JPH01283996A - Multilayer printed wiring board - Google Patents

Multilayer printed wiring board

Info

Publication number
JPH01283996A
JPH01283996A JP11378588A JP11378588A JPH01283996A JP H01283996 A JPH01283996 A JP H01283996A JP 11378588 A JP11378588 A JP 11378588A JP 11378588 A JP11378588 A JP 11378588A JP H01283996 A JPH01283996 A JP H01283996A
Authority
JP
Japan
Prior art keywords
reinforced plastic
thermal expansion
printed wiring
multilayer printed
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11378588A
Other languages
Japanese (ja)
Inventor
Michio Futakuchi
二口 通男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11378588A priority Critical patent/JPH01283996A/en
Publication of JPH01283996A publication Critical patent/JPH01283996A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0287Unidirectional or parallel fibers

Abstract

PURPOSE:To reduce thermal expansion coefficients of directions X, Y, Z by forming an insulating layer between patterns of unidirectional fiber reinforced plastic. CONSTITUTION:Insulating layers 10 formed between patterns 1a and 2a, 2a and 2b, and 1b and 2b are formed of unidirectional fiber reinforced plastic 8, and vertically laminated unidirectional fiber reinforced plastic 9. Reinforcing fiber generally has small thermal expansion coefficient itself. Accordingly, if the fiber volume content ratio is raised, the coefficient can be reduced. That is, the unidirectional fiber reinforced plastic is used as the insulating layer, the fiber volume content ratio is raised, thereby reducing the thermal expansion coefficients in directions X, Y, Z.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、基板としての熱膨張係数が低く、従ってセ
ラミックチップの表面実装に適し、かつスルーホールの
信頼性の高い多層プリント配線板に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a multilayer printed wiring board that has a low coefficient of thermal expansion as a substrate, is therefore suitable for surface mounting of ceramic chips, and has highly reliable through holes. It is.

(従来の技術) 従来の多層プリント配線板は、金属製の゛パターンとパ
ターンの間の絶縁層を、ガラス織物にエポキシ樹脂やポ
リイミド樹脂を含浸させて硬化させた繊維強化プラスチ
ックで形成した構成になっている。
(Prior art) Conventional multilayer printed wiring boards have a structure in which the insulating layer between metal patterns is made of fiber-reinforced plastic made by impregnating glass fabric with epoxy resin or polyimide resin and curing it. It has become.

第2図は、そのような従来の多層プリント配線板の構成
の一例(4層板)を示したものである。
FIG. 2 shows an example of the structure of such a conventional multilayer printed wiring board (four-layer board).

図において、la、lbは金属製の外層パターン、2a
、2bは金属製の内層パターンを示す。
In the figure, la and lb are metal outer layer patterns, 2a
, 2b indicates a metal inner layer pattern.

3はスルーホールの全屈メツキ層で、外層パターンla
、lbと内層パターン2bに接続されている。7は絶縁
層で、ガラス織物にエポキシ樹脂やポリイミド樹Jff
tを含浸させて硬化させた繊維強化プラスチックで形成
されている。絶縁層7において、4は横方向のガラス繊
維、5は縦方向のガラス繊維、6は樹脂層を示す。
3 is a fully bent plating layer with through holes, and the outer layer pattern la
, lb and are connected to the inner layer pattern 2b. 7 is an insulating layer made of epoxy resin or polyimide resin on glass fabric.
It is made of fiber-reinforced plastic impregnated with T and cured. In the insulating layer 7, 4 indicates horizontal glass fibers, 5 indicates vertical glass fibers, and 6 indicates a resin layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来の多層プリント配線板は、その絶縁層7
が、上述のように、ガラス織物にエポキシ樹脂やポリイ
ミド樹脂を含浸させて硬化させた繊維強化プラスチック
でできている。このため、繊維体積含有率Vfが50%
以下と小さく、したがって、XY方向やZ方向(5み方
向)の熱膨張係数が大きいという欠点を持っている。
However, in the conventional multilayer printed wiring board, the insulating layer 7
However, as mentioned above, it is made of fiber-reinforced plastic made by impregnating glass fabric with epoxy resin or polyimide resin and curing it. Therefore, the fiber volume content Vf is 50%
Therefore, it has the disadvantage of having a large coefficient of thermal expansion in the XY direction and Z direction (5-axis direction).

このため、セラミックチップの表面実装や、さらに多層
化が進んだときのスルーホールの信頼性に問題があった
For this reason, there have been problems with surface mounting of ceramic chips and with the reliability of through holes when the number of layers increases.

すなわち、セラミックチップは、例えばアルミナチップ
キャリアでは、熱膨張係数が5.5〜6.5xlO−’
で−1であるから、約16X10−’℃−1の従来のガ
ラスエポキシ基板や約14x10−6℃−1のガラスポ
リイミド基板に表面実装を行うと、ハンダ接合部に熱応
力による致命的なりラックが入る恐れがあった。
That is, a ceramic chip, for example, an alumina chip carrier, has a thermal expansion coefficient of 5.5 to 6.5xlO-'
Therefore, if surface mounting is carried out on a conventional glass epoxy board with a temperature of about 16 x 10-'°C-1 or a glass polyimide board with a temperature of about 14 x 10-6°C-1, thermal stress can be fatal to the solder joint. There was a risk that it might get in.

また、最近では、プリント配線板の多層化がますます進
んで行く傾向にあり、これに伴って板厚も厚くなる傾向
にある。しかし、上記繊維強化プラスチックのZ方向の
熱膨張係数は、なお大きい−ため、スルーホールの金属
メツキ層にクラックが生じる恐れがあり、その信頼性に
欠けるところがあった。
Furthermore, in recent years, there has been a tendency for printed wiring boards to become more and more multilayered, and as a result, board thickness has also tended to increase. However, since the fiber-reinforced plastic has a still large coefficient of thermal expansion in the Z direction, there is a risk of cracks occurring in the metal plating layer of the through hole, resulting in a lack of reliability.

もちろん、このような問題を解決するには、上記熱膨張
係数を小さくすればよい。
Of course, such a problem can be solved by reducing the thermal expansion coefficient.

すなわち、強化&l維は一敗にそれ自身の熱膨張係数が
小さく、例えばガラス繊維では約5.0×10−6℃−
1である。また、樹脂のそれは大きく、例えばエポキシ
樹脂では約50〜125xlO−’℃−1である。した
がって、このことから繊維体積含有率vfを上昇させれ
ば熱膨張係数を小さくすることができる。そうすわば、
上記問題は解決できる。
In other words, reinforced fibers have a very small coefficient of thermal expansion; for example, glass fibers have a coefficient of thermal expansion of approximately 5.0 x 10-6°C.
It is 1. In addition, it is large for resins, for example, about 50 to 125xlO-'C-1 for epoxy resins. Therefore, from this fact, the thermal expansion coefficient can be reduced by increasing the fiber volume content vf. That's right,
The above problem can be solved.

しかし、従来の繊維強化プラスチックの場合は、織物を
強化材とするため、縦横の繊維が互いに上下に乗りかか
り、どうしてもya組の無い空間が多く生じ、そこに樹
脂が充てんされて、繊維体積含有率v1を50%以上に
することは困難である。したがって、従来のMM強化プ
ラスチックを使用する限り、上記問題の解決はむずかし
い。
However, in the case of conventional fiber-reinforced plastics, since textiles are used as reinforcement materials, the vertical and horizontal fibers overlap each other, creating many spaces without ya groups, which are filled with resin to increase the fiber volume content. It is difficult to increase the ratio v1 to 50% or more. Therefore, as long as conventional MM reinforced plastics are used, it is difficult to solve the above problems.

この発明は、このような従来の問題点を解消するために
なされたもので、XY力方向Z方向の熱膨張係数が小さ
く、したがって、セラミックチップの表面実装が可能で
、かつスルーホールの信頼性が高い多層プリント配線板
を得ることを目的とする。
This invention was made to solve these conventional problems, and has a small coefficient of thermal expansion in the X, Y, and Z directions, making it possible to surface-mount ceramic chips, and improving the reliability of through-holes. The objective is to obtain a multilayer printed wiring board with high resistance.

(課題を解決するための手段〕 この発明に係る多層プリント配線板は、金属製のパター
ンとパターンの間の絶縁層を、一方向繊維強化プラスチ
ックで形成したものである。
(Means for Solving the Problems) In the multilayer printed wiring board according to the present invention, metal patterns and insulating layers between the patterns are formed of unidirectional fiber-reinforced plastic.

〔作用〕[Effect]

この発明では、絶縁層に一方向繊維強化プラスチックを
用いたので、繊維体積含有率V「を上げて、XYZ方向
の熱膨張係数を小さくすることができる。
In this invention, since unidirectional fiber-reinforced plastic is used for the insulating layer, the fiber volume content V' can be increased and the coefficient of thermal expansion in the XYZ directions can be reduced.

(実施例) 以下、この発明の実施例を第1図によって説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

第1図は4層板の構成を示したもので、図において、l
a、lbは金属製の外層パターン、2a、2bは金属製
の内層パターンを示す。3はスルーホールの金属メツキ
層で、外層パターンla、lbと内層パターン2bに接
続されている。10はパターン1aと28、パターン2
aと2bおよびパターン1bと2bの間に設けた絶縁層
で、横方向に積層された一方向繊維強化プラスチック8
と、縦方向に積層された一方向繊維強化プラスチック9
とより形成されている。
Figure 1 shows the configuration of a four-layer board.
a and lb indicate metal outer layer patterns, and 2a and 2b indicate metal inner layer patterns. Reference numeral 3 denotes a metal plating layer of through holes, which is connected to the outer layer patterns la and lb and the inner layer pattern 2b. 10 is pattern 1a and 28, pattern 2
A unidirectional fiber-reinforced plastic 8 laminated in the horizontal direction with an insulating layer provided between a and 2b and patterns 1b and 2b.
and unidirectional fiber-reinforced plastic 9 laminated in the vertical direction.
It is formed by

従来の多層プリント配線板の絶縁層7を形成する繊維強
化プラスチックは、強化材である織物の縦横の繊維が上
下に交叉して互いに乗りかかった構造になっているので
、各繊維の間に多くの空間が生じ、ここに樹脂が充てん
されて、第2図のように、明確な樹脂層6ができる。こ
のため、繊維体積含有率V、が通常の場合50%以下と
なり、x、y、z方向の熱膨張係数が大きい。これに対
し、上記一方向繊維強化プラスチック4,5は、樹脂が
繊維の間に混在した構造になっているので、繊維体積含
有率V、が大きくなり、X。
The fiber-reinforced plastic that forms the insulating layer 7 of the conventional multilayer printed wiring board has a structure in which the vertical and horizontal fibers of the fabric, which is the reinforcing material, intersect vertically and overlap each other, so there are many layers between each fiber. A space is created, which is filled with resin to form a clear resin layer 6 as shown in FIG. Therefore, the fiber volume content V is usually 50% or less, and the coefficient of thermal expansion in the x, y, and z directions is large. On the other hand, the unidirectional fiber-reinforced plastics 4 and 5 have a structure in which the resin is mixed between the fibers, so the fiber volume content V, becomes large, and X.

Y、Z方向の熱膨張係数が小さい。The coefficient of thermal expansion in the Y and Z directions is small.

表1は、第1図の構成で3種類の多層プリント配線板(
実施例1〜3)を作成し、それらの常温での熱膨張係数
を測定した結果を、比較例とともに示したものである。
Table 1 shows three types of multilayer printed wiring boards (
Examples 1 to 3) were prepared, and the results of measuring their thermal expansion coefficients at room temperature are shown together with comparative examples.

表  1 表1において、ガラス織物は旭シュニーベル社製No、
7628、エポキシ樹脂はFR−4グレ一ト品、ポリイ
ミド樹脂は三井石油化学工業社製ケルイミド601、一
方向ガラスm維は旭ファイバーグラス社製ERI 15
0、一方向アラミドmtmはデュポン社製ケブラー49
タイプ968をそれぞれ用いた。
Table 1 In Table 1, the glass fabrics are No. manufactured by Asahi Schniebel Co., Ltd.
7628, the epoxy resin is FR-4 grade product, the polyimide resin is Kerimide 601 manufactured by Mitsui Petrochemical Industries, Ltd., and the unidirectional glass m fiber is ERI 15 manufactured by Asahi Fiberglass Co., Ltd.
0. One-way aramid mtm is DuPont Kevlar 49
Type 968 was used in each case.

表1から明らかなように、実施例1〜3の多層プリント
配線板は、いずれも繊維体積含有率vrが大きく、した
がフてx、y、z方向の熱膨張係数の小さいものであっ
た。
As is clear from Table 1, the multilayer printed wiring boards of Examples 1 to 3 all had a large fiber volume content vr, but had small coefficients of thermal expansion in the x, y, and z directions. .

(発明の効果〕 以上のように、この発明によれば、パターンとパターン
の間の絶縁層を、一方向繊維強化プラスチックで形成し
たので、xYZ方向の熱膨張係数を小さくでき、したが
って表面実装に適し、かつ、スルーホールの信頼性が高
い多層プリント配線板を得ることができる。
(Effects of the Invention) As described above, according to the present invention, since the insulating layer between the patterns is formed of unidirectional fiber-reinforced plastic, the coefficient of thermal expansion in the xYZ directions can be reduced, making it suitable for surface mounting. It is possible to obtain a multilayer printed wiring board that is suitable and has high through-hole reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例による多層プリント配線板の
断面図、第2図は従来の多層プリント配線板の断面図で
ある。 la、lbは外層パターン、2a、2bは内層パターン
、3はスルーホールの金属メツキ層、8.9は一方向繊
維強化プラスチック、10は絶縁層である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view of a multilayer printed wiring board according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional multilayer printed wiring board. la and lb are outer layer patterns, 2a and 2b are inner layer patterns, 3 is a through-hole metal plating layer, 8.9 is a unidirectional fiber reinforced plastic, and 10 is an insulating layer. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] パターンとパターンの間の絶縁層を、一方向繊維強化プ
ラスチックで形成したことを特徴とする多層プリント配
線板。
A multilayer printed wiring board characterized in that an insulating layer between patterns is made of unidirectional fiber-reinforced plastic.
JP11378588A 1988-05-11 1988-05-11 Multilayer printed wiring board Pending JPH01283996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11378588A JPH01283996A (en) 1988-05-11 1988-05-11 Multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11378588A JPH01283996A (en) 1988-05-11 1988-05-11 Multilayer printed wiring board

Publications (1)

Publication Number Publication Date
JPH01283996A true JPH01283996A (en) 1989-11-15

Family

ID=14621038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11378588A Pending JPH01283996A (en) 1988-05-11 1988-05-11 Multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JPH01283996A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994005140A1 (en) * 1992-08-13 1994-03-03 Akzo Nobel N.V. Method of manufacturing a multilayer printed wire board
WO1995020479A1 (en) * 1994-01-26 1995-08-03 Amp-Akzo Linlam Vof Method of making a ud crossply pwb laminate having one or more inner layers of metal
US5496613A (en) * 1991-06-04 1996-03-05 Amp-Akzo Linlim Vof Printed wire boards and method of making same
EP0700237A1 (en) * 1992-05-19 1996-03-06 AMP-Akzo LinLam VOF Thin core printed wire boards
US5592737A (en) * 1991-06-04 1997-01-14 Akzo Nobel N.V. Method of manufacturing a multilayer printed wire board
US5874152A (en) * 1994-01-26 1999-02-23 Amp-Akzo Linlam Vof Method of making a composite laminate and a PWB substrate so made
US6016598A (en) * 1995-02-13 2000-01-25 Akzo Nobel N.V. Method of manufacturing a multilayer printed wire board
WO2008056500A1 (en) * 2006-11-10 2008-05-15 Nec Corporation Multilayer-wired substrate
CN102933027A (en) * 2012-10-23 2013-02-13 广东生益科技股份有限公司 Method for improving warping or twisted deformation of copper clad laminate and printed circuit board (PCB)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611914B2 (en) * 1975-03-05 1981-03-17
JPS61229546A (en) * 1985-04-05 1986-10-13 三菱レイヨン株式会社 Fiber reinforced plastic molded shape

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611914B2 (en) * 1975-03-05 1981-03-17
JPS61229546A (en) * 1985-04-05 1986-10-13 三菱レイヨン株式会社 Fiber reinforced plastic molded shape

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592737A (en) * 1991-06-04 1997-01-14 Akzo Nobel N.V. Method of manufacturing a multilayer printed wire board
US5633072A (en) * 1991-06-04 1997-05-27 Akzo Nobel N.V. Method of manufacturing a multilayer printed wire board
US5496613A (en) * 1991-06-04 1996-03-05 Amp-Akzo Linlim Vof Printed wire boards and method of making same
EP0700237A1 (en) * 1992-05-19 1996-03-06 AMP-Akzo LinLam VOF Thin core printed wire boards
AU683846B2 (en) * 1992-08-13 1997-11-27 Amp-Akzo Linlam Vof Method of manufacturing a multilayer printed wire board
WO1994005140A1 (en) * 1992-08-13 1994-03-03 Akzo Nobel N.V. Method of manufacturing a multilayer printed wire board
WO1995020479A1 (en) * 1994-01-26 1995-08-03 Amp-Akzo Linlam Vof Method of making a ud crossply pwb laminate having one or more inner layers of metal
US5874152A (en) * 1994-01-26 1999-02-23 Amp-Akzo Linlam Vof Method of making a composite laminate and a PWB substrate so made
US6016598A (en) * 1995-02-13 2000-01-25 Akzo Nobel N.V. Method of manufacturing a multilayer printed wire board
WO2008056500A1 (en) * 2006-11-10 2008-05-15 Nec Corporation Multilayer-wired substrate
JPWO2008056500A1 (en) * 2006-11-10 2010-02-25 日本電気株式会社 Multilayer wiring board
JP5040921B2 (en) * 2006-11-10 2012-10-03 日本電気株式会社 Multilayer wiring board
US8377543B2 (en) 2006-11-10 2013-02-19 Nec Corporation Multilayer-wired substrate
CN102933027A (en) * 2012-10-23 2013-02-13 广东生益科技股份有限公司 Method for improving warping or twisted deformation of copper clad laminate and printed circuit board (PCB)

Similar Documents

Publication Publication Date Title
US4886699A (en) Glass fiber reinforced fluoropolymeric circuit laminate
US5592737A (en) Method of manufacturing a multilayer printed wire board
US6222740B1 (en) Multilayer circuit board having at least one core substrate arranged therein
US4894271A (en) Metal-core printed wiring board and a process for manufacture thereof
JPH01283996A (en) Multilayer printed wiring board
JPH02189997A (en) Multilayered printed circuit board
JP2612129B2 (en) Laminated board
JPH036892A (en) Multilayer printed wiring board
JPS6147844A (en) Glass cloth for multilayered printed wiring board and multilayered printed wiring board using the same
JPH04208597A (en) Multilayer printed circuit board
JPH08111571A (en) Laminated board for printed circuit
JPH0582971A (en) Multilayered printed wiring board
JPS6216599A (en) Glass woven base material for multilayer printed wiring board
JPH0533023Y2 (en)
JPS6140094A (en) Method of producing multilayer circuit board
JP2501031B2 (en) Metal foil laminated board
JPH06260765A (en) Multilayer wiring board and manufacture thereof
JPS62104196A (en) Multilayer printed circuit substrate
JPS62181486A (en) Printed circuit substrate
JP2917579B2 (en) Multilayer printed wiring board
JPH05220892A (en) Copper clad laminated sheet and production thereof
JPH0474491A (en) Multilayer printed circuit board
JPH04279081A (en) Epoxy resin-copper foil laminated board and manufacture thereof
JPS6356720B2 (en)
JPH03165088A (en) Printed wiring board