JP2000019110A - Refractive index measuring apparatus - Google Patents

Refractive index measuring apparatus

Info

Publication number
JP2000019110A
JP2000019110A JP10196496A JP19649698A JP2000019110A JP 2000019110 A JP2000019110 A JP 2000019110A JP 10196496 A JP10196496 A JP 10196496A JP 19649698 A JP19649698 A JP 19649698A JP 2000019110 A JP2000019110 A JP 2000019110A
Authority
JP
Japan
Prior art keywords
prism
refractive index
light
sample
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10196496A
Other languages
Japanese (ja)
Inventor
Shigeru Makino
繁 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RES KK
Shimadzu Corp
Original Assignee
RES KK
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RES KK, Shimadzu Corp filed Critical RES KK
Priority to JP10196496A priority Critical patent/JP2000019110A/en
Publication of JP2000019110A publication Critical patent/JP2000019110A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a refractive index measuring apparatus which can be manufactured with a small number of components and at a low cost, and have high measurement accuracy. SOLUTION: In the refractive index measuring apparatus, a prism 2 where either or both of incident and emitting surfaces of a ray beam are made in a spherical shape is used. A sample 4 is put on this hemispherical prism 2 and a ray beam radiated from a light source 1 is made incident on the spherical part of the hemispherical prism 2. When the ray beam reflected on the plane part of the prism 2 is emitted from the opposite spherical part, the spherically shaped emitting surface acts as a lens and forms an image without using an additional optical component such as a lens to give a light-and-dark boundary image 3 shown as a boundary line at a critical refracting angle. The light-and- dark border is electrically detected by a CCD, a photodiode array, or the like, arranged at the position where the image is formed by the hemispherical prism 2 to determine the critical refracting angle, which can determine a refractive index n2 of the sample as a refractive index n1 of the prism 2 is known. In another way, the refractive index of the sample is determined by measuring the reflective index at a constant incident angle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気体、液体等の流
体の濃度測定の際に利用されたり、又は固体の物性値と
して計測される、物質の光学的屈折率を測定する装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the optical refractive index of a substance which is used in measuring the concentration of a fluid such as a gas or a liquid, or which is measured as a physical property value of a solid.

【0002】[0002]

【従来の技術】従来より、屈折率は、主として三角柱も
しくは多角柱形状を持つプリズムとそれに付随するレン
ズを用いた光学系とにより構成される装置によって測定
されている。屈折率測定装置が利用する光学的原理は、
以下の2つに大別される。一つは、被測定物をプリズム
の一面に付着させ、プリズムと被測定物により生じた界
面の臨界屈折角を、プリズムの別の面もしくは被測定物
側より入射する様々な入射角の光線により測定するもの
であり、もう一つは、主としてプリズムの別の面から一
定の入射角で入射した光線が界面で反射する時、屈折率
に応じて反射率が変化することを利用したものである。
双方とも、その実現において精度を向上させ、取扱いを
容易にするため、種々の応用工夫を施した装置が考案さ
れている。
2. Description of the Related Art Heretofore, the refractive index has been measured by an apparatus mainly composed of a prism having a triangular or polygonal prism shape and an optical system using a lens attached thereto. The optical principle used by refractometers is
It is roughly divided into the following two. First, the object to be measured is attached to one surface of the prism, and the critical refraction angle of the interface formed by the prism and the object to be measured is changed by light beams of various angles incident from another surface of the prism or the object to be measured. The other is to utilize the fact that when light rays incident from another surface of the prism at a certain incident angle are reflected at the interface, the reflectivity changes according to the refractive index. .
In both cases, devices have been devised which have been subjected to various applications in order to improve accuracy and facilitate handling in realizing them.

【0003】[0003]

【発明が解決しようとする課題】屈折率を臨界屈折角に
より測定する場合及び反射率変化として測定する場合の
いずれにおいても、プリズム及びその周辺光学部品の角
度及び位置精度は、測定精度に直接影響するため極めて
重要であるが、多数の部品を高精度に組み付けることは
困難であり、高価なものとなる。また、三角柱もしくは
多角柱構造を持つプリズムは、プラスチックを射出成形
加工して製造する場合には歪を発生し易く、高精度に仕
上げるのは難しい。
In both the case where the refractive index is measured by the critical refractive angle and the case where the refractive index is measured as a change in reflectance, the angle and positional accuracy of the prism and its peripheral optical components directly affect the measurement accuracy. However, it is very important to assemble a large number of parts with high precision, and it is expensive. In addition, a prism having a triangular prism or a polygonal prism structure is likely to generate distortion when manufactured by injection molding of plastic, and it is difficult to finish the prism with high precision.

【0004】従って、本発明の目的は、構成部品数が少
なく、部品価格、組付にかかるコストを低減できると共
に、測定精度が高く、かつ射出成形によっても良好に加
工できる形状の部品で構成される屈折率測定装置を提供
することにある。
[0004] Accordingly, an object of the present invention is to reduce the number of components, to reduce the cost of parts and the cost of assembling, and to configure the parts with a high measurement accuracy and a shape that can be processed well by injection molding. To provide a refractive index measuring device.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明によれば、プリズムを用いた屈折率測定装置
において、光線の入出射面の双方もしくは片方が球面形
状をなすプリズムを用いることを特徴とする屈折率測定
装置が提供される。より具体的な好適な態様において
は、上記プリズムは、図1に示すような真球を中心を通
る平面で切断した半球状であり、球より切削研摩したも
のでも、プラスティックを射出成形したものでもよく、
光線が通過又は反射する部位以外の形状は自由に変える
ことができる。
According to the present invention, in order to attain the above object, according to the present invention, in a refractive index measuring device using a prism, a prism having both or one of a light incident surface and a light emitting surface having a spherical shape is used. A refractive index measuring device is provided. In a more specific preferred embodiment, the prism is a hemisphere cut by a plane passing through the center of a true sphere as shown in FIG. 1, and may be cut and polished from a sphere or injection-molded plastic. Often,
The shape other than the part where the light beam passes or reflects can be freely changed.

【0006】また、本発明の一形態として、前記プリズ
ムの結像位置にCCD(電荷結合素子)もしくはフォト
ダイオードアレイを配したことを特徴とする屈折率測定
装置が提供される。ここで、CCDもしくはフォトダイ
オードは、前記プリズムの結像位置における直線上もし
くは平面上の明暗を電気信号に変えうる他のセンサに代
替できることは言うまでもない。
Further, as one mode of the present invention, there is provided a refractive index measuring device in which a CCD (Charge Coupled Device) or a photodiode array is arranged at an image forming position of the prism. Here, it is needless to say that the CCD or the photodiode can be replaced with another sensor capable of converting a light or darkness on a straight line or a plane at the image forming position of the prism into an electric signal.

【0007】一方、本発明の別の形態として、前記プリ
ズムの結像位置に発光素子及び受光素子の少なくとも一
方を配したことを特徴とする屈折率測定装置が提供され
る。ここでいう発光素子とは、単独のLED(発光ダイ
オード)のようにほぼ一点で発光する素子でも、電球に
フィルタをつけ単色光を発光可能としたものでもよい。
また、受光素子としては、フォトダイオード、フォトト
ランジスタ、光電管のような単独の光センサを使用す
る。本形態においては、一組の受光、発光素子だけでは
なく、複数の素子を配する形態で実施することもでき
る。
On the other hand, as another aspect of the present invention, there is provided a refractive index measuring device, wherein at least one of a light emitting element and a light receiving element is arranged at an image forming position of the prism. The light emitting element referred to here may be an element that emits light at almost one point, such as a single LED (light emitting diode), or a light emitting element that can emit monochromatic light by attaching a filter to a light bulb.
In addition, a single light sensor such as a photodiode, a phototransistor, or a phototube is used as the light receiving element. In this embodiment, not only one set of light receiving and light emitting elements but also a plurality of elements can be provided.

【0008】[0008]

【発明の実施の形態】本発明による屈折率測定装置は、
以下のように使用する。すなわち、図1に示すように、
半球状プリズム2の平面部にサンプル4を載せ、光源1
より放射された光線を半球状プリズム2の球面部より入
射する。平面部で反射した光線は、反対側の球面部より
出射する。好ましくは、より明瞭な明暗境界像ができる
ように、半球状プリズム2の平面部に、中心部のサンプ
ル4の載置、滴下等のための部分以外の部分を被覆する
マスク、好ましくは黒色のマスク5を印刷、塗布等適宜
の方法により施す。図2に示すように、平面部に入射す
る光線は、その入射角α1 、出射角α2 、プリズムの屈
折率n1 、サンプルの屈折率n2 によって異なる反射率
を示す。p偏光の反射率をγp 、s偏光の反射率をγ
s 、無偏光の反射率をγとすると、それぞれ下記式
(1)、(2)及び(3)で表わされる。
BEST MODE FOR CARRYING OUT THE INVENTION A refractive index measuring apparatus according to the present invention comprises:
Used as follows. That is, as shown in FIG.
The sample 4 is placed on the plane portion of the hemispherical prism 2 and the light source 1
The emitted light is incident on the spherical portion of the hemispherical prism 2. The light beam reflected by the plane portion exits from the opposite spherical portion. Preferably, a mask for covering the plane portion of the hemispherical prism 2 with a portion other than the portion for placing and dropping the sample 4 at the center portion, preferably a black color so as to form a clearer light-dark boundary image. The mask 5 is applied by an appropriate method such as printing or coating. As shown in FIG. 2, the light ray incident on the plane portion has different reflectivities depending on the incident angle α 1 , the output angle α 2 , the refractive index n 1 of the prism, and the refractive index n 2 of the sample. The reflectance of p-polarized light is γ p and the reflectance of s-polarized light is γ
Assuming that s and the non-polarized light reflectance are γ, they are expressed by the following equations (1), (2) and (3), respectively.

【化1】 Embedded image

【0009】また、プリズム及びサンプルの屈折率n1
及びn2 と入射角α1 、出射角α2との間には下記式
(4)の関係がある。
Also, the refractive index n 1 of the prism and the sample
And n 2 and the incident angle α 1 and the outgoing angle α 2 have the relationship of the following equation (4).

【化2】 Embedded image

【0010】入射角α1 を0より次第に大きくしていく
と、反射率は高くなり、下記式(5)を満たす角度αc
以上では全てが反射するようになる。
As the incident angle α 1 is gradually increased from 0, the reflectance increases, and the angle α c satisfying the following equation (5) is obtained.
Above, everything is reflected.

【化3】 この角度αc を臨界屈折角という。半球状プリズム2か
ら出射する光線は、出射面が球面となっているため、こ
のレンズ作用によって別のレンズ等の光学部品を用いる
ことなしに結像し、図1に示すようにこの臨界屈折角を
境界とする明暗境界像3をつくる。この像を観測し、境
界の位置、従って臨界屈折角αc を求めれば、プリズム
の屈折率n1 は既知であるため、サンプルの屈折率n2
を求めることができる。
Embedded image This angle α c is called a critical refraction angle. Since the light emitted from the hemispherical prism 2 has a spherical exit surface, an image is formed by this lens action without using another optical component such as a lens, and as shown in FIG. To create a light-dark boundary image 3 with. By observing this image and determining the position of the boundary, that is, the critical refractive angle α c , the refractive index n 1 of the prism is known, and the refractive index n 2 of the sample is obtained.
Can be requested.

【0011】本発明の形態のうち、半球状プリズムの結
像位置にCCDもしくはフォトダイオードアレイを配し
たものは、この明暗境界の検出を電気的に行なうもので
あり、CCD出力が急激に低下し始める位置をもって境
界を見つけ、サンプルの屈折率を求める。また、本発明
の形態のうち、半球状プリズムの結像位置に発光素子及
び受光素子の少なくとも一方を配したものは、入射角α
1 を一定として前記式(3)による反射率を計測するこ
とにより、サンプルの屈折率を求めるものであり、入射
面、出射面が球状であることによるレンズ作用で、一定
入射角以外の光線が受光素子に入ることを防止し、精度
の高い測定ができる。
Among the embodiments of the present invention, the one in which a CCD or a photodiode array is arranged at the image forming position of a hemispherical prism electrically detects the light-dark boundary, and the CCD output drops sharply. The boundary is found at the starting position, and the refractive index of the sample is obtained. Further, among the embodiments of the present invention, the one in which at least one of the light emitting element and the light receiving element is arranged at the image forming position of the hemispherical prism has an incident angle α
The refractive index of the sample is obtained by measuring the reflectance according to the above equation (3) while keeping 1 constant. Light rays other than a fixed angle of incidence are generated by the lens action due to the spherical entrance surface and exit surface. Prevention of entering the light-receiving element enables highly accurate measurement.

【0012】[0012]

【実施例】以下、添付図面に示す実施例を説明しつつ、
本発明をより詳細に説明する。図3は、本発明を臨界屈
折角測定による屈折率測定装置に応用した場合の部品配
置の一実施例を図示したものである。図3において、符
号1aは光源であり、2は半球状のプリズム、6aはC
CDである。光源1aとしては、屈折率測定に使用する
測定波長の単色光源が望ましく、また、半球状プリズム
2の平面部において、被測定物との界面で臨界屈折角と
なる入射角を含む広い範囲の入射角の光線を含む必要が
ある。このため、光源1aは、大きな発光面を持つよう
に構成するか、散乱板により面積を広げることが望まし
い。光源1aの位置は、広い範囲の入射角で半球状プリ
ズム2の平面部に入射できれば特定する必要はない。C
CD6aは、測定範囲の中央付近の出射光が受光面中央
に垂直に入射し、かつ臨界屈折角前後で生じる明暗境界
が結像する位置に配置する。具体的には、プリズム2と
同一の半径をもつ球状レンズの焦点距離を求め、この距
離の2倍だけ半球状プリズム2の球面中心から離れた位
置となる。半球状プリズム2の平面部にサンプルを載置
した状態では、CCD面には、他の光学部品を使用する
ことなく、臨界屈折角により生じる明暗境界像が結像す
るため、CCD出力をA/D変換し、CPU等により境
界位置を求めれば、容易に臨界屈折角αc を求めること
ができる。従って、前記式(5)によりサンプルの未知
の屈折率n2 を求めることができる。本実施例は、比較
的高精度の屈折率計及び液体/気体濃度計に応用でき
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
The present invention will be described in more detail. FIG. 3 shows an embodiment of a component arrangement in a case where the present invention is applied to a refractive index measuring device based on critical refraction angle measurement. In FIG. 3, reference numeral 1a denotes a light source, 2 denotes a hemispherical prism, and 6a denotes C
It is a CD. As the light source 1a, a monochromatic light source having a measurement wavelength to be used for measuring the refractive index is desirable, and a wide range of incident light including an incident angle which becomes a critical refractive angle at an interface with an object to be measured on a plane portion of the hemispherical prism 2 Must include angular rays. For this reason, it is desirable to configure the light source 1a to have a large light emitting surface or to increase the area by a scattering plate. The position of the light source 1a does not need to be specified as long as it can enter the plane portion of the hemispherical prism 2 at a wide range of incident angles. C
The CD 6a is arranged at a position where the emitted light near the center of the measurement range is vertically incident on the center of the light receiving surface and an image of a light-dark boundary generated before and after the critical refraction angle is formed. More specifically, the focal length of a spherical lens having the same radius as that of the prism 2 is obtained, and the focal point is located at a position apart from the center of the spherical surface of the hemispherical prism 2 by twice this distance. In the state where the sample is placed on the plane portion of the hemispherical prism 2, a bright / dark boundary image generated by the critical refraction angle is formed on the CCD surface without using other optical components. If the D position is converted and the boundary position is obtained by a CPU or the like, the critical refraction angle α c can be easily obtained. Therefore, the unknown refractive index n 2 of the sample can be obtained from the above equation (5). This embodiment can be applied to a relatively high-precision refractometer and a liquid / gas concentration meter.

【0013】図4は、本発明を反射率測定による屈折率
測定に応用した場合の部品配置の一実施例を示してい
る。図4において、符号1bは光源であり、2は半球状
のプリズム、6bは受光素子である。光源1bとしては
単色の点光源が好適であり、具体的にはレンズなしのL
EDを利用できる。受光素子6bとしては、フォトダイ
オード、フォトトランジスタ等が利用できる。光源1b
と受光素子6bとは、半球状プリズム2の平面に対して
同一の入出射角をなし、半球状プリズム2の球が完全球
と仮定した時の焦点距離の2倍だけそれぞれ球中心点か
ら隔たった球中心を通り平面部に垂直な平面(半球状プ
リズム2の垂直断面を含む平面)上の2点に位置する。
この場合、光源1bの大きさが充分小さければ、半球状
プリズム2の平面部に入射する光線は、球面部の作用に
よりほぼ平行光束となり、単一の入射角となる。このた
め、先に述べたように、受光素子6bに入射する光量
は、半球状プリズム2の平面に滴下した溶液もしくは半
球状プリズム2の平面に接する気体の屈折率とプリズム
の屈折率とで定まる反射率によって変化するため、この
反射率を計測すれば、α1 =α2 =一定であるから、前
記式(1)〜(3)により、サンプルの未知の屈折率n
2 を求めることができる。さらに、液体、気体の屈折率
とそれに含まれる物質濃度の関係を予め求めておけば、
反射率より物質濃度を求めることができる。
FIG. 4 shows an embodiment of the arrangement of components when the present invention is applied to refractive index measurement by reflectance measurement. In FIG. 4, reference numeral 1b denotes a light source, 2 denotes a hemispherical prism, and 6b denotes a light receiving element. As the light source 1b, a monochromatic point light source is suitable, and specifically, L without a lens is used.
ED available. As the light receiving element 6b, a photodiode, a phototransistor, or the like can be used. Light source 1b
And the light receiving element 6b have the same angle of incidence and exit with respect to the plane of the hemispherical prism 2, and are separated from the center of the sphere by twice the focal length when the sphere of the hemispherical prism 2 is assumed to be a perfect sphere. It is located at two points on a plane passing through the center of the sphere and perpendicular to the plane (a plane including the vertical cross section of the hemispherical prism 2).
In this case, if the size of the light source 1b is sufficiently small, the light beam incident on the flat portion of the hemispherical prism 2 becomes a substantially parallel light beam due to the action of the spherical portion, and has a single incident angle. Therefore, as described above, the amount of light incident on the light receiving element 6b is determined by the refractive index of the solution dropped on the plane of the hemispherical prism 2 or the gas and the refractive index of the gas in contact with the plane of the hemispherical prism 2. Since the reflectance varies depending on the reflectance, if the reflectance is measured, α 1 = α 2 = constant. Therefore, the unknown refractive index n of the sample is calculated according to the equations (1) to (3).
You can ask for 2 . Furthermore, if the relationship between the refractive index of a liquid or gas and the concentration of a substance contained therein is determined in advance,
The substance concentration can be obtained from the reflectance.

【0014】[0014]

【発明の効果】以上のように、本発明の屈折率測定装置
によれば、半球状プリズム自身がレンズを兼ねているた
め、結像のために他の部品を必要としない。この為、部
品数を削減し、部品価格や組付にかかるコストを低減で
きると共に、測定精度を向上することができる。また、
本発明に用いるプリズムは半球状構造であり、真球から
切削する場合、射出成形する場合のいずれでも作製が容
易で、安定な形状である。
As described above, according to the refractive index measuring device of the present invention, since the hemispherical prism itself also functions as a lens, other components are not required for image formation. Therefore, the number of parts can be reduced, the cost of parts and the cost of assembly can be reduced, and the measurement accuracy can be improved. Also,
The prism used in the present invention has a hemispherical structure, and is easy to manufacture and has a stable shape when cut from a true sphere or when injection molded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の屈折率測定装置の基本概念を示す概略
斜視図である。
FIG. 1 is a schematic perspective view showing a basic concept of a refractive index measuring device of the present invention.

【図2】プリズムとサンプルの境界面における入出射角
を示す説明図である。
FIG. 2 is an explanatory diagram showing an incidence / emission angle at a boundary surface between a prism and a sample.

【図3】本発明を臨界屈折角測定による屈折率測定に応
用した装置の部品配置の一実施例を示す概略構成図であ
る。
FIG. 3 is a schematic configuration diagram showing one embodiment of a component arrangement of an apparatus in which the present invention is applied to refractive index measurement by critical refraction angle measurement.

【図4】本発明を反射率測定による屈折率測定に応用し
た装置の部品配置の一実施例を示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing one embodiment of a component arrangement of an apparatus in which the present invention is applied to refractive index measurement by reflectance measurement.

【符号の説明】[Explanation of symbols]

1,1a,1b 光源 2 半球状プリズム 3 明暗境界像 4 サンプル 5 マスク 6a CCD 6b 受光素子 1, 1a, 1b Light source 2 Hemispherical prism 3 Bright / dark boundary image 4 Sample 5 Mask 6a CCD 6b Light receiving element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プリズムを用いた屈折率測定装置におい
て、光線の入出射面の双方もしくは片方が球面形状をな
すプリズムを用いることを特徴とする屈折率測定装置。
1. A refraction index measuring device using a prism, wherein a prism having a spherical shape on both or one of an input / output surface of a light beam is used.
【請求項2】 前記プリズムの結像位置にCCDもしく
はフォトダイオードアレイを配したことを特徴とする請
求項1に記載の装置。
2. The apparatus according to claim 1, wherein a CCD or a photodiode array is arranged at an image forming position of the prism.
【請求項3】 前記プリズムの結像位置に発光素子及び
受光素子の少なくとも一方を配したことを特徴とする請
求項1に記載の装置。
3. The apparatus according to claim 1, wherein at least one of a light emitting element and a light receiving element is arranged at an image forming position of the prism.
JP10196496A 1998-06-29 1998-06-29 Refractive index measuring apparatus Pending JP2000019110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10196496A JP2000019110A (en) 1998-06-29 1998-06-29 Refractive index measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10196496A JP2000019110A (en) 1998-06-29 1998-06-29 Refractive index measuring apparatus

Publications (1)

Publication Number Publication Date
JP2000019110A true JP2000019110A (en) 2000-01-21

Family

ID=16358745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10196496A Pending JP2000019110A (en) 1998-06-29 1998-06-29 Refractive index measuring apparatus

Country Status (1)

Country Link
JP (1) JP2000019110A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492447B2 (en) 2002-10-30 2009-02-17 Atago Co., Ltd. Refractometer
JP2011196911A (en) * 2010-03-23 2011-10-06 Mitsubishi Chemical Engineering Corp Apparatus for measurement of liquid concentration
CN103698299A (en) * 2013-11-26 2014-04-02 清华大学 Refractive index change measuring device and method for object under effect of force field, thermal field, magnetic field and electric field
US10113960B2 (en) 2015-06-29 2018-10-30 Janesko Oy Arrangement in connection with measuring window of refractometer, and refractometer
WO2023024523A1 (en) * 2021-08-25 2023-03-02 深圳市流数科技有限公司 Refractometer, detection apparatus, and method for detecting refractive index

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492447B2 (en) 2002-10-30 2009-02-17 Atago Co., Ltd. Refractometer
JP2011196911A (en) * 2010-03-23 2011-10-06 Mitsubishi Chemical Engineering Corp Apparatus for measurement of liquid concentration
CN103698299A (en) * 2013-11-26 2014-04-02 清华大学 Refractive index change measuring device and method for object under effect of force field, thermal field, magnetic field and electric field
US10113960B2 (en) 2015-06-29 2018-10-30 Janesko Oy Arrangement in connection with measuring window of refractometer, and refractometer
WO2023024523A1 (en) * 2021-08-25 2023-03-02 深圳市流数科技有限公司 Refractometer, detection apparatus, and method for detecting refractive index
WO2023023964A1 (en) * 2021-08-25 2023-03-02 深圳市流数科技有限公司 Refractometer, smart cup, and refractive index measurement method

Similar Documents

Publication Publication Date Title
US5847819A (en) Lens meter utilizing three different wavelengths
US8743368B2 (en) Optical sensor system and method of sensing
CN105954232B (en) A kind of measuring refractive indexes of liquid system
KR20140130702A (en) Critical angle optical sensor apparatus
US11300506B2 (en) Droplet sensor
US6507402B2 (en) SPR sensor plate and immune reaction measuring instrument using the same
CN112840176B (en) Detector for determining the position of at least one object
JP2004513363A (en) Especially for plasma resonance sensors for biosensor technology
US20050018194A1 (en) Surface plasmon resonance sensor
CN113015882A (en) Measuring head for determining the position of at least one object
CN112424575B (en) Photometry device
JP2022515930A (en) On-board radiation detector
JP2001242079A (en) Optical device for detecting/recognizing liquid
JPH073318Y2 (en) Sensor head using photoexcited surface plasma vibration resonance
US10113960B2 (en) Arrangement in connection with measuring window of refractometer, and refractometer
JP2000019110A (en) Refractive index measuring apparatus
JPH0345322B2 (en)
JP2003215035A (en) Refractive index measuring device
US10384152B2 (en) Backscatter reductant anamorphic beam sampler
CN214622308U (en) Refractometer and intelligent cup
JP2002340790A (en) Spr sensor
JPH1048130A (en) Refractive index measuring method and apparatus therefor
CN217359603U (en) Probe type liquid concentration measuring device
JP2002228491A (en) Emission light source device for optical encoder
RU69634U1 (en) DEVICE FOR DETECTION AND CLASSIFICATION OF DEFECTS OF OPTICAL OBJECTS (OPTIONS)

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041201

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20041207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050405

Free format text: JAPANESE INTERMEDIATE CODE: A02