JPH01285A - Dry etching method - Google Patents
Dry etching methodInfo
- Publication number
- JPH01285A JPH01285A JP62-155871A JP15587187A JPH01285A JP H01285 A JPH01285 A JP H01285A JP 15587187 A JP15587187 A JP 15587187A JP H01285 A JPH01285 A JP H01285A
- Authority
- JP
- Japan
- Prior art keywords
- etching
- gas
- dry etching
- alcohol
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001312 dry etching Methods 0.000 title claims description 19
- 238000000034 method Methods 0.000 title claims description 19
- 238000005530 etching Methods 0.000 claims description 25
- 238000001020 plasma etching Methods 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 150000001735 carboxylic acids Chemical class 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 235000019441 ethanol Nutrition 0.000 description 12
- 239000000758 substrate Substances 0.000 description 10
- 229920000620 organic polymer Polymers 0.000 description 9
- 239000012159 carrier gas Substances 0.000 description 7
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 101100348341 Caenorhabditis elegans gas-1 gene Proteins 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 101100447658 Mus musculus Gas1 gene Proteins 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置のドライエツチング方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a dry etching method for semiconductor devices.
特に半導体装置内の酸化インジウムを主とする電極のド
ライエツチング方法に関する。In particular, the present invention relates to a dry etching method for electrodes mainly made of indium oxide in semiconductor devices.
従来の技術
従来、酸化インジウムを主とする透明導電膜、即ちIT
O膜のエツチングは、ヨウ化水素、或は塩化第2鉄を主
成分とする溶液によりウェットエツチング法によりエツ
チングされていた。しかしながら、この方法では等方エ
ツチングによるため、あるいは還元反応によるエツチン
グのため微細パターン、即ち5μ以下のパターン寸法の
エツチングは困難であった。しかし、集積回路の高密度
化が進展するにつれて上記エツチング工程も高精度で行
うことが必要とされるに至った。Conventional technology Conventionally, transparent conductive films mainly made of indium oxide, i.e., IT
The O film was etched by a wet etching method using a solution containing hydrogen iodide or ferric chloride as a main component. However, since this method uses isotropic etching or etching by a reduction reaction, it is difficult to etch fine patterns, that is, pattern dimensions of 5 μm or less. However, as the density of integrated circuits has increased, it has become necessary to perform the etching process with high precision.
この点を解決するためにドライエツチング方法が取り入
れられた。このドライエツチングを行う方法及び装置も
各種開発され、レジスト灰化に主として用いられるバレ
ル型ドライエツチング、微細加工に適した反応性イオン
エツチング、均一性と低レジスト損傷を特長とするCD
E (Chemical Dry Etching
)等が使用されている。その中で反応性イオンエツチン
グ(Reactive Ion Etching、
略してRIE)と呼ばれる方法がドライエツチングの主
流となっている。このRIEを第2図面の簡単な説明す
る。A dry etching method was introduced to solve this problem. Various methods and devices for this dry etching have been developed, including barrel dry etching, which is mainly used for resist ashing, reactive ion etching, which is suitable for microfabrication, and CD etching, which is characterized by uniformity and low resist damage.
E (Chemical Dry Etching)
) etc. are used. Among them, reactive ion etching (Reactive Ion Etching)
A method called RIE (abbreviated as RIE) is the mainstream of dry etching. This RIE will be briefly explained in the second drawing.
給気口21および排気口22を有する真空容器23内に
選択エツチングされる基板24を配置した電極25と対
向電極26とを設ける。この電極25は絶縁体27によ
って真空容器23と、基板24は絶縁体27によって電
極25と電気的に絶縁されている。給気口22から反応
ガスを供給し、真空容器23内を1〜10Pa程度の圧
力にして電極25と対向電極26との間に電力を給電し
グロー放電により低温プラズマを形成させる。An electrode 25 in which a substrate 24 to be selectively etched is disposed and a counter electrode 26 are provided in a vacuum container 23 having an air supply port 21 and an exhaust port 22. The electrode 25 is electrically insulated from the vacuum vessel 23 by an insulator 27, and the substrate 24 is electrically insulated from the electrode 25 by an insulator 27. A reaction gas is supplied from the air supply port 22, the pressure in the vacuum container 23 is set to about 1 to 10 Pa, and electric power is supplied between the electrode 25 and the counter electrode 26 to form low-temperature plasma by glow discharge.
この低温プラズマ中で形成されたイオン及びラジカルを
基板に衝突させてスパッタリングと化学反応が混在した
状態で基板をエツチングさせる。RIEに用いられる電
力は、通常高周波電力で、カソード結合方式が使用され
る。The ions and radicals formed in this low-temperature plasma collide with the substrate to etch the substrate in a state where sputtering and chemical reactions coexist. The power used for RIE is usually high frequency power, and a cathode coupling method is used.
反応ガスとしては、CCl4などの塩素化合物が使用さ
れた。しかし、この種の反応ガスを用いた場合、I n
20 a、ITO等の透明導電膜と配線材料として使
用されるAI、Cr、Mo等の金属材料、そしてSi、
Si3N4.5i02等の珪化物とのエツチング選択比
が大きく取れない。゛この点を解決する方法として、ア
ルコールまたはカルボン酸を含有させたものを反応性ガ
スとして用いる方法が提案されている(特開昭52−1
19246号)。例えば、ドライエツチング装置として
第3図に示すバレル型ドライエツチング装置を用い、真
空容器31内に基板32を配置し、反応ガスとしてメチ
ルアルコールを給気口33より導入し、真空容器31内
の圧力を40Paに保持させるべ(排気口34より排気
し、RF主電力電極35に150〜600W印加させ、
ITO膜などをエツチングさせる。上述の条件のもとで
ITO膜は、プラズマにより発生したラジカルにより気
体化合物としてエツチング残りなく均一にエツチングさ
れ且つ5in2、SiN、Siとの選択比が十分である
と報告されている。しかし、バレル型ドライエツチング
装置ではパターン精度が十分とり得ないという装置にか
がる問題を有していた。A chlorine compound such as CCl4 was used as the reaction gas. However, when using this type of reactive gas, I n
20a, transparent conductive films such as ITO, metal materials such as AI, Cr, and Mo used as wiring materials, and Si,
It is difficult to obtain a large etching selectivity with silicides such as Si3N4.5i02.゛As a method to solve this problem, a method has been proposed in which a gas containing alcohol or carboxylic acid is used as a reactive gas (Japanese Unexamined Patent Publication No. 52-1
No. 19246). For example, a barrel type dry etching apparatus shown in FIG. 3 is used as a dry etching apparatus, the substrate 32 is placed in a vacuum vessel 31, methyl alcohol is introduced as a reaction gas through an air supply port 33, and the pressure inside the vacuum vessel 31 is increased. be maintained at 40 Pa (exhaust from the exhaust port 34, apply 150 to 600 W to the RF main power electrode 35,
Etches an ITO film, etc. It is reported that under the above conditions, the ITO film is uniformly etched as a gaseous compound by the radicals generated by the plasma without leaving any etching residue, and that the selectivity to 5in2, SiN, and Si is sufficient. However, the barrel type dry etching apparatus has a problem in that it cannot achieve sufficient pattern accuracy.
この問題点を解決する方法として、反応性ドライエツチ
ング装置を使用し、N2、Ar、Heガスの少なくとも
1つをキャリヤガスとし1、これに対し20%迄のアル
コールを含有させたものを反応性ガスとして用いる方法
が提案された(特開昭60−234325号)。例えば
、メチルアルコールとArとを混合し、真空容器内の圧
力を5Paに保持しRF主電力0.6W/j印加させ、
ITO!IGIなどをエツチングさせた。上述の条件の
もとではITO膜に対するエツチング速度は約30nm
/分であったのに対し、AI膜、Mo膜のエツチング速
度は、殆ど測定できないほど小さい。金属はアルコール
と反応しないのに対し、ITO膜は(CH) m I
n nの様な化学式で表される有機インジウム等になっ
ていると報告されている。As a method to solve this problem, a reactive dry etching device is used, and at least one of N2, Ar, and He gas is used as a carrier gas1, and a material containing up to 20% alcohol is used as a reactive dry etching device. A method of using it as a gas was proposed (Japanese Patent Laid-Open No. 60-234325). For example, methyl alcohol and Ar are mixed, the pressure inside the vacuum container is maintained at 5 Pa, and RF main power of 0.6 W/j is applied.
ITO! Etched IGI etc. Under the above conditions, the etching rate for the ITO film is approximately 30 nm.
On the other hand, the etching rates of the AI film and Mo film are so small that they can hardly be measured. Metals do not react with alcohol, whereas ITO films react with (CH) m I
It has been reported that organic indium is represented by a chemical formula such as nn.
発明が解決しようとする問題点
この種のアルコールを反応性ガス、Ar、N、Heなど
のガスをキャリヤガスとして混合してRIEを行う方法
では未だ障害のあることが判明した。Problems to be Solved by the Invention It has been found that this method of performing RIE by mixing alcohol as a reactive gas and gases such as Ar, N, and He as a carrier gas still has problems.
上述の報告の例であるAr流量>so%条件の場合を説
明する。キャリヤガスとして、例えばArを全ガス流量
に対して80%以上含有している場合、レジストが物理
的スパッタリングをがなり受けるので、ITO膜とレジ
ストとの選択比が小さくパターン精度を十分取り得ない
という問題を有している。すなわち、活性化した多量の
Arによるレジストパターンのスパッリングによりレジ
ストパターンの細りが発生する為、パターン精度が低下
したと推測される。この場合、おそら<ITOI!表面
にレジストの再付着が生じるけれども、同時に多量に存
在する活性化したArによって再び除去されるメカニズ
ムにより常に新しいITO面が表面に形成されるので、
ITO膜のエツチングが進行されると考えられる。The case where the Ar flow rate>so% condition, which is an example of the above report, will be explained. If the carrier gas contains, for example, Ar at 80% or more of the total gas flow rate, the resist will be subjected to physical sputtering so much that the selectivity ratio between the ITO film and the resist will be small, making it impossible to obtain sufficient pattern accuracy. I have a problem. In other words, it is presumed that the resist pattern becomes thinner due to sputtering of the resist pattern due to a large amount of activated Ar, resulting in a decrease in pattern accuracy. In this case, perhaps <ITOI! Although resist re-deposition occurs on the surface, a new ITO surface is always formed on the surface due to the mechanism in which it is removed again by the activated Ar present in large quantities at the same time.
It is believed that the etching of the ITO film progresses.
次に、Ar流量く80%条件の場合を説明する。この場
合、レジスト再付着膜及び有機重合膜がITO膜上に形
成され、ITO膜のエツチングが十分に行われないとい
う問題を有している。即ち、そのメカニズムは明確でな
いが、上述の従来例と異なりAr流量の低下により活性
化したAr量が減少し、十分に再付着膜及び有機重合膜
が除去できないので、ITO膜のエツチングが十分に行
われないと推測される。Next, a case where the Ar flow rate is 80% will be explained. In this case, there is a problem that a resist re-deposition film and an organic polymer film are formed on the ITO film, and the ITO film is not etched sufficiently. That is, although the mechanism is not clear, unlike the conventional example described above, the amount of activated Ar decreases due to the decrease in Ar flow rate, and the redeposited film and organic polymer film cannot be removed sufficiently, so that the ITO film is not etched sufficiently. It is assumed that this will not be done.
問題点を解決するための手段
そこで、本発明は、上記した目的に鑑みなされたもので
ある。即ち、I n 203を含む層を反応性イオンエ
ツチングによってエツチングする方法に於て、エツチン
グに主として使用するガスをアルコール、カルボン酸類
の少なくとも1種とし、N2、Ar、Heガスの少なく
とも1種のガスを全ガス量の0%から20%含有させ且
つ反応性イオンエツチングに供するガス圧を無放電時に
おいて5Pa未満としてドライエツチングを行うもので
ある。Means for Solving the Problems The present invention has been made in view of the above-mentioned objectives. That is, in a method of etching a layer containing In 203 by reactive ion etching, the gas mainly used for etching is at least one of alcohol and carboxylic acids, and at least one of N2, Ar, and He gas is used. Dry etching is carried out by containing 0% to 20% of the total gas amount and by setting the gas pressure for reactive ion etching to less than 5 Pa during no discharge.
作用
以上のような本発明による少なくともIn2O3を含む
層を反応性イオンエツチングによってドライエツチング
する製造方法は、反応性ガスとしてアルコールを用いて
いるため、A I、Crなどの金属材料とエツチング選
択比が高く、またN2、Ar、Heをキャリヤガスとし
て全流量に対して0%から20%の低流量で用いている
ので、レジストに対するダメージを少なくすることがで
きる。更に、無放電時5Pa未満の圧力に設定し放電さ
せた場合レジスト再付着及び有機重合膜の形成がなくエ
ツチング速度に影響を与えずドライエツチングを実現す
ることが出来る。Effect The manufacturing method according to the present invention in which a layer containing at least In2O3 is dry-etched by reactive ion etching as described above uses alcohol as a reactive gas, so that the etching selectivity is lower than that of metal materials such as AI and Cr. Furthermore, since N2, Ar, and He are used as a carrier gas at a low flow rate of 0% to 20% of the total flow rate, damage to the resist can be reduced. Further, when the pressure is set to less than 5 Pa during non-discharge and discharge is performed, there is no resist redeposition and formation of an organic polymer film, and dry etching can be achieved without affecting the etching rate.
実施例
以下、第2図を参照して本発明によるドライエツチング
方法の実施例を説明する。EXAMPLE Hereinafter, an example of the dry etching method according to the present invention will be described with reference to FIG.
本発明においても第2図の装置を用いてRIEを説明す
る。即ち、ITO膜の付いた透明基板24を真空容器2
3内に配置し、メチルアルコールを100 s c c
n+給気口21より予め1O−3Pa以下の真空度にし
た真空容器12内に給気しIPaに設定した後、RF電
力を0.2W/cd給電し放電させる。所要時間放電さ
せたのちRFt力を停止し、真空容器23を乾燥空気に
てパージし基板24を取り出す。上述の条件下で、IT
O膜に対するエツチング速度は約20nm/分であった
。Also in the present invention, RIE will be explained using the apparatus shown in FIG. That is, the transparent substrate 24 with the ITO film is placed in the vacuum container 2.
3 and methyl alcohol at 100 s c c
Air is supplied from the n+ air supply port 21 into the vacuum container 12, which has been previously brought to a vacuum level of 10-3 Pa or less, and set to IPa, and then RF power of 0.2 W/cd is supplied to discharge. After discharging for a required time, the RFt force is stopped, the vacuum container 23 is purged with dry air, and the substrate 24 is taken out. Under the above conditions, I.T.
The etching rate for the O film was about 20 nm/min.
一方、CrおよびAI膜は殆どエツチングされなかった
。また、アルコールの放電の結果形成される有機重合膜
は形成されな、かった。この理由は、キャリヤガスを含
まないためキャリヤガスの活性化イオンに起因するレジ
ストのスッパタによるITo膜上の再付着が少な(、且
つガス圧が低いため、有機重合膜が形成されに<<、ま
たごく薄く形成されても、活性化されたCH2、CH3
、C01O等よって物理的にスッパタエッチングあるい
はプラズマ化学的に除去されるため、有機重合膜が形成
されずITO膜がエツチングされるものと考えられる。On the other hand, the Cr and AI films were hardly etched. Further, an organic polymer film formed as a result of alcohol discharge was not formed. The reason for this is that since it does not contain a carrier gas, there is little redeposition on the ITo film due to resist sputtering caused by activated ions of the carrier gas (and because the gas pressure is low, an organic polymer film is not formed). Also, even if formed very thinly, activated CH2 and CH3
, CO1O, etc., and is removed physically by sputter etching or plasma chemically, so it is thought that the ITO film is etched without forming an organic polymer film.
本発明を更に検討を加えた結果、エツチング速度に無放
電時ガス圧依存性が有り特に5Pa未満で優れていた。As a result of further studies on the present invention, it was found that the etching rate was dependent on the gas pressure during non-discharge, and was particularly excellent when the etching rate was less than 5 Pa.
第1図にしたがって説明する。同図に於て実線りは無放
電時ガス圧に対するエツチング速度を示す実線で、5P
a未満の真空度でエツチング速度が早(、エツチングに
適した領域である。一方、5Pa以上の真空度ではエツ
チング残りが発生し製造上の問題を有していた。このメ
カニズムは、低ガス圧にした場合、アルコールの流量が
少なくなるため有機重合膜の形成が減少すると共に、揮
発性ITO化合物蒸気圧が低く無放電時ガス圧の低い方
がエツチングされ易(なると考えられる。This will be explained according to FIG. In the same figure, the solid line indicates the etching rate with respect to the gas pressure during no discharge.
At a vacuum level of less than 5 Pa, the etching speed is fast (which is a suitable region for etching. On the other hand, at a vacuum level of 5 Pa or more, etching remains are generated, which poses a manufacturing problem. In this case, the flow rate of alcohol decreases, which reduces the formation of an organic polymer film, and it is thought that the volatile ITO compound is more likely to be etched when the vapor pressure is low and the gas pressure during non-discharge is low.
実験の結果、反応酸ガスはメチルアルコールに限らずア
ルコールで有ればよく、エチルアルコール、イソプロピ
ルアルコールなど、あるいは酢酸等のカルボン酸類でも
同様の効果が認められ本発明に含まれるものである。As a result of experiments, it has been found that the reactive acid gas is not limited to methyl alcohol, but any alcohol may be used, and ethyl alcohol, isopropyl alcohol, etc., or carboxylic acids such as acetic acid have been found to have similar effects and are included in the present invention.
次に第2の実施例を示す。即ち、ITOllIの付いた
基板を真空容器内に配置し、メチルアルコールを101
005e、Arを12 s e c+s混合し、給気口
21より予め1O−3Pa以下の真空度にした真空容器
23内に給気しIPaに設定した後、RF電力を0.2
W/cj給電し放電させる。所要時間放電させたのちR
F電力を停止し、真空容器を乾燥空気にてパージし基板
を取り出す。上述の条件下で、ITO膜に対するエツチ
ング速度はAr混合の無い第1の実施例と同程度の約2
0nm/分であった。一方、Crtllは殆どエツチン
グされなかった。また、アルコールの放電の結果形成さ
れる有機重合膜は同様に形成されなかった。Next, a second example will be shown. That is, the substrate with ITOllI is placed in a vacuum container, and methyl alcohol is added to 101
005e, Ar was mixed for 12 s e c + s, and air was supplied from the air supply port 21 into the vacuum container 23, which had been previously set to a vacuum level of 10-3 Pa or less, and set to IPa, and then the RF power was set to 0.2
Supply W/cj power and discharge. After discharging for the required time, R
Stop the F power, purge the vacuum container with dry air, and take out the substrate. Under the above conditions, the etching rate for the ITO film was approximately 2
It was 0 nm/min. On the other hand, Crtll was hardly etched. Furthermore, an organic polymer film formed as a result of alcohol discharge was also not formed.
上記第1、第2の実施例で示した通り、キャリヤガスが
小量台まれていても有機重合膜の形成はなく、キャリヤ
ガスの添加量は全ガス流量の0から20%まででよ(、
特にOから5%のガス流量がレジストに対するダメージ
が少なく特に良好である。As shown in the first and second embodiments above, even if a small amount of carrier gas is added, no organic polymer film is formed, and the amount of carrier gas added can range from 0 to 20% of the total gas flow rate ( ,
In particular, a gas flow rate of 5% from O is particularly good since it causes little damage to the resist.
発明の効果
以上の説明から明らかなように、本発明によるドライエ
ツチング方法は、CCl4、CF4、等の有害なガスを
使用せずアルコールといった単純な材料でAI、Cr等
の金属材料に対して選択比よく且つレジストに対するダ
メージが少なくIn2O3、ITOを選択エツチングす
ることが出来るので、I n 203、ITOを有する
半導体装置の製造に極めて有用なものであり、その効果
は大きいものがある。Effects of the Invention As is clear from the above explanation, the dry etching method according to the present invention does not use harmful gases such as CCl4, CF4, etc., and is effective for etching metal materials such as AI and Cr using a simple material such as alcohol. Since In2O3 and ITO can be selectively etched with a relatively high ratio and with little damage to the resist, it is extremely useful for manufacturing semiconductor devices containing In203 and ITO, and has great effects.
第1図は本発明にかかる無放電時ガス圧とエツチング速
度との関係図、第2図は本発明による実施例にかかる反
応性イオンエツチングに用いられる装置の一例を示す要
部断面構造を示す図、第3図は従来例にかかるバレル型
ドライエツチング装置の要部断面構造を示す図である。
21・・・・給気口、22・・・・排気口、23・・・
・真空容器、24・・・・基板、25・・・・電極、2
6・・・・対向電極、27・・・・絶縁体。
代理人の氏名 弁理士 中尾敏男 ほか1名第1図FIG. 1 is a diagram showing the relationship between gas pressure during no discharge and etching rate according to the present invention, and FIG. 2 is a cross-sectional view of a main part showing an example of an apparatus used for reactive ion etching according to an embodiment of the present invention. 3 are views showing a cross-sectional structure of a main part of a barrel-type dry etching apparatus according to a conventional example. 21...Air supply port, 22...Exhaust port, 23...
・Vacuum container, 24...substrate, 25...electrode, 2
6...Counter electrode, 27...Insulator. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1
Claims (1)
よってエッチングする方法に於て、エッチングに主とし
て使用するガスをアルコール、カルボン酸類の少なくと
も1種とし、N_2、Ar、Heガスの少なくとも1種
のガスを全ガス量の0%から20%含有させ、且つ反応
性イオンエッチングに供するガス圧を無放電時において
5Pa未満とすることを特徴とするドライエッチング方
法。In a method of etching a layer containing In_2O_3 by reactive ion etching, the gas mainly used for etching is at least one of alcohol and carboxylic acids, and the entire gas is at least one of N_2, Ar, and He gas. A dry etching method, characterized in that the gas is contained in an amount of 0% to 20%, and the gas pressure used for reactive ion etching is less than 5 Pa during non-discharge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15587187A JPS64285A (en) | 1987-06-23 | 1987-06-23 | Dry etching method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15587187A JPS64285A (en) | 1987-06-23 | 1987-06-23 | Dry etching method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01285A true JPH01285A (en) | 1989-01-05 |
JPS64285A JPS64285A (en) | 1989-01-05 |
Family
ID=15615325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15587187A Pending JPS64285A (en) | 1987-06-23 | 1987-06-23 | Dry etching method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS64285A (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS592004B2 (en) * | 1976-03-30 | 1984-01-17 | セイコーエプソン株式会社 | Manufacturing method of electrode substrate for display |
JPS6039156B2 (en) * | 1979-09-27 | 1985-09-04 | 三菱電機株式会社 | Etching method for indium oxide film |
-
1987
- 1987-06-23 JP JP15587187A patent/JPS64285A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5081917B2 (en) | Fluorine removal process | |
US5180464A (en) | Dry etching method | |
US20060226120A1 (en) | Etch profile control | |
JP2008512854A (en) | Method for removing photoresist on a substrate | |
JPS6352118B2 (en) | ||
JPH0336300B2 (en) | ||
TWI393997B (en) | Method for etching a low-k dielectric layer over a substrate, semiconductor device and apparatus for forming features in a low-k dielectric layer | |
TW200539289A (en) | Waferless automatic cleaning after barrier removal | |
JP2002506574A (en) | Dry etching of indium oxide and tin oxide | |
US20100003825A1 (en) | Plasma etching method, control program and computer storage medium | |
US20100051577A1 (en) | Copper layer processing | |
JP3318801B2 (en) | Dry etching method | |
CN1468977A (en) | Residual polymer eliminating method | |
WO2023045049A1 (en) | Method for etching mask of magnetic tunnel junction | |
JP3559691B2 (en) | Method for manufacturing semiconductor device | |
US6787475B2 (en) | Flash step preparatory to dielectric etch | |
JPH01285A (en) | Dry etching method | |
JP3358808B2 (en) | How to insulate organic substances from substrates | |
JPS60234325A (en) | Dry etching method | |
JP2000216148A (en) | Device manufacturing process including dry etching | |
JP3160389B2 (en) | Dry etching method | |
JP3263880B2 (en) | Semiconductor substrate processing method | |
JPS6148924A (en) | Dry etching method for metal having high fusion point | |
JPH05160078A (en) | Dry etching method | |
JP5052313B2 (en) | Manufacturing method of semiconductor device |