JPS6279332A - Optical sensor - Google Patents

Optical sensor

Info

Publication number
JPS6279332A
JPS6279332A JP21975585A JP21975585A JPS6279332A JP S6279332 A JPS6279332 A JP S6279332A JP 21975585 A JP21975585 A JP 21975585A JP 21975585 A JP21975585 A JP 21975585A JP S6279332 A JPS6279332 A JP S6279332A
Authority
JP
Japan
Prior art keywords
light
blood
transparent body
optical sensor
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21975585A
Other languages
Japanese (ja)
Inventor
Koichi Tsuno
浩一 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21975585A priority Critical patent/JPS6279332A/en
Publication of JPS6279332A publication Critical patent/JPS6279332A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To make it possible to directly measure absorbing characteristics, by providing a vetreous transparent body uniformly dispersing emitting light and incident light at the leading end of the optical fiber inserted in a blood vessel to measure the light absorbing characteristic of blood and forming the leading end part of said transparent body into a prism shape having a minute gap for permitting the penetration of blood. CONSTITUTION:The side surface of an optical fiber 1 constituting an optical sensor is surrounded by a stainless steel sleeve 6 and the leading end of the opening of the sleeve 6 is filled with the vitreous transparent body 2 contacted with the end surface of the fiber 1. This transparent body 2 has action for uniformly diffusing the light projected to the fiber 1 with in the cross-section of said fiber 1. Further, the leading end part of the transparent body 2 is formed into a prism 3 having a minute gap 4 for permitting the penetration of blood 5 and light is allowed to be projected to said gap 4 and reflected. By this method, even when blood is thick and light scattering absorption is too large, the blood absorbing characteristic of a living body can be directly measured without diluting blood.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバを用いて、被測定液の光吸収特性を
直接的にかつ実時間で測定できるようにする光学センサ
に関し、特に血管内の血液の光吸収特性を実時間で測定
するに好適な光学センサに関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an optical sensor that uses an optical fiber to directly measure the light absorption characteristics of a liquid to be measured in real time. The present invention relates to an optical sensor suitable for measuring the light absorption characteristics of blood in real time.

(従来技術とその欠点) 生体の血管内を流れる血液中には著しく濃厚な色素ヘモ
グロビンが含有されている。このため血液の光吸収特性
、例えば吸収スペクトル、を測定しようとする場合には
吸収の生じる光路長を0.1朋前後またはそれ以下とな
るようにしないと、吸収の強い波長領域では透過光が殆
んど皆無知近い状態となるので、特別高性能の受光系を
用いない限り広い波長範囲の吸収特性を測定することは
不可能である。普通の吸収スペクトル測定においては、
このような高吸収物質を何倍かに希釈することにより測
定が可能となるが、この方法は生体血管内での直接的な
測定には適用できない。この直接的な測定では、光の吸
収をできるだけ少な(するために血液の吸収光路を極度
に短(とることが必要かつ不可欠である。
(Prior Art and Its Disadvantages) Blood flowing in the blood vessels of a living body contains extremely concentrated pigment hemoglobin. Therefore, when trying to measure the light absorption characteristics of blood, such as the absorption spectrum, the optical path length at which absorption occurs must be around 0.1 mm or less; in the wavelength region where absorption is strong, the transmitted light is Since almost everyone is in a state of near ignorance, it is impossible to measure absorption characteristics over a wide wavelength range unless a particularly high-performance light receiving system is used. In ordinary absorption spectrum measurement,
Although measurements can be made by diluting such highly absorbent substances several times, this method cannot be applied to direct measurements within living blood vessels. For this direct measurement, it is necessary and essential to keep the blood absorption path extremely short in order to absorb as little light as possible.

従来、光ファイバを用いて血液の光吸収特性を直接的て
測定する光学センサとして、平行に配置された送光用フ
ァイバと受光用ファイバとの先端に血液が入り込むこと
ができる微小間隙を設けた対向配置のプリズムを取付け
ることによって、極度に短い血液の吸収光路をファイバ
の先端に形成した光学センサは公知である。しかしなが
ら血液中を通過し、透過吸収または散乱を受けて戻って
(る光は、はとんど無指向性であり、特定位置に配され
た受光用ファイバでは、効率的に受光できないことがあ
る。また従来の光学センサは、対向配置のプリズムに対
し送光用ファイバと受光用ファイバとを分離して取付け
ねばならないため、ファイバの取付構成が面倒であり製
造コストが高価につく欠点がある。すなわち、この種の
光学センナに使用される送受光用ファイバ束は製作の都
合上ランダムに配置されることが多く、また実際の使用
においても互いに送光用および受光用ファイバとして兼
用されることが多いが、か〜るランダムまたは配置には
考慮を払わない配置のファイバ束をいちいち送光用ファ
イバと受光用ファイバとに分離してプリズムに取付ける
ことは面倒であり、製造コストを大巾に上昇せしめる。
Conventionally, as an optical sensor that directly measures the light absorption characteristics of blood using an optical fiber, a microgap was provided at the tip of a light transmitting fiber and a light receiving fiber arranged in parallel to allow blood to enter. Optical sensors are known in which an extremely short blood absorption optical path is formed at the tip of a fiber by mounting opposed prisms. However, the light that passes through the blood and returns after being transmitted, absorbed, or scattered is mostly omnidirectional, and may not be efficiently received by a receiving fiber placed at a specific location. In addition, the conventional optical sensor has the disadvantage that the light transmitting fiber and the light receiving fiber must be separately attached to the prisms arranged opposite each other, which makes the fiber attachment structure complicated and the manufacturing cost high. In other words, the light transmitting and receiving fiber bundles used in this type of optical sensor are often arranged randomly due to manufacturing reasons, and in actual use, they are often used as both light transmitting and light receiving fibers. However, it is troublesome to separate fiber bundles arranged randomly or without consideration into the transmitting fiber and the receiving fiber and attach them to the prism, which greatly increases manufacturing costs. urge

この場合、送光用ファイバ束と受光用ファイバ束とをラ
ンダム配置のま〜直接プリズムに取付けたのでは、特定
光路を通った光のみが受光用ファイバに入射され受光効
率が極めて低い。また、はじめから分離した送光用ファ
イバ束および受光用ファイバ束を使用したのでは、セン
サ先端部分に一体性がな(太くなる結果となり血管内環
狭隘な場所に挿入するセンサとしては不適当である。
In this case, if the light-transmitting fiber bundle and the light-receiving fiber bundle are randomly arranged or directly attached to the prism, only the light that has passed through a specific optical path will enter the light-receiving fiber, resulting in extremely low light-receiving efficiency. In addition, if a fiber bundle for transmitting light and a fiber bundle for light receiving that were separated from the beginning were used, the tip of the sensor would not be integrated (the result would be thick, making it unsuitable for use as a sensor to be inserted into a narrow space within a blood vessel). be.

(問題点を解決するための手段) 本発明は上記従来の欠点を除去すべ(なされたもので、
このため本発明による光学センサは、測定系と被測定液
との間で測定用の光を伝送する光ファイバとして、相互
てランダムに配置されたまたは配置を考慮しない送光用
ファイバ群と受光用ファイバ群とからなる光ファイバを
使用し、該光ファイバの先端に直接プリズムを取付ける
のではなく、該光ファイバの先端に送光用ファイバ群か
らプリズムへ向う出射光およびプリズムから受光用ファ
イバ群へ向う入射光を断面内で一様に分散する該光ファ
イバと同一断面を有するガラス状透明体を設け、該ガラ
ス状透明体の先方に被測定液が侵入し得る微小間隙をお
いて互いに対向配置された一対のプリズムを設けたこと
を特徴とする。
(Means for Solving the Problems) The present invention is intended to eliminate the above-mentioned conventional drawbacks.
For this reason, the optical sensor according to the present invention uses optical fibers for transmitting measurement light between the measurement system and the liquid to be measured, and a group of fibers for transmitting light and a group of fibers for receiving light that are arranged randomly or without considering the arrangement. Rather than attaching a prism directly to the tip of the optical fiber, an optical fiber consisting of a group of fibers is used, and instead of attaching a prism directly to the tip of the optical fiber, the output light is directed from the light transmitting fiber group to the prism and from the prism to the light receiving fiber group. A glass-like transparent body having the same cross-section as the optical fiber that uniformly disperses incident light within the cross-section is provided, and the glass-like transparent body is arranged facing each other with a minute gap that allows the liquid to be measured to enter the front end of the glass-like transparent body. A pair of prisms are provided.

(作用) 送光用ファイバ群からガラス状透明体へ入射した光は該
ガラス状透明体の断面全体に拡がるように分散されてプ
リズムに入射される。プリズムに入射された光はプリズ
ム外面にて反射され、被測定液が侵入している微小間隙
を通った後、いずれかの対向プリズムの外面により反射
されて再びガラス状透明体に入射する。ガラス状透明体
に入射した被測定液通過後の光は再びガラス状透明体の
断面全体に拡がるように分散されて受光用ファイバ群に
より受光される。受光用ファイバ群により受光される光
は光フアイバ全断面内にで入射位置および入射角度を一
様に分散されており、したがって受光用ファイバ全体に
て平均した受光が可能である。
(Function) The light incident on the glass-like transparent body from the light-transmitting fiber group is dispersed so as to spread over the entire cross section of the glass-like transparent body, and then enters the prism. The light incident on the prism is reflected by the outer surface of the prism, passes through a minute gap into which the liquid to be measured has entered, and then is reflected by the outer surface of one of the opposing prisms and enters the glass-like transparent body again. The light that has entered the glass-like transparent body and passed through the liquid to be measured is again dispersed so as to spread over the entire cross section of the glass-like transparent body, and is received by the light-receiving fiber group. The light received by the light-receiving fiber group is uniformly distributed in the incident position and angle of incidence within the entire cross-section of the optical fiber, so that the light can be received evenly over the entire light-receiving fiber.

(実施例) 以下に図面を参照して本発明の実施例を詳細に説明する
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

第1図乃至第6図は本発明を血管内挿入用光学センサと
して具体化せる一実施例を示す図である。
FIGS. 1 to 6 are diagrams showing an embodiment of the present invention as an optical sensor for insertion into a blood vessel.

図において、1は送光用ファイバ群及び受光用ファイバ
群からなる光ファイバ、2は光ファイバ1の先端に取付
けられ該光ファイバ1から後述するプリズムへの入射光
および該プリズムから光ファイバ1への入射光を断面内
で一様に拡散するためのガラス状透明体、6.6は該ガ
ラス状透明体2の先端にて該透明体と一体形成されかつ
微小間隙4をもって互いに対向配置せしめられた一対の
45°プリズムであり、該プリズム3.6の外側面は互
いに90°をなして反射面となっている。上記光ファイ
バ1は測定光の入出射部を除き、第6図に示すように、
送光用ファイバ群1aと受光用ファイバ群1bとが断面
内にてランダムに配置されて一体化されたファイバ束よ
りなる。また5は上記一対のプリズム6.3間の微小間
隙4内に入り込んだ被測定血液、6は光ファイバ1およ
びガラス状透明体2を被覆および支持するステンレス等
よりなるスリーブである。上記微小間隙4内を満してい
る血液5により測定のための極めて短い吸収光路が形成
されることになる。この被測定血液5は血管内の血液流
のために微小間隙4外の血液と自然に交換可能である。
In the figure, 1 is an optical fiber consisting of a group of light transmitting fibers and a group of light receiving fibers, 2 is attached to the tip of the optical fiber 1, and the incident light from the optical fiber 1 to a prism, which will be described later, and from the prism to the optical fiber 1. A glass-like transparent body 6.6 for uniformly diffusing incident light within the cross section of the glass-like transparent body 2 is formed integrally with the transparent body at the tip of the glass-like transparent body 2, and is arranged facing each other with a minute gap 4. The prisms 3.6 are a pair of 45° prisms, and the outer surfaces of the prisms 3.6 are at an angle of 90° to each other and serve as reflective surfaces. The optical fiber 1 has the following structure as shown in FIG.
It consists of a fiber bundle in which a light transmitting fiber group 1a and a light receiving fiber group 1b are arranged randomly within the cross section and integrated. Reference numeral 5 designates blood to be measured that has entered the minute gap 4 between the pair of prisms 6.3, and 6 is a sleeve made of stainless steel or the like that covers and supports the optical fiber 1 and the glass-like transparent body 2. The blood 5 filling the minute gap 4 forms an extremely short absorption optical path for measurement. This blood to be measured 5 can be naturally exchanged with blood outside the minute gap 4 due to the blood flow within the blood vessel.

なお、ガラス状透明体2の外面には反射体が蒸着されて
おり、該反射体の外側をさらにシリコン樹脂で被覆しで
ある。また、プリズム部分を除(ガラス状透明体2の軸
方向長さLは、セ治序需唸〒→次式filで示される長
さとすることが望ましい(第7図参照)。
Note that a reflector is deposited on the outer surface of the glass-like transparent body 2, and the outer side of the reflector is further coated with silicone resin. In addition, it is desirable that the axial length L of the glass-like transparent body 2, excluding the prism portion, be a length expressed by the following formula (see FIG. 7).

NA L = Dcot (sin”−)…曲−−−−−−−
−(1)但し、 D:光ファイバの直径 NA:光ファイバの開口数 nニガラス状透明体の屈折率 しかして、光源から送光用ファイバ束に光を入射すると
1.この光は、図示破線で示す如く、透明体2を通って
対向プリズム6.6の一方の反射面で反射される。反射
された光は微小間隙4内の血#5中を透過し、散乱を受
は対向プリズムのいずれかに入射してその反射面にて反
射され、再び透明体2を通って受光用ファイバ束に入射
し受光系へ伝送される。このとき、送光用ファイバ群1
aよりガラス状透明体2へ入射される光およびプリズム
6からガラス状透明体2へ入射される光は、第8図に示
すごと(、ガラス状透明体2の断面内で一様に拡がるよ
うに分散されるので、ガラス状透明体2より受光用ファ
イバ群1bへ入射される光の入射位置および入射角度は
その配置に拘らず光ファイバ1の断面内で一様化され、
受光用ファイバ全体で均一に受光することができる。し
たがって従来のよう知特定の光線通路を通ったもののみ
を受光するセンナに比べて受光効率、センサの安定性(
センサ間の感度のバラツキが小さい性質)を大巾に向上
させることができる。この光は血液中を透過または散乱
しているために、被測定液体である血液の吸収特性に関
する情報を含んでいる。
NA L = Dcot (sin”-)...Song------
- (1) However, D: diameter of the optical fiber NA: numerical aperture of the optical fiber n refractive index of the glass-like transparent body. Therefore, when light is input from the light source to the light transmitting fiber bundle, 1. This light passes through the transparent body 2 and is reflected by one reflective surface of the facing prism 6.6, as shown by the broken line in the figure. The reflected light passes through the blood #5 in the minute gap 4, and the scattered light enters one of the opposing prisms and is reflected by its reflective surface, and passes through the transparent body 2 again to the light receiving fiber bundle. and is transmitted to the light receiving system. At this time, the light transmitting fiber group 1
As shown in FIG. Therefore, the incident position and incident angle of the light incident on the light-receiving fiber group 1b from the glass-like transparent body 2 are made uniform within the cross section of the optical fiber 1 regardless of its arrangement.
Light can be uniformly received throughout the light receiving fiber. Therefore, the light receiving efficiency and sensor stability (
It is possible to greatly improve the characteristics of small variations in sensitivity between sensors. Since this light is transmitted or scattered in the blood, it contains information regarding the absorption characteristics of blood, which is the liquid to be measured.

従って、この光を受光系で分光分析することにより被測
定血液の吸収特性を直接的にかつ実時間で測定できるこ
とになる。このことは生体の血液の吸収特性を測定する
際に、最も必要とされる要件を満たすことを意味する。
Therefore, by spectroscopically analyzing this light with a light receiving system, the absorption characteristics of the blood to be measured can be measured directly and in real time. This means that it satisfies the most necessary requirements when measuring the absorption characteristics of blood in living organisms.

第9図および第10図はそれぞれ本発明による血管内挿
入用センサの他の実施例を示すもので、これら実施例の
ものは対向プリズム6.6の形態かや〜異なるだけで他
の構成は先の実施例のものと全く同一である。
FIGS. 9 and 10 respectively show other embodiments of the sensor for intravascular insertion according to the present invention, and these embodiments differ only in the form of the facing prism 6.6 and other configurations. It is exactly the same as that of the previous embodiment.

第11図乃至第15図は、本発明による血管内挿入用セ
ンサの更に他の実施例を示すもので、先の実施例と同一
符号は同一要素を示す。該実施例のものは対向プリズム
6.6を透明体2と別個I;影形成てこれをスリーブ6
の先端より伸びる一対の突出片7.7により支持したも
ので、これにより対向プリズム3.6と透明体2との間
に更に所望厚さの被測定血液5が侵入可能な微小離間距
離8を形成したものである。該微小離間距離8は上記対
向プリズム間の微小間隙4よりは太き(、従って被測定
血液5の光路長をより大きくとることができ、これによ
って吸収特性の感度を高めることができると共に被測定
液が薄い場合にも有効な測定が可能となる。
FIG. 11 to FIG. 15 show still another embodiment of the sensor for insertion into a blood vessel according to the present invention, and the same reference numerals as in the previous embodiment indicate the same elements. In this embodiment, the facing prism 6.6 is separated from the transparent body 2;
This is supported by a pair of protruding pieces 7.7 extending from the tip of the prism 3.6, thereby creating a minute distance 8 between the facing prism 3.6 and the transparent body 2, which allows blood to be measured 5 of a desired thickness to further enter. It was formed. The minute separation distance 8 is thicker than the minute gap 4 between the opposing prisms (therefore, the optical path length of the blood to be measured 5 can be made larger, thereby increasing the sensitivity of the absorption characteristic and Effective measurement is possible even when the liquid is thin.

(発明の効果) 本発明の効果としては、血液の濃厚さのために光の散乱
吸収が多すぎて希釈しない限り吸収特性を測定できなか
った血液においても希釈せずに測定できるので生体の血
液の吸収特性の直接的測定が可能なこと、センサ内血液
とセンサ外の血液とが交換できるようなセンサ構造であ
るので実際に変化しつつある血液の吸収特性を実時間測
定できること、測定光を伝送する光ファイバとして送光
用ファイバ群と受光用ファイバ群とがランダムに配置さ
れたまたは配置を考慮しない光ファイバをそのま〜使用
できるようにしたのでセンサの製造が容易で安価に提供
できること、送光用ファイバ群と受光用ファイバ群とが
一体化された光ファイバを使用するので血管内環狭隘な
場所に挿入するセンサとして構成することができること
、およびガラス状透明体により光ファイバの断面全体に
て均一に受光できるようにしたので受光効率センサの感
度安定性を大巾に向上させることができる等の利点があ
る。
(Effects of the Invention) As an effect of the present invention, it is possible to measure the absorption characteristics of blood without diluting it, even though the absorption characteristics of blood could not be measured without dilution due to the concentration of blood, which causes too much scattering and absorption of light. The sensor structure allows blood inside the sensor to be exchanged with blood outside the sensor, so the changing absorption characteristics of blood can be measured in real time. The sensor can be easily manufactured and provided at low cost because an optical fiber in which a group of light transmitting fibers and a group of light receiving fibers are randomly arranged or whose arrangement is not taken into consideration can be used as a transmitting optical fiber; Since it uses an optical fiber in which a group of light transmitting fibers and a group of light receiving fibers are integrated, it can be configured as a sensor to be inserted into a narrow place in a blood vessel, and the glass-like transparent material allows the entire cross section of the optical fiber to be Since light can be uniformly received at the sensor, there is an advantage that the sensitivity stability of the light receiving efficiency sensor can be greatly improved.

本発明の応用分野としては、生体血管内の血液について
の測定の他に、生体内のリンパ液、胃液等についての測
定、更には工業排水の監視等広い分野がある。
The present invention can be applied to a wide range of fields such as measuring blood in living blood vessels, measuring lymph fluid, gastric fluid, etc. in living bodies, and monitoring industrial wastewater.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の斜視図、第2図は同上面図
、第3図は同正面図、第4図は同側面図、第5図は第4
図のA−A線に沿う断面図で血液と共に示す図、第6図
は本発明センサに使用される光ファイバの送受光ファイ
バの配列例を示す断面図、第7図はガラス状透明体の長
さと直径等との関係を示す図、第8図は本発明の要部拡
大断面図、第9および第10図はそれぞれ本発明の他の
実施例の斜視図、第11図は本発明の更に他の実施例の
斜視図、第12図は同上面図、第16図は同正面図、第
14図は同側面図、第15図は第14図の線13− B
 K G 5断面図で血液と共に示す図である。 1・・・光ファイバ、 2・・・ガラス状透明体、3・
・・プリズム、 4・・・微小間隙、 5・・・血液、
8・・・微小離間距離。 特許出臥 住友電気工業株式会社 (外5名) 第1図 一 第9図   第10図 第11図 B=
FIG. 1 is a perspective view of one embodiment of the present invention, FIG. 2 is a top view of the same, FIG. 3 is a front view of the same, FIG. 4 is a side view of the same, and FIG.
FIG. 6 is a cross-sectional view showing an example of the arrangement of the transmitting and receiving optical fibers of the optical fiber used in the sensor of the present invention, and FIG. A diagram showing the relationship between length and diameter, etc., FIG. 8 is an enlarged sectional view of the main part of the present invention, FIGS. 9 and 10 are perspective views of other embodiments of the present invention, and FIG. 11 is an illustration of the present invention. Furthermore, a perspective view of another embodiment, FIG. 12 is a top view of the same, FIG. 16 is a front view of the same, FIG. 14 is a side view of the same, and FIG. 15 is a line 13-B of FIG. 14.
It is a figure shown with blood in KG5 sectional view. 1... Optical fiber, 2... Glass-like transparent body, 3...
・・・Prism, 4...Minute gap, 5...Blood,
8...Small separation distance. Patent issue: Sumitomo Electric Industries, Ltd. (5 others) Figure 1-Figure 9 Figure 10 Figure 11 B=

Claims (7)

【特許請求の範囲】[Claims] (1)測定系と被測定液との間で測定用の光を伝送する
光ファイバの先方に被測定液が侵入し得る微小間隙をお
いて互いに対向配置された一対のプリズムを設けた光学
センサにおいて、前記光ファイバとして相互にランダム
に配置されたまたは配置を考慮しない送光用ファイバ群
と受光用ファイバ群とからなる光ファイバを使用し、該
光ファイバの先端に前記送光用ファイバ群から前記プリ
ズムへ向う出射光および該プリズムから前記受光用ファ
イバ群へ向う入射光を断面内で一様に分散する該光ファ
イバとほゞ同一断面のガラス状透明体を設け、該ガラス
状透明体の先方に前記プリズムを設けたことを特徴とす
る光学センサ。
(1) Optical sensor equipped with a pair of prisms facing each other with a minute gap that allows the liquid to be measured to enter the end of an optical fiber that transmits measurement light between the measurement system and the liquid to be measured. In this method, an optical fiber consisting of a group of light-transmitting fibers and a group of light-receiving fibers arranged randomly or without considering the arrangement is used as the optical fiber, and a tip of the optical fiber is connected to a group of light-transmitting fibers from the group of light-transmitting fibers at the tip of the optical fiber. A glass-like transparent body having substantially the same cross-section as the optical fiber is provided, which uniformly disperses within the cross-section the emitted light toward the prism and the incident light from the prism toward the light-receiving fiber group; An optical sensor characterized in that the prism is provided on the front side.
(2)特許請求の範囲第1項の光学センサにおいて、前
記一対のプリズムが前記ガラス状透明体と一体に形成さ
れていることを特徴とする光学センサ。
(2) The optical sensor according to claim 1, wherein the pair of prisms is formed integrally with the glass-like transparent body.
(3)特許請求の範囲第2項の光学センサにおいて、前
記ガラス状透明体の軸方向長さLがほゞL=Dcot(
sin^−^1NA/n) 但し、D:光ファイバの直径 NA:光ファイバの開口数 n:ガラス状透明体の屈折率 であることを特徴とする光学センサ。
(3) In the optical sensor according to claim 2, the axial length L of the glassy transparent body is approximately L=Dcot(
sin^-^1NA/n) However, D: diameter NA of the optical fiber: numerical aperture n of the optical fiber: refractive index of the glass-like transparent body.
(4)特許請求の範囲第1項の光学センサにおいて、前
記一対のプリズムが前記ガラス状透明体に対し微小離間
距離をもつて対向配置せしめられ、前記微小間隙と微小
離間距離内に被測定液が侵入可能としたことを特徴とす
る光学センサ。
(4) In the optical sensor according to claim 1, the pair of prisms are arranged opposite to the glass-like transparent body with a small distance between them, and the liquid to be measured is located within the small gap and the small distance. An optical sensor characterized by being able to be penetrated.
(5)特許請求の範囲第1項乃至第4項のいずれかによ
る光学センサであつて、前記ガラス状透明体の外面に反
射体を蒸着してあることを特徴とする光学センサ。
(5) An optical sensor according to any one of claims 1 to 4, characterized in that a reflector is deposited on the outer surface of the glass-like transparent body.
(6)特許請求の範囲第5項の光学センサであつて、前
記反射体の外面にシリコン樹脂を被覆してあることを特
徴とする光学センサ。
(6) The optical sensor according to claim 5, characterized in that the outer surface of the reflector is coated with silicone resin.
(7)特許請求の範囲第1項乃至第4項のいずれかによ
る光学センサにおいて、当該センサが血管内挿入用光学
センサよりなり、前記微小間隙又は該微小間隙および微
小離間距離内に血液が交換可能に侵入できるようにした
ことを特徴とする光学センサ。
(7) In the optical sensor according to any one of claims 1 to 4, the sensor is an optical sensor for insertion into a blood vessel, and blood is exchanged within the minute gap or within the minute gap and a minute separation distance. An optical sensor characterized by being able to be penetrated.
JP21975585A 1985-10-02 1985-10-02 Optical sensor Pending JPS6279332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21975585A JPS6279332A (en) 1985-10-02 1985-10-02 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21975585A JPS6279332A (en) 1985-10-02 1985-10-02 Optical sensor

Publications (1)

Publication Number Publication Date
JPS6279332A true JPS6279332A (en) 1987-04-11

Family

ID=16740491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21975585A Pending JPS6279332A (en) 1985-10-02 1985-10-02 Optical sensor

Country Status (1)

Country Link
JP (1) JPS6279332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090510A1 (en) * 2003-04-14 2004-10-21 Alight Technologies A/S Optical fibre needle for spectroscopic analysis of liquids
EP1845365A1 (en) * 2005-02-02 2007-10-17 Matsushita Electric Industrial Co., Ltd. Optical element and optical measurement device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090510A1 (en) * 2003-04-14 2004-10-21 Alight Technologies A/S Optical fibre needle for spectroscopic analysis of liquids
EP1845365A1 (en) * 2005-02-02 2007-10-17 Matsushita Electric Industrial Co., Ltd. Optical element and optical measurement device using the same
EP1845365A4 (en) * 2005-02-02 2009-07-01 Panasonic Corp Optical element and optical measurement device using the same
US7598483B2 (en) 2005-02-02 2009-10-06 Panasonic Corporation Optical element and optical measurement device using the optical element

Similar Documents

Publication Publication Date Title
US5625459A (en) Diffuse reflectance probe
US6798508B2 (en) Fiber optic apparatus for detecting light scatter to differentiate blood cells and the like
Stewart et al. Evanescent-wave chemical sensors--a theoretical evaluation.
EP3067686B1 (en) Transmission probe, system and immersion transmission measurement method
JPH0551298B2 (en)
EP0781527B1 (en) Non-invasive optical sensor
FI95322B (en) Spectroscopic measuring sensor for the analysis of media
US5835649A (en) Light directing and collecting fiber optic probe
EP0210869A1 (en) Optical probe
GB2058340A (en) Measuring fluid flow
US20040145742A1 (en) Optical turbidimeter with a lens tube
KR20130019889A (en) Reflective probe type apparatus for detecting gas and method for detecting gas using optical fiber with hollow core
JPH02503359A (en) Mass flowmeter operating on the Coriolis principle
JPS6279332A (en) Optical sensor
US5426713A (en) Fiber optic probe with truncated cone window block for infrared spectral analysis instrument
WO2016132512A1 (en) Flow rate measurement device and tube for using therefor
JPS63132139A (en) Liquid refractive index meter
EP2997350B1 (en) Turbidimeter
US10384152B2 (en) Backscatter reductant anamorphic beam sampler
GB2157428A (en) Fluid particle sensor
US9772292B2 (en) Fiber optic probe and measuring sensor using said probe
RU2297602C1 (en) Liquid level fiber-optic signaling device
AU2020395508B2 (en) Arrangement for operating a biosensor and arrangement for determining the glucose content in the blood
JPH04230707A (en) Optical fiber having eccentric core
GB2265711A (en) Optical fibre sensors