a plasma generating means.

〔発明の効果〕〔Effect of the invention〕

以上の結果から明らかなように本発明の磁気ディスク及
びその製造方法は優れた耐摩耗性と耐剥離・耐クラツク
性を有していることがわかった。
As is clear from the above results, the magnetic disk of the present invention and its manufacturing method were found to have excellent wear resistance, peeling resistance, and cracking resistance.

なお、本発明の実施例では磁気ディスクについて述べた
が、フロッピーディスク、磁気テープ。
In the embodiments of the present invention, magnetic disks have been described, but floppy disks and magnetic tapes may also be used.

磁気カードにも本発明が有効であることは明らかである
It is clear that the present invention is also effective for magnetic cards.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す磁気ディスクの部分
断面図、第2図は、本発明を実施するための製造装置の
一例を示した概略説明図、そして第3図は、本発明の実
施例を示す硬質炭素膜中に含有1するケイ素量と膜の特
性との関係を示した特性曲線図である。 図において。 3・・・基板 4・・・硬質炭素保護膜 代理人弁理士  中 村 純之助 第1図
FIG. 1 is a partial sectional view of a magnetic disk showing an embodiment of the present invention, FIG. 2 is a schematic explanatory diagram showing an example of a manufacturing apparatus for carrying out the present invention, and FIG. FIG. 2 is a characteristic curve diagram showing the relationship between the amount of silicon contained in a hard carbon film and the characteristics of the film, showing an example of the invention. In fig. 3... Substrate 4... Hard carbon protective film Attorney Junnosuke Nakamura Figure 1

Claims (1)

【特許請求の範囲】 1、非磁性基体上に金属薄膜磁性層を有し、前記金属薄
膜磁性層上にケイ素、ゲルマニウム、スズ及び鉛から成
る群から選ばれる少なくとも1種の金属元素を含む硬質
炭素膜より成る保護膜が形成されて成ることを特徴とす
る磁気ディスク。 2、上記硬質炭素膜が含有する上記金属元素の含有量を
20原子%以下としたことを特徴とする請求項1記載の
磁気ディスク。 3、上記基体がアルミニウム合金、ステンレススチール
、セラミックス及びガラスから成る群から選ばれるいず
れか1種の非磁性体から成ることを特徴とする請求項1
もしくは請求項2記載の磁気ディスク。 4、非磁性基体上に磁性金属層が形成された基板を、高
周波プラズマ処理室内に設けられた試料台上に載置し、
前記室内を高真空に排気したのち、前記室内に飽和炭化
水素化合物と、ケイ素、ゲルマニウム、スズ及び鉛から
成る群から選ばれる少なくとも1種の金属元素の水素化
物、アルキル化合物及びアルコキシ化合物の少なくとも
1種とを含む混合ガスを送給し、ガス圧1〜500mT
orr下でバイアスプラズマCVD処理することにより
、前記基板の磁性金属層上に前記金属元素を含む硬質炭
素膜を形成することを特徴とする磁気ディスクの製造方
法。
[Claims] 1. A hard material having a metal thin film magnetic layer on a nonmagnetic substrate, and containing at least one metal element selected from the group consisting of silicon, germanium, tin, and lead on the metal thin film magnetic layer. A magnetic disk characterized in that a protective film made of a carbon film is formed. 2. The magnetic disk according to claim 1, wherein the content of the metal element contained in the hard carbon film is 20 atomic % or less. 3. Claim 1, wherein the base is made of any one non-magnetic material selected from the group consisting of aluminum alloy, stainless steel, ceramics, and glass.
Or the magnetic disk according to claim 2. 4. Place a substrate with a magnetic metal layer formed on a non-magnetic substrate on a sample stage provided in a high-frequency plasma processing chamber,
After the chamber is evacuated to a high vacuum, a saturated hydrocarbon compound and at least one of a hydride, an alkyl compound, and an alkoxy compound of at least one metal element selected from the group consisting of silicon, germanium, tin, and lead are added to the chamber. A mixed gas containing seeds is supplied, and the gas pressure is 1 to 500 mT.
A method for manufacturing a magnetic disk, characterized in that a hard carbon film containing the metal element is formed on the magnetic metal layer of the substrate by bias plasma CVD treatment under orr.
JP11472888A 1988-04-20 1988-05-13 Magnetic disk and its production Pending JPH01286113A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11472888A JPH01286113A (en) 1988-05-13 1988-05-13 Magnetic disk and its production
US07/755,589 US5275850A (en) 1988-04-20 1991-09-04 Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11472888A JPH01286113A (en) 1988-05-13 1988-05-13 Magnetic disk and its production

Publications (1)

Publication Number Publication Date
JPH01286113A true JPH01286113A (en) 1989-11-17

Family

ID=14645141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11472888A Pending JPH01286113A (en) 1988-04-20 1988-05-13 Magnetic disk and its production

Country Status (1)

Country Link
JP (1) JPH01286113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528268A (en) * 2010-05-25 2013-07-08 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング Sliding body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029936A (en) * 1983-07-29 1985-02-15 Denki Kagaku Kogyo Kk Magnetic recording medium and its production
JPH01184722A (en) * 1988-01-19 1989-07-24 Matsushita Electric Ind Co Ltd Production of magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029936A (en) * 1983-07-29 1985-02-15 Denki Kagaku Kogyo Kk Magnetic recording medium and its production
JPH01184722A (en) * 1988-01-19 1989-07-24 Matsushita Electric Ind Co Ltd Production of magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528268A (en) * 2010-05-25 2013-07-08 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング Sliding body
US9388900B2 (en) 2010-05-25 2016-07-12 Federal-Mogul Burscheid Gmbh Method for producing a piston ring having embedded particles

Similar Documents

Publication Publication Date Title
US5275850A (en) Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias
US6258434B1 (en) Magnetic recording medium
JP4331292B2 (en) Composite diamond-like carbon coating with low wear and excellent adhesion
US8865269B2 (en) Method of forming a protective film for a magnetic recording medium, a protective film formed by the method and a magnetic recording medium having the protective film
KR100281340B1 (en) Apparatus and Method for Sputtering Carbon
US6875492B1 (en) Carbon overcoat for magnetic recording medium
US7391592B2 (en) Magnetic recording medium including a diamond-like carbon protective film and at least two additional elements
JPH06212429A (en) Hard carbon film
KR102268582B1 (en) CMP MANUFACTURING METHOD AND CMP PAD Conditioner USING THE SAME
JPH01286113A (en) Magnetic disk and its production
JPH0323973B2 (en)
JP2002348668A (en) Amorphous hard carbon film and manufacturing method therefor
US6680112B1 (en) Magnetic recording medium and production process thereof
JP2001148112A (en) Information recording/reproducing device
JP2002285328A (en) Hard carbon coating film and member coated with the same film
JPH11130590A (en) Dustproof hard carbon film
JP2000123348A (en) Protective film
JP2001297410A (en) Thin film magnetic head and method of manufacture
JPH10326406A (en) Magnetic head slider and its production
CN101842837A (en) Method of manufacturing magnetic recording medium
JP2846036B2 (en) Magnetic disk, method of manufacturing the same, and magnetic disk device using the same
JPH01147072A (en) Method and apparatus for forming thin film
JPH06208721A (en) Magnetic recording medium
JPH1091940A (en) Protective film
JPH11278989A (en) Carbon-based coating film