JPH0128431Y2 - - Google Patents

Info

Publication number
JPH0128431Y2
JPH0128431Y2 JP1982144159U JP14415982U JPH0128431Y2 JP H0128431 Y2 JPH0128431 Y2 JP H0128431Y2 JP 1982144159 U JP1982144159 U JP 1982144159U JP 14415982 U JP14415982 U JP 14415982U JP H0128431 Y2 JPH0128431 Y2 JP H0128431Y2
Authority
JP
Japan
Prior art keywords
light
sphere
optical fiber
diameter
optical sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982144159U
Other languages
Japanese (ja)
Other versions
JPS5947834U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982144159U priority Critical patent/JPS5947834U/en
Publication of JPS5947834U publication Critical patent/JPS5947834U/en
Application granted granted Critical
Publication of JPH0128431Y2 publication Critical patent/JPH0128431Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

【考案の詳細な説明】 本考案は、光フアイバーを用いた無指向性光セ
ンサーに関するものである。
[Detailed Description of the Invention] The present invention relates to an omnidirectional optical sensor using optical fiber.

光量の検出器としては、従来より、ホトマルチ
プラー、ホトダイオード等の光電変換素子を用い
たものが用いられているが、このような素子は、
光電変換特性が、光の入射角依存性を有している
ため、3次元空間のある点の明るさを正確に測定
するには、素子の光電変換特性の入射角依存性を
調べ、補正する必要がある。しかし、この方法は
手間がかゝる上に、正確な測定値が得られない欠
点がある。このような問題点は小型の無指向性光
センサーを使用することによつて解決できるが、
従来このような特性の光センサーを入手すること
はできなかつた。
Conventionally, photomultipliers, photodiodes, and other photoelectric conversion elements have been used as light intensity detectors.
Since the photoelectric conversion characteristics are dependent on the angle of incidence of light, in order to accurately measure the brightness of a certain point in three-dimensional space, the dependence of the photoelectric conversion characteristics of the element on the angle of incidence must be investigated and corrected. There is a need. However, this method is time-consuming and has the disadvantage that accurate measurement values cannot be obtained. These problems can be solved by using a small omnidirectional optical sensor, but
Conventionally, optical sensors with such characteristics have not been available.

本考案者等は、3次元空間のどの方向から光が
入射しても、正確にしかも簡便に光量測定が行え
るよう、無指向性光センサーの開発を鋭意検討し
てきたが、光フアイバーの一端にフアイバー直径
よりも大きい径をもちかつ表面上に光拡散層を有
する透明球を接合した構造のものとすることによ
り、従来の問題点を一挙に解決する無指向性光セ
ンサーが設計できることを見い出し本考案を完成
した。
The inventors of the present invention have been intensively considering the development of an omnidirectional optical sensor that can accurately and easily measure the amount of light no matter which direction the light enters in three-dimensional space. The book discovered that by creating a structure in which transparent spheres with a diameter larger than the fiber diameter and a light-diffusing layer on the surface were bonded together, it was possible to design an omnidirectional optical sensor that solved all of the conventional problems at once. Completed the idea.

本考案による無指向性光センサーの構造の一例
を図面に示す。図において、1は透明な球、2は
該球を被覆する半透明な光拡散層、3は光学繊維
であり、その一端は前記球に接合され、他端はホ
トダイオード4の受光面に面するよう、保持具5
により固定されている。
An example of the structure of the omnidirectional optical sensor according to the present invention is shown in the drawing. In the figure, 1 is a transparent sphere, 2 is a translucent light-diffusing layer covering the sphere, and 3 is an optical fiber, one end of which is joined to the sphere, and the other end faces the light-receiving surface of the photodiode 4. Well, holder 5
Fixed by

3次元空間に置かれた半透明の光拡散層に、あ
る方向から一本の光線が入射する場合を考える
と、この入射光線は光拡散層により拡散され、い
ろいろな方向に進む光に変えられる。一部は元の
空間で反射され、一部は球の内部へいろいろな角
度で進む光になる。この球内を進む光は反対側の
光拡散層に当ると前と同様に拡散され、さらにい
ろいろな角度に進む光を発生させる。前図と同様
一部は球外へ、一部は球内に進む光になる。これ
を繰返すことにより、球内の光量は減少するが、
いろいろな角度成分を含む光に変えられる。従つ
て、入射光線の入射方向によらず、球内にはいろ
いろな角度成分の光が存在することになる。この
ような球に光学繊維を接合すると、球内の光量に
比例した光量をホトダイオードに伝達することが
できる。つまり、入射光の入射角度に依存せず、
入射光量に比例した光量をホトダイオードに当て
ることが可能となり、無指向性光センサーとして
使用できる。
If we consider a case in which a single ray of light enters a semitransparent light diffusion layer placed in three-dimensional space from a certain direction, this incident ray is diffused by the light diffusion layer and converted into light that travels in various directions. . Some of the light is reflected from the original space, and some of it becomes light that travels inside the sphere at various angles. When the light traveling inside this sphere hits the light diffusion layer on the opposite side, it is diffused in the same way as before, generating light that travels at various angles. As in the previous figure, some of the light travels outside the sphere and some of it travels inside the sphere. By repeating this, the amount of light inside the bulb will decrease, but
It can be changed into light containing various angular components. Therefore, light with various angular components exists within the sphere, regardless of the direction of incidence of the incident light beam. When an optical fiber is bonded to such a sphere, an amount of light proportional to the amount of light inside the sphere can be transmitted to the photodiode. In other words, it does not depend on the angle of incidence of the incident light,
It becomes possible to illuminate the photodiode with an amount of light proportional to the amount of incident light, allowing it to be used as an omnidirectional optical sensor.

光学繊維3つまり光フアイバーとしては、ガラ
ス系、プラスチツク系共使用可能であるが、プラ
スチツク系は、口径が大きく、又加工性がよいた
め好ましいものである。ガラス系光学繊維として
は、芯−鞘構造を有するものとして、多成分ガラ
スを芯に、プラスチツクを鞘にしたもの、石英ガ
ラスを芯に、プラスチツクを鞘にしたもの、芯、
鞘共石英ガラスからなるもの等が用いられる。一
方プラスチツク光学繊維としては芯にポリメチル
メタクリレート系樹脂を、鞘に含フツ素樹脂を用
いたものあるいは、芯にポリスチレン、鞘にポリ
メチルメタクリレート系樹脂を用いたものが用い
られる。中でも、ポリメチルメタクリレートを芯
に用いたプラスチツク光学繊維は、光伝送性能も
比較的よく、かつ加工性がよいことから好ましい
ものである。
As the optical fiber 3, that is, the optical fiber, both glass and plastic can be used, but plastic is preferable because it has a large diameter and is easy to process. Glass-based optical fibers with a core-sheath structure include those with a multicomponent glass core and a plastic sheath, those with a quartz glass core and a plastic sheath, cores,
A sheath made of quartz glass, etc. is used. On the other hand, plastic optical fibers that use polymethyl methacrylate resin for the core and fluorine-containing resin for the sheath, or those that use polystyrene for the core and polymethyl methacrylate resin for the sheath, are used. Among these, plastic optical fibers using polymethyl methacrylate as a core are preferred because they have relatively good optical transmission performance and are easy to process.

本考案に使用する透明な球1は、ガラス性のも
の及びプラスチツク性のものどちらでも使用可能
である。これらの透明球は接合する光学繊維より
も大きな直径を有するものである。光学繊維より
も直径が大きくなるにつれて光学繊維3との接合
面の面積が球1全体の表面積に比べ相対的に低下
するのでキヤツチできる光の領域も広くなり、か
つ測定精度も向上するが、接合面の機械的強度が
低下する。したがつて球1の直径は光学繊維3の
直径の2〜100倍程度とするのが好ましい。
The transparent sphere 1 used in the present invention can be made of either glass or plastic. These transparent spheres have a larger diameter than the optical fibers to be joined. As the diameter of the optical fiber becomes larger, the area of the joint surface with the optical fiber 3 decreases relatively compared to the surface area of the entire sphere 1, so the area of light that can be caught becomes wider and the measurement accuracy also improves. The mechanical strength of the surface is reduced. Therefore, the diameter of the sphere 1 is preferably about 2 to 100 times the diameter of the optical fiber 3.

本考案に使用する光拡散層2は、任意の角度か
ら入射する光線が拡散層を通過し、球1内に入つ
たとき均一化されるように白色顔料を塗料中に分
散したものが好ましい。白色顔料としては炭酸マ
グネシウム、酸化マグネシウム、アルミナ、酸化
チタン、硫酸バリウム、炭酸カルシウム、硫酸カ
ルシウム及び酸化亜鉛等が使用可能である。
The light diffusing layer 2 used in the present invention is preferably one in which white pigment is dispersed in a paint so that light rays incident from any angle pass through the diffusing layer and become uniform when they enter the sphere 1. As the white pigment, magnesium carbonate, magnesium oxide, alumina, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, zinc oxide, etc. can be used.

これらの顔料を分散させる塗料としては一般に
市販されているもので透明性の高いものが好まし
い。透明球1と光学繊維3との接合は、溶融接着
か、接着剤を用いて行う。接着剤を用いるとき
は、接着力が大きいことはもちろん透明性が高
く、かつ比較的光学繊維3の芯に屈折率の近い接
着剤を選択するのがよい。
The coating material for dispersing these pigments is preferably one that is commercially available and highly transparent. The transparent sphere 1 and the optical fiber 3 are bonded using melt adhesion or an adhesive. When using an adhesive, it is preferable to select an adhesive that has high adhesive strength, high transparency, and has a refractive index relatively close to that of the core of the optical fiber 3.

このようにして作成した無指向性光センサーは
3次元空間の任意の方向から入射してくる光量を
正確にキヤツチできるため、言わば光のアンテナ
として巾広い用途が期待されるものである。
The omnidirectional optical sensor created in this way can accurately capture the amount of light incident from any direction in three-dimensional space, so it is expected to have a wide range of uses as a light antenna.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の無指向性光センサーの一例を示
す縦断面図である。 なお図面に用いて符号において、1……透明な
球、2……光拡散層、3……光学繊維、4……ホ
トダイオード、5……保持具である。
The drawing is a longitudinal sectional view showing an example of the omnidirectional optical sensor of the present invention. The symbols used in the drawings are 1...transparent sphere, 2...light diffusion layer, 3...optical fiber, 4...photodiode, 5...holder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光フアイバーの一端にフアイバーの直径よりも
大きい径をもち且つ表面上に光拡散層を有する透
明球を接合してなる無指向性光センサー。
An omnidirectional optical sensor made by bonding to one end of an optical fiber a transparent sphere having a diameter larger than the diameter of the fiber and having a light diffusing layer on its surface.
JP1982144159U 1982-09-22 1982-09-22 Omnidirectional optical sensor Granted JPS5947834U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982144159U JPS5947834U (en) 1982-09-22 1982-09-22 Omnidirectional optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982144159U JPS5947834U (en) 1982-09-22 1982-09-22 Omnidirectional optical sensor

Publications (2)

Publication Number Publication Date
JPS5947834U JPS5947834U (en) 1984-03-30
JPH0128431Y2 true JPH0128431Y2 (en) 1989-08-30

Family

ID=30321558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982144159U Granted JPS5947834U (en) 1982-09-22 1982-09-22 Omnidirectional optical sensor

Country Status (1)

Country Link
JP (1) JPS5947834U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189247B2 (en) * 2005-09-27 2013-04-24 スタンレー電気株式会社 Manufacturing method of semiconductor light source device

Also Published As

Publication number Publication date
JPS5947834U (en) 1984-03-30

Similar Documents

Publication Publication Date Title
US4815807A (en) Collimator lens for optical fiber
JPS6142242B2 (en)
JPS5810702A (en) Optical radiator
US4716287A (en) Light pipe for an optical mouse
JPH0527121A (en) Light source device
JPH0128431Y2 (en)
US4848264A (en) Pointer for an indicating instrument
TWI732513B (en) Fingerprint sensing apparatus
JP7395545B2 (en) Optical device using light diffusing fiber
JP2000019110A (en) Refractive index measuring apparatus
JP2794829B2 (en) Optical fiber refractometer
JPS6279332A (en) Optical sensor
JPH0442113Y2 (en)
RU2026567C1 (en) Light-diffusing quartz fiber
JPH0162507U (en)
JPS60189826U (en) fiber optic temperature sensor
JPH03156332A (en) Temperature sensor
JPS5735709A (en) Measuring method of microscopic displacement and microscopic inclination
JPH04189198A (en) Fiber array ruler
JPH01255808A (en) Fiber for light transmission
JPH053939Y2 (en)
JPH01181006U (en)
JPH0432563Y2 (en)
JPS56137137A (en) Optical sensor
JPS59116851U (en) Refractometer for liquids