JPH0128341B2 - - Google Patents
Info
- Publication number
- JPH0128341B2 JPH0128341B2 JP55141780A JP14178080A JPH0128341B2 JP H0128341 B2 JPH0128341 B2 JP H0128341B2 JP 55141780 A JP55141780 A JP 55141780A JP 14178080 A JP14178080 A JP 14178080A JP H0128341 B2 JPH0128341 B2 JP H0128341B2
- Authority
- JP
- Japan
- Prior art keywords
- metal hydride
- hydrogen
- reaction
- partition wall
- filling device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052987 metal hydride Inorganic materials 0.000 claims description 99
- 150000004681 metal hydrides Chemical class 0.000 claims description 99
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 56
- 238000006243 chemical reaction Methods 0.000 claims description 52
- 239000001257 hydrogen Substances 0.000 claims description 48
- 229910052739 hydrogen Inorganic materials 0.000 claims description 48
- 238000005192 partition Methods 0.000 claims description 28
- 238000006073 displacement reaction Methods 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 238000012856 packing Methods 0.000 claims 1
- 239000012466 permeate Substances 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 150000002431 hydrogen Chemical class 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000000945 filler Substances 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002593 Fe-Ti Inorganic materials 0.000 description 1
- 229910020794 La-Ni Inorganic materials 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910004349 Ti-Al Inorganic materials 0.000 description 1
- 229910004692 Ti—Al Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Description
【発明の詳細な説明】
本発明は反応器中の金属水素化物の水素化反応
度を測定する金属水素化物反応測定装置に関す
る。多くの金属又は合金は水素と可逆的に反応す
ることが知られている。即ち
〔MH〕+Q〔M〕+H2↑
(Mは金属又は合金、Qは反応熱)
なる関係があり、水素を吸蔵する際に発熱し、水
素を放出する際に吸熱する。そして各々の金属又
は合金は温度に依存する特有の水素平衡圧を有し
ている。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal hydride reaction measuring device for measuring the hydrogenation reactivity of metal hydrides in a reactor. Many metals or alloys are known to react reversibly with hydrogen. That is, there is the following relationship: [MH]+Q[M]+H 2 ↑ (M is metal or alloy, Q is heat of reaction); heat is generated when hydrogen is absorbed, and heat is absorbed when hydrogen is released. And each metal or alloy has a unique hydrogen equilibrium pressure that is dependent on temperature.
この明細書においては、活性化され水素を大量
に吸蔵しうるようなされた金属又は合金、及び実
際に水素を吸蔵した金属又は合金を総称して金属
水素化物と云う。金属水素化物の水素吸蔵放出反
応は、水素吸蔵能力、反応可逆性、反応熱の大き
さを、水素貯蔵装置、熱交換装置、熱移動装置、
冷暖房給湯装置、廃熱回収装置、熱エネルギー機
械(電気)エネルギー変換装置等に利用される。
水素吸蔵能力、反応熱が大きく使用に好適な金属
水素化物は過去種々検討され、La−Ni合金、
Mm−Ni合金(Mmはミツシユメタル)、Mg−
Ni合金、Fe−Ti合金、Mg−Al合金、Ti−Al合
金などが報告されている。 In this specification, metals or alloys that have been activated so that they can store a large amount of hydrogen, and metals or alloys that actually store hydrogen are collectively referred to as metal hydrides. The hydrogen storage and release reaction of metal hydrides is determined by the hydrogen storage capacity, reaction reversibility, and the amount of heat of reaction, including hydrogen storage equipment, heat exchange equipment, heat transfer equipment,
Used in air conditioning/heating/water heating equipment, waste heat recovery equipment, thermal energy mechanical (electrical) energy conversion equipment, etc.
Various metal hydrides suitable for use due to their large hydrogen storage capacity and heat of reaction have been studied in the past, including La-Ni alloy,
Mm-Ni alloy (Mm is Mitsushi Metal), Mg-
Ni alloy, Fe-Ti alloy, Mg-Al alloy, Ti-Al alloy, etc. have been reported.
金属水素化物を加熱し、あるいは減圧にして水
素を放出させる時、もしくは金属水素化物から熱
を奪い、あるいは加圧して水素を吸蔵させる時
に、問題となるのは金属水素化物が水素の最大吸
蔵量に対して、どの程度迄水素を吸蔵しているか
を瞬時に見極めるのが困難であることである。そ
の為、金属水素化物の水素吸蔵反応から放出反応
への切替えの時機を逸して、金属水素化物から十
分に反応熱を取出せないことがある。 When a metal hydride is heated or depressurized to release hydrogen, or when heat is removed from a metal hydride or pressurized to absorb hydrogen, the problem is the maximum hydrogen storage capacity of the metal hydride. However, it is difficult to instantly determine how much hydrogen is stored. Therefore, the timing of switching from the hydrogen absorption reaction of the metal hydride to the hydrogen release reaction may be missed, and the heat of reaction may not be sufficiently extracted from the metal hydride.
従来の金属水素化物の水素化反応度を測定する
装置としては、金属水素化物を充填した反応容器
に出入する水素ガスの流量をガス流量計で測定
し、反応容器内の水素ガス圧の変化を圧力計で測
定し、金属水素化物に吸蔵されている水素量を計
算していた。しかしながら、ガス流量計は応答が
遅く、精度も悪く、吸蔵水素量の計算プロセスも
煩雑であり、ガス流量計が高価である欠点があつ
た。 Conventional equipment for measuring the degree of hydrogenation of metal hydrides uses a gas flowmeter to measure the flow rate of hydrogen gas entering and exiting a reaction vessel filled with metal hydrides, and detects changes in the hydrogen gas pressure inside the reaction vessel. The amount of hydrogen stored in the metal hydride was calculated by measuring with a pressure gauge. However, gas flowmeters have the drawbacks of slow response, poor accuracy, complicated calculation process for the amount of absorbed hydrogen, and high price of gas flowmeters.
本発明者は上記従来の問題点の解決を試みて、
鋭意検討の結果、金属水素化物の水素吸蔵放出反
応に伴つて生じる金属水素化物の体積変化を検出
することにより、金属水素化物と水素の反応量を
測定する金属水素化物反応測定装置を完成するに
至つた。 The present inventor attempted to solve the above conventional problems, and
As a result of intensive studies, we have completed a metal hydride reaction measurement device that measures the amount of reaction between metal hydrides and hydrogen by detecting the volume change of metal hydrides that occurs as a result of hydrogen absorption and desorption reactions between metal hydrides. I've reached it.
以下、本発明の実施例のいくつかを図面と共に
説明する。 Some embodiments of the present invention will be described below with reference to the drawings.
第1図には本発明の第1の実施例の金属水素化
物反応測定装置が示されている。11は金属水素
化物を充填する筒状の金属水素化物充填器であ
る。筒状の金属水素化物充填器1は円筒状、角筒
状でもよいし、緩いテーパーをもつた円錐台、角
錐台状であつてもよい。該金属水素化物充填器1
は金属水素化物が内部で水素加圧下で反応するた
め、水素脆性が生じず、少なくとも10Kg/cm2の圧
力に耐え得る必要がある。 FIG. 1 shows a metal hydride reaction measuring apparatus according to a first embodiment of the present invention. Reference numeral 11 denotes a cylindrical metal hydride filling device for filling metal hydride. The cylindrical metal hydride filling device 1 may have a cylindrical shape, a rectangular tube shape, a gently tapered truncated cone, or a truncated pyramid shape. The metal hydride filling device 1
Since the metal hydride reacts internally under hydrogen pressure, it must be able to withstand a pressure of at least 10 kg/cm 2 without causing hydrogen embrittlement.
金属水素化物充填器1は大容量の金属水素化物
反応容器2に連結されている。金属水素化物反応
容器2には金属水素化物充填器1に比べて極めて
大量の金属水素化物が充填され、反応に伴つて発
熱あるいは吸熱する金属水素化物と熱交換する熱
交換パイプなどが設置されている。 The metal hydride filler 1 is connected to a large capacity metal hydride reaction vessel 2. The metal hydride reaction vessel 2 is filled with a much larger amount of metal hydride than the metal hydride filling device 1, and is equipped with heat exchange pipes and the like to exchange heat with the metal hydride that generates heat or absorbs heat during the reaction. There is.
金属水素化物充填器1は一端部においてフイル
ター3を介して金属水素化物反応容器2に連結さ
れている。フイルター3は微粉化される金属水素
化物を透過する事なく、水素ガスは自由に流通す
る水素ガス流通路を形成する。従つて、フイルタ
ー3はステンレス鋼、ニツケルなどの微粒体の焼
結体等で構成され、水素脆性はなく、5μm以下
に微粉化された金属水素化物を透過しないものに
なされている。そして、金属水素化物充填器1の
他端部は密封され、その付近に金属水素化物反応
容器2と通じる水素ガス流通路を形成する連通管
4が開口されている。該連通管4は金属水素化物
反応容器2の連結部等にフイルター3と同様の金
属水素化物過体が設けられている。金属水素化
物充填器1の略中央部には金属水素化物及び水素
ガスを透過しない隔壁5が端縁部で固定されてい
る。該隔壁5はステンレス鋼、銅、ニツケル、ア
ルミニウムなどの薄板で形成される。 The metal hydride filler 1 is connected to a metal hydride reaction vessel 2 via a filter 3 at one end. The filter 3 forms a hydrogen gas flow path through which hydrogen gas freely flows without passing through the metal hydride to be pulverized. Therefore, the filter 3 is made of a finely sintered body of stainless steel, nickel, etc., and is not susceptible to hydrogen embrittlement and does not transmit metal hydrides that are pulverized to a size of 5 μm or less. The other end of the metal hydride filler 1 is sealed, and a communication pipe 4 that forms a hydrogen gas flow path communicating with the metal hydride reaction vessel 2 is opened in the vicinity thereof. The communication pipe 4 is provided with a metal hydride filter similar to the filter 3 at the connecting portion of the metal hydride reaction vessel 2 and the like. At approximately the center of the metal hydride filling device 1, a partition wall 5 that does not allow metal hydride and hydrogen gas to pass therethrough is fixed at its edge. The partition wall 5 is made of a thin plate of stainless steel, copper, nickel, aluminum, or the like.
金属水素化物充填器1の隔壁5とフイルター3
の間の区室には微粉体となつた金属水素化物6が
見かけ上該区室を満たすように充填される。そし
て、必要であれば金属水素化物6の見かけの比重
を大きくするように押圧してもよい。 Partition wall 5 and filter 3 of metal hydride filling device 1
A compartment between the two is filled with metal hydride 6 in the form of a fine powder so as to apparently fill the compartment. Then, if necessary, pressure may be applied to increase the apparent specific gravity of the metal hydride 6.
充填される金属水素化物6は、水素吸蔵放出反
応に伴つて体積が膨張、収縮するが、金属水素化
物充填器1の筒壁、フイルター3は殆んど影響さ
れて変形することなく、専ら薄板の隔壁5を圧縮
変形させる力が働き、金属水素化物充填器1にお
いて一軸方向の変位として金属水素化物6の体積
変化を観測しうることになる。(金属水素化物が
限度一杯に水素を吸蔵した時は、金属水素化物か
ら水素が放出されて水素が枯渇した時に比較して
約20%の体積膨張がある。)
金属水素化物充填器1内はフイルター3及び連
通管4を設けることにより、金属水素化物反応容
器2の内部と同じ水素ガス圧になり、隔壁5の両
側の区室の圧力差は相殺される。そして、金属水
素化物充填器1が大容量の金属水素化物反応容器
2に連結されているので、金属水素化物反応容器
2の温度の上昇下降に従つて、金属水素化物充填
器1も殆んど同じ温度で推移する。金属水素化物
充填器1の区室が金属水素化物反応容器2と、同
じ水素ガス圧、同じ温度になされるので、金属水
素化物充填器1内の金属水素化物6と金属水素化
物反応容器2内の金属水素化物を同じにすること
により、金属水素化物充填器1内の金属水素化物
6と水素との反応量を測定することは、そのまゝ
金属水素化物反応容器2内の金属水素化物と水素
との反応量を測定することになる。 The volume of the filled metal hydride 6 expands and contracts as a result of the hydrogen absorption and release reaction, but the cylindrical wall and filter 3 of the metal hydride filling device 1 are hardly affected by the deformation and are exclusively formed into thin plates. A force that compressively deforms the partition wall 5 acts, and a change in the volume of the metal hydride 6 can be observed as a displacement in the uniaxial direction in the metal hydride filling device 1. (When the metal hydride absorbs hydrogen to its maximum capacity, the volume expands by about 20% compared to when the metal hydride releases hydrogen and is depleted of hydrogen.) Inside the metal hydride filling device 1 By providing the filter 3 and the communication pipe 4, the hydrogen gas pressure is the same as that inside the metal hydride reaction vessel 2, and the pressure difference between the compartments on both sides of the partition wall 5 is offset. Since the metal hydride filling device 1 is connected to the large-capacity metal hydride reaction container 2, as the temperature of the metal hydride reaction container 2 rises and falls, the metal hydride filling device 1 also becomes almost the same. The temperature remains the same. Since the compartment of the metal hydride filling device 1 is made to have the same hydrogen gas pressure and the same temperature as the metal hydride reaction container 2, the metal hydride 6 in the metal hydride filling device 1 and the metal hydride reaction container 2 Measuring the amount of reaction between the metal hydride 6 in the metal hydride filling device 1 and hydrogen by using the same metal hydride in the metal hydride reaction vessel 2 means that the metal hydride in the metal hydride reaction vessel 2 and The amount of reaction with hydrogen will be measured.
隔壁5に当接して設けられる隔壁変位検出素子
として歪ゲージ7が使われた。歪ゲージ7は隔壁
5の変位変形を歪ゲージ7の歪量としてとらえ、
歪ゲージ7の抵抗線の抵抗変化をブリツジ回路で
読み取り、金属水素化物充填器1内の金属水素化
物6と水素との反応量に換算する。 A strain gauge 7 was used as a partition wall displacement detection element provided in contact with the partition wall 5. The strain gauge 7 captures the displacement deformation of the partition wall 5 as the amount of strain of the strain gauge 7,
The resistance change of the resistance wire of the strain gauge 7 is read by a bridge circuit and converted into the amount of reaction between the metal hydride 6 in the metal hydride filling device 1 and hydrogen.
この実施例の実験例を説明する。 An experimental example of this embodiment will be explained.
外径2.4cm、内径2.0cmのステンレス鋼製の円筒
状の金属水素化物充填器1内に2μmの微粒子を
透過させないステンレス鋼を焼結した厚さ10mmの
フイルター3と厚さ1mmのステンレス鋼薄板の隔
壁5の間に10mmの間隔を設け、容積約3.1cm3の区
室に金属水素化物6として微粒子の活性化した
LaNi5を16.3g充填した。充填した状態は空〓率
略35%で力を加えずに充填した場合よりも、若干
押圧して見かけの比重を大きくしている。水素ガ
スはフイルター3を通じて流出入できるように
し、水素ガスの流出入量をガス流量計で測定し
た。隔壁変位検出素子として新興通信工業(株)製ポ
リイミド箔歪ゲージB−FAE−5−127を使い
隔壁5に貼着した。温度25℃に終始一定に保ち、
水素ガス圧力を隔壁5の両側で2.5atmに保ち、
水素ガスを更に金属水素化物充填器1に流入させ
て水素を吸蔵していない金属水素化物6に水素を
吸蔵させ歪ゲージ7の歪量を測つた。水素ガスが
新たに0.51N流入した時、歪ゲージ7の歪量は
0.0097であつた。この時、気相の水素量が一定と
して計算した所、金属水素化物6と水素の反応量
(水素原子と金属原子の原子数比)は0.2であつ
た。以下、同様に更に水素ガスを0.76N流入さ
せた時、歪量は0.0243で水素反応量は0.5であり、
更に水素ガス0.76N流入させた時の歪量は
0.0388であり、水素反応量は0.8であつた。 A cylindrical metal hydride filler 1 made of stainless steel with an outer diameter of 2.4 cm and an inner diameter of 2.0 cm contains a 10 mm thick filter 3 made of sintered stainless steel that does not allow fine particles of 2 μm to pass through, and a 1 mm thick stainless steel thin plate. A space of 10 mm was provided between the partition walls 5, and fine particles were activated as metal hydride 6 in a chamber with a volume of approximately 3.1 cm3 .
16.3g of LaNi 5 was filled. In the filled state, the emptiness ratio is approximately 35%, and the apparent specific gravity is increased by applying a little pressure compared to when it is filled without applying force. Hydrogen gas was allowed to flow in and out through the filter 3, and the amount of hydrogen gas flowing in and out was measured using a gas flow meter. A polyimide foil strain gauge B-FAE-5-127 manufactured by Shinko Tsushin Kogyo Co., Ltd. was used as a partition wall displacement detection element and was attached to the partition wall 5. Keep the temperature constant at 25℃ from beginning to end.
Maintain the hydrogen gas pressure at 2.5 atm on both sides of the partition wall 5.
Hydrogen gas was further introduced into the metal hydride filler 1 to cause the metal hydride 6 that did not store hydrogen to store hydrogen, and the amount of strain on the strain gauge 7 was measured. When 0.51N of hydrogen gas newly flows in, the amount of strain on strain gauge 7 is
It was 0.0097. At this time, when calculated assuming that the amount of hydrogen in the gas phase was constant, the amount of reaction between metal hydride 6 and hydrogen (atomic ratio of hydrogen atoms to metal atoms) was 0.2. Similarly, when 0.76N of hydrogen gas is further introduced, the amount of strain is 0.0243 and the amount of hydrogen reaction is 0.5.
Furthermore, the amount of strain when 0.76N of hydrogen gas is injected is
0.0388, and the hydrogen reaction amount was 0.8.
以上の測定値をプロツトしたのが第2図であ
る。第2図から明らかなように歪量と金属水素化
物と水素の反応量とは直線関係があり、繰返し使
用に耐えて、金属水素化物の反応の進行度を測定
できることが確認された。 Figure 2 shows a plot of the above measured values. As is clear from FIG. 2, there is a linear relationship between the amount of strain and the amount of reaction between the metal hydride and hydrogen, and it was confirmed that the device can withstand repeated use and can measure the progress of the reaction of the metal hydride.
第3図は第2の実施例を示している。この実施
例では、第1の実施例の隔壁変位検出素子の歪ゲ
ージ7の代わりに隔壁5の変位に応じて自由に上
下移動するコア9を備えた差動変圧器8を、コア
9の下端を隔壁5に当接させて金属水素化物充填
器1に取付けた。 FIG. 3 shows a second embodiment. In this embodiment, instead of the strain gauge 7 of the partition wall displacement detection element of the first embodiment, a differential transformer 8 is provided with a core 9 that freely moves up and down according to the displacement of the partition wall 5. was attached to the metal hydride filling device 1 in contact with the partition wall 5.
隔壁変位検出素子として新光電子(株)製の差動変
圧器AC−5を使つて、実施例1の実験例と同様
の実験を行つた。その結果を第4図に示す。差動
変圧器8のコア9の変位と金属水素化物6と水素
との反応量(水素と金属の原子数比)との間には
ほゞ直線関係が成立ち、金属水素化物の反応の進
行度を測定できることが確認された。 An experiment similar to that of Example 1 was conducted using a differential transformer AC-5 manufactured by Shinko Denshi Co., Ltd. as a partition wall displacement detection element. The results are shown in FIG. A nearly linear relationship is established between the displacement of the core 9 of the differential transformer 8 and the amount of reaction between the metal hydride 6 and hydrogen (atomic ratio of hydrogen and metal), and the reaction of the metal hydride progresses. It was confirmed that it is possible to measure the degree of
第5図は第3の実施例を示している。この実施
例では隔壁変位検出素子としてキヤパシタンス式
変位変換器10が用いられている。キヤパシタン
ス式変位変換器10は一方の電極を固定し、他方
の電極が隔壁5に電気的に絶縁しながら設置さ
れ、隔壁5の変位に応じて2つの電極間の間隔は
変化し、電気容量が変動する。 FIG. 5 shows a third embodiment. In this embodiment, a capacitance displacement transducer 10 is used as the partition wall displacement detection element. In the capacitance displacement transducer 10, one electrode is fixed and the other electrode is installed on the partition wall 5 while being electrically insulated, and the distance between the two electrodes changes according to the displacement of the partition wall 5, so that the capacitance increases. fluctuate.
実験例として実施例1の実験例の歪ゲージ7に
替えて、金属水素化物6が水素を吸蔵していない
時の間隔を0.5mmとして、直径1.0cm、厚さ0.1mmの
ステンレス鋼製の電極を隔壁5と電気的に絶縁し
て設置した。その時の電気容量は1.4pFであつた
が、金属水素化物6に水素を吸蔵させるに従つて
電気容量は増加し、水素反応量(水素と金属の原
子数比)との間に第6図のような関係が成立ち、
金属水素化物の反応の進行度を測定することがで
きた。 As an experimental example, instead of the strain gauge 7 in the experimental example of Example 1, stainless steel electrodes with a diameter of 1.0 cm and a thickness of 0.1 mm were used, with a spacing of 0.5 mm when the metal hydride 6 did not store hydrogen. was installed electrically insulated from the partition wall 5. The capacitance at that time was 1.4 pF, but as the metal hydride 6 absorbs hydrogen, the capacitance increases, and the difference between the hydrogen reaction amount (atomic ratio of hydrogen and metal) as shown in Figure 6. A relationship like this is established,
The progress of the metal hydride reaction could be measured.
又、隔壁変位検出素子としてインダクタンス式
変位変換器、抵抗変換器等も使用できる。 Furthermore, an inductance type displacement transducer, a resistance transducer, etc. can also be used as the partition wall displacement detection element.
以上の通り、本発明金属水素化物反応測定装置
は金属水素化物と水素の反応量を遂時精確に把握
することができ、金属水素化物と水素との反応を
利用したシステム、装置の運転、制御を容易に行
なうことができる。 As described above, the metal hydride reaction measuring device of the present invention can accurately grasp the amount of reaction between metal hydride and hydrogen, and can operate and control systems and devices that utilize the reaction between metal hydride and hydrogen. can be done easily.
又、本発明装置は簡単な耐圧容器に金属水素化
物を充填し、金属水素化物の体積変化を検出する
ものであり、構造が簡単であると共に安価で且つ
信頼性の高いものであり、複雑な計算プロセスも
必要としない利点がある。 In addition, the device of the present invention detects changes in the volume of metal hydride by filling a simple pressure-resistant container with the metal hydride, and has a simple structure, low cost, and high reliability. It has the advantage of not requiring any calculation process.
第1図、第3図、第5図は本発明金属水素化物
反応測定装置の一例を略して示す断面図であり、
第2図は第1図の、第4図は第3図の、第6図は
第5図の実施例の実験の結果を示すグラフであ
る。
1……金属水素化物充填器、2……金属水素化
物反応容器、3……フイルター、4……連通管、
5……隔壁、6……金属水素化物、7……歪ゲー
ジ、8……差動変圧器、9……コア、10……キ
ヤパシタンス式変位変換器。
FIG. 1, FIG. 3, and FIG. 5 are cross-sectional views schematically showing an example of the metal hydride reaction measuring device of the present invention.
FIG. 2 is a graph showing the experimental results of the embodiment of FIG. 1, FIG. 4 of FIG. 3, and FIG. 6 of FIG. 5. 1... Metal hydride filler, 2... Metal hydride reaction vessel, 3... Filter, 4... Communication pipe,
5... Partition wall, 6... Metal hydride, 7... Strain gauge, 8... Differential transformer, 9... Core, 10... Capacitance type displacement transducer.
Claims (1)
しうる隔壁によつて2つの区室に別けられた、金
属水素化物の体積変化により変形することのない
金属水素化物充填器と該充填器よりも大容量の金
属水素化物反応容器が、金属水素化物は透過しな
いが水素は透過し、金属水素化物の体積変化によ
り変形することのないフイルターを介して連結さ
れると共に上記充填器と隔壁によつて形成される
区室と上記反応容器は連通管によつて連通され
て、上記充填器内の2つの区室と上記反応容器内
の水素ガス圧は同じになされており、隔壁とフイ
ルターと上記充填器によつて形成される区室と上
記反応容器内には金属水素化物が充填され、上記
充填器と隔壁によつて形成される区室内には隔壁
変位検出素子が隔壁に当接されており、金属水素
化物の体積変化を一軸方向への変位として検出
し、金属水素化物と水素の反応量を測定すること
を特徴とする金属水素化物反応測定装置。1. A metal hydride filling device that does not permeate metal hydride and hydrogen and is divided into two compartments by a partition wall that can be compressively deformed and that does not deform due to changes in the volume of the metal hydride, and from the filling device. A large-capacity metal hydride reaction vessel is connected via a filter that does not allow metal hydride to pass through, but allows hydrogen to pass through, and does not deform due to changes in the volume of the metal hydride, and is connected to the above-mentioned packing and partition walls. The chambers formed by the two chambers and the reaction vessel are communicated with each other by a communication pipe, and the hydrogen gas pressure in the two chambers in the filling device and the reaction vessel are the same, and the partition wall, the filter, and the A compartment formed by the filling device and the reaction vessel are filled with metal hydride, and a partition wall displacement detection element is in contact with the partition wall in the compartment formed by the filling device and the partition wall. A metal hydride reaction measuring device characterized in that the volume change of the metal hydride is detected as a displacement in a uniaxial direction, and the amount of reaction between the metal hydride and hydrogen is measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14178080A JPS5766357A (en) | 1980-10-09 | 1980-10-09 | Reaction measuring device for metal hydride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14178080A JPS5766357A (en) | 1980-10-09 | 1980-10-09 | Reaction measuring device for metal hydride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5766357A JPS5766357A (en) | 1982-04-22 |
JPH0128341B2 true JPH0128341B2 (en) | 1989-06-02 |
Family
ID=15299992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14178080A Granted JPS5766357A (en) | 1980-10-09 | 1980-10-09 | Reaction measuring device for metal hydride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5766357A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008090932A1 (en) | 2007-01-26 | 2008-07-31 | The Japan Steel Works, Ltd. | Sensor for residual amount of hydrogen |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01307636A (en) * | 1988-06-06 | 1989-12-12 | Sanyo Electric Co Ltd | Device and method for detecting hydrogen concentration |
JP2737082B2 (en) * | 1988-10-28 | 1998-04-08 | スズキ株式会社 | Hydrogen fuel gauge |
JP3699052B2 (en) * | 2002-03-18 | 2005-09-28 | 株式会社日本製鋼所 | Hydrogen remaining amount detection method and apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53110888A (en) * | 1977-03-10 | 1978-09-27 | Ricoh Co Ltd | Humidity measuring apparatus |
-
1980
- 1980-10-09 JP JP14178080A patent/JPS5766357A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53110888A (en) * | 1977-03-10 | 1978-09-27 | Ricoh Co Ltd | Humidity measuring apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008090932A1 (en) | 2007-01-26 | 2008-07-31 | The Japan Steel Works, Ltd. | Sensor for residual amount of hydrogen |
US8011223B2 (en) | 2007-01-26 | 2011-09-06 | The Japan Steel Works, Ltd. | Remaining hydrogen sensor |
Also Published As
Publication number | Publication date |
---|---|
JPS5766357A (en) | 1982-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Boser | Hydrogen sorption in LaNi5 | |
CA1178790A (en) | Flexible means for storing and recovering hydrogen | |
CA1096787A (en) | Hydride storage containment | |
JP4263747B2 (en) | Hydrogen remaining amount sensor | |
Gopal et al. | Studies on heat and mass transfer in metal hydride beds | |
CA1093984A (en) | Hydride container | |
AU2009334709B2 (en) | Adiabatic tank for metal hydride | |
Suda et al. | Effective thermal conductivity of metal hydride beds | |
WO2008118437A2 (en) | Compositions, devices and methods for hydrogen generation | |
Osumi et al. | Hydrogen absorption-desorption characteristics of mischmetal-nickel-aluminum alloys | |
Suda et al. | Experimental measurements of thermal conductivity | |
US20220299167A1 (en) | Hydrogen storage system | |
JPH0128341B2 (en) | ||
Suda et al. | Thermal conductivity in metal hydride beds | |
Nahm et al. | The reaction kinetics of hydrogen storage in LaNi5 | |
Lynch | Operating characteristics of high performance commercial metal hydride heat exchangers | |
Bolcich et al. | Hydrogen storage employing Mg-10 wt% Ni alloy | |
Tuscher et al. | Dynamic characteristics of single-and dual-hydride bed devices | |
JPS5946882B2 (en) | Metal hydride reaction measurement device | |
JPS5848480Y2 (en) | Hydrogen storage device using metal hydride | |
EP0016576B1 (en) | Modular hydride container | |
JPS62251600A (en) | Hydrogen flow material for metal hydride reaction container | |
JPS6257561B2 (en) | ||
JPS59217601A (en) | Method for operating hydrogen occluding and releasing apparatus | |
CN105527400A (en) | Device for detecting hydrogen absorption process volume changes of hydrogen storage alloy powder |