JPS5946882B2 - Metal hydride reaction measurement device - Google Patents
Metal hydride reaction measurement deviceInfo
- Publication number
- JPS5946882B2 JPS5946882B2 JP55179534A JP17953480A JPS5946882B2 JP S5946882 B2 JPS5946882 B2 JP S5946882B2 JP 55179534 A JP55179534 A JP 55179534A JP 17953480 A JP17953480 A JP 17953480A JP S5946882 B2 JPS5946882 B2 JP S5946882B2
- Authority
- JP
- Japan
- Prior art keywords
- metal hydride
- reaction
- hydrogen
- wall
- partition wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
【発明の詳細な説明】
本発明は金属水素化物の水素化反応、脱水素化反応を制
御するための金属水素化物の水素化反応度を測定する金
属水素化反応測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal hydrogenation reaction measuring device for measuring the hydrogenation reactivity of a metal hydride for controlling the hydrogenation reaction and dehydrogenation reaction of a metal hydride.
多くの金属又は合金は水素と可逆的に反応することが知
られている。Many metals or alloys are known to react reversibly with hydrogen.
即ち、Qは反応熱)
なる関係があり、水素を吸蔵する際に発熱し、水素を放
出する際に吸熱する。That is, Q is the heat of reaction). When hydrogen is stored, heat is generated, and when hydrogen is released, heat is absorbed.
そして各々の金属又は合金は、第1図に示す如くその対
数値と絶対温度の逆数とが直線関係を持つ特有の水素平
衡圧を有する。Each metal or alloy has a unique hydrogen equilibrium pressure whose logarithm and reciprocal of absolute temperature have a linear relationship, as shown in FIG.
又、第2図に示すように金属又は合金の水素平衡圧は、
一定温度で水素化反応度(水素吸蔵量)に拘らず、はシ
一定圧力である域があり、これをプラトー域と称してい
る。Also, as shown in Figure 2, the hydrogen equilibrium pressure of metals or alloys is
At a constant temperature, there is a region where the pressure is constant regardless of the degree of hydrogenation reaction (hydrogen storage amount), and this is called the plateau region.
尚、この明細書では、金属又は合金の水素化物及びその
水素化物から水素が放出されて金属状態になったものを
総称して金属水素化物という。In this specification, hydrides of metals or alloys and those in which hydrogen is released from the hydrides to become metallic are collectively referred to as metal hydrides.
金属水素化物としては、これ迄La−Ni合金、Mm−
Ni合金(Mmはミツシュメタル)、Mg−Ni合金、
Fe −Ti合金、Mg−’AI合金、Ti −A1合
金などが報告されている。Until now, metal hydrides include La-Ni alloy, Mm-
Ni alloy (Mm is Mitshu Metal), Mg-Ni alloy,
Fe-Ti alloy, Mg-'AI alloy, Ti-A1 alloy, etc. have been reported.
これらの金属水素化物は、その水素吸蔵能力、反応可逆
性、反応熱の大きさを利用して、水素貯蔵装置、熱交換
装置、熱移動装置、冷暖房給湯装置、廃熱回収熱装置、
熱エネルギー機械(電気)エネルギー変換装置等に応用
される。These metal hydrides utilize their hydrogen storage capacity, reaction reversibility, and large reaction heat to be used in hydrogen storage devices, heat exchange devices, heat transfer devices, air-conditioning/heating water supply devices, waste heat recovery heat devices,
Applied to thermal energy mechanical (electrical) energy conversion devices, etc.
上のような金属水素化物を利用した装置を運転制御する
際に問題となるのは、反応器中の金属水素化物が最大吸
蔵量に対してどの程度の水素を吸蔵しているか、つまり
水素化反応度を即時応答的に測定するのが困難であるこ
とである。When controlling the operation of a device that uses metal hydrides like the one above, the problem is how much hydrogen the metal hydride in the reactor stores compared to the maximum storage amount, that is, the hydrogenation rate. The problem is that it is difficult to measure the degree of reactivity in an immediate manner.
そのため、金属水素化物に対してどこ迄加熱、加圧する
か、あるいは冷却、減圧するか見極められず、もしくは
加熱、加圧から冷却、減圧への切替えの時機を逸して、
金属水素化物から反応熱、又は圧力差を十分に取出せな
いことがある。As a result, it is not possible to determine the extent to which the metal hydride should be heated, pressurized, cooled, or depressurized, or the timing for switching from heating and pressurization to cooling and depressurization is missed.
It may not be possible to sufficiently extract the reaction heat or pressure difference from the metal hydride.
従来の金属水素化物の水素化反応度を測定する装置とし
ては、金属水素化物を充填した反応容器に出入する水素
ガスの流量をガス流量計で測定し、水素ガス圧を測定し
、金属水素化物に吸蔵されている水素量を計算していた
。Conventional equipment for measuring the hydrogenation reactivity of metal hydrides uses a gas flow meter to measure the flow rate of hydrogen gas entering and exiting a reaction vessel filled with metal hydrides, and measures the hydrogen gas pressure. was calculating the amount of hydrogen stored in.
しかしながら、ガス流量計は応答が遅く、精度も悪く、
吸蔵水素量の計算も煩雑であり、ガス流量計も高価であ
る欠点がある。However, gas flow meters have slow response and poor accuracy.
Calculation of the amount of absorbed hydrogen is also complicated, and the gas flow meter is also expensive.
本発明者は上記従来の問題点の解決を試み、鋭意検討の
結果金属水素化物の水素吸蔵に伴って生じる金属水素化
物の体積変化を検出することにより、金属水素化物の水
素化反応度を即時応答的に、しかも精度良く測定できる
金”属水素化物反応測定装置を完成するに至った。The present inventor attempted to solve the above-mentioned conventional problems, and as a result of intensive studies, by detecting the volume change of metal hydride that occurs as the metal hydride absorbs hydrogen, the hydrogenation reactivity of metal hydride can be immediately determined. We have completed a metal hydride reaction measuring device that can measure responsively and accurately.
第3図は金属水素化物1を利用した装置の一例であり、
金属水素化物1を充填した2つの反応容器2,3,4.
5を連通させて組とした冷暖房ブロックを2組設け、各
反応容器と高温熱源TH1中温熱源TM及び低温熱源T
Lとを連結可能にし、各組の一方の容器を交互に加熱、
冷却することにより他方の容器を交互に冷暖房源として
利用することができる冷暖房装置である。Figure 3 is an example of a device using metal hydride 1.
Two reaction vessels 2, 3, 4 filled with metal hydride 1.
Two sets of air-conditioning and heating blocks are provided in which 5 are connected to each other, and each reaction vessel is connected to a high-temperature heat source TH1, a medium-temperature heat source TM, and a low-temperature heat source T.
L can be connected, and one container of each set is heated alternately.
This is a heating and cooling device that can alternately use the other container as a heating and cooling source by cooling the container.
例えば反応容器2.3に金属水素化物1としてCaNi
5、反応容器4,5に金属水素化物としてLaNi5を
充填して冷房する場合を説明する。For example, CaNi as the metal hydride 1 is added to the reaction vessel 2.3.
5. A case will be described in which the reaction vessels 4 and 5 are filled with LaNi5 as a metal hydride and cooled.
反応容器2,3,4.5は各々熱交換部6が設けられ、
熱媒循環ポンプPを介して熱源と連結されている。The reaction vessels 2, 3, 4.5 are each provided with a heat exchange section 6,
It is connected to a heat source via a heat medium circulation pump P.
反応容器2は高温熱源TH,反応容器3は中温熱源TM
、反応容器4は低温熱源TL、反応容器5は中温熱源T
Mと連結されているが、異なる熱源に切替えることは可
能である。Reaction container 2 is a high temperature heat source TH, reaction container 3 is a medium temperature heat source TM.
, the reaction vessel 4 is a low temperature heat source TL, and the reaction vessel 5 is a medium temperature heat source T.
Although it is connected to M, it is possible to switch to a different heat source.
反応容器2と5及び反応容器3と4は連通管7によらて
連通されている。Reaction vessels 2 and 5 and reaction vessels 3 and 4 are communicated through a communication pipe 7.
連通管7の途中にはバルブ8が設けられて開閉自在にな
され、フィルター9は水素ガスを流通させ、金属水素化
物1が他の容器に移動するのを防止する。A valve 8 is provided in the middle of the communication pipe 7 and can be opened and closed, and a filter 9 allows hydrogen gas to flow and prevents the metal hydride 1 from moving to another container.
金属水素化物1は自己粉砕され数μの大きさになるので
、フィルター9は金属焼結体などで2μ程度の涙過能力
を備えたものになされる。Since the metal hydride 1 is self-pulverized to a size of several microns, the filter 9 is made of a metal sintered body or the like and has a tear penetration capacity of about 2 microns.
この冷暖房装置は、例えば高温熱源THに80℃の熱源
を入力し、中温熱源TMに40°Cの熱源を入力して冷
房運転すると、第1図、第2図における6点で反応容器
4あるいは反応容器5の金属水素化物1のLaNi5が
水素を放出し、冷房負荷とした低温熱源TLから吸熱し
て15℃程度の冷熱を作り出すことができる。For example, when this air-conditioning system is operated by inputting a heat source of 80°C to the high-temperature heat source TH and a heat source of 40°C to the medium-temperature heat source TM, the reaction vessel 4 is Alternatively, LaNi5 of the metal hydride 1 in the reaction vessel 5 releases hydrogen and absorbs heat from the low-temperature heat source TL serving as the cooling load, thereby producing cold heat of about 15°C.
この冷暖房装置の運転においては、反応容器2゜3のC
aNi5は高温熱源THに加熱されて水素を放出し、中
温熱源TMに冷却されて水素を吸蔵し、又反応容器4,
5のLaNi5は中温熱源TMに冷却されて水素を放出
し、低温熱源TL(h房負荷)に加熱されて水素を吸蔵
することを交互に繰返す。In the operation of this heating and cooling system, the temperature of the reaction vessel 2°3 is
aNi5 is heated by the high-temperature heat source TH to release hydrogen, is cooled by the medium-temperature heat source TM to absorb hydrogen, and is also heated by the reaction vessel 4,
LaNi 5 of No. 5 is cooled by the medium temperature heat source TM to release hydrogen, and heated by the low temperature heat source TL (h chamber load) to absorb hydrogen, which are alternately repeated.
金属水素化物1は水素の吸蔵、放出の間、最大水素吸蔵
量かはVo、2から0.8である金属水素化物組成の間
で変動するが、その金属水素化物1の水素化反応度を即
時応答的に見極めるのが困難であり、金属水素化物1の
加熱、冷却の切替えの時機を逸する問題がある。During hydrogen absorption and desorption, the metal hydride 1 has a maximum hydrogen storage capacity Vo, which varies between metal hydride compositions ranging from 2 to 0.8, but the hydrogenation reactivity of the metal hydride 1 is It is difficult to determine this in real time, and there is a problem in that the timing for switching between heating and cooling of the metal hydride 1 is missed.
金属水素化物1は微粉体の状態で、金属の状態から最大
に水素を吸蔵した状態では見かけの体積で20〜25%
増大する。Metal hydride 1 is in a fine powder state, and when it is in a state where it has absorbed hydrogen to the maximum from a metal state, it has an apparent volume of 20 to 25%.
increase
本発明者はこの点に注目して、金属水素化物1の体積膨
張を検出して、金属水素化物1の水素化反応度を測定で
きることを見い出した。The present inventor paid attention to this point and discovered that the hydrogenation reactivity of the metal hydride 1 can be measured by detecting the volumetric expansion of the metal hydride 1.
金属水素化物反応測定装置は、第3図の冷暖房装置にお
いては反応容器4,5の容器壁10の内側に設けられて
いる。The metal hydride reaction measuring device is provided inside the vessel walls 10 of the reaction vessels 4 and 5 in the heating and cooling system shown in FIG.
その詳細な構造は第4図に示されている。Its detailed structure is shown in FIG.
容器壁10と一体に筒状壁11゜11が容器の内側に設
けられ、その筒体の開口部を塞ぐように壁体12,12
が設けられている。A cylindrical wall 11°11 is provided inside the container integrally with the container wall 10, and walls 12, 12 are provided so as to close the opening of the cylindrical body.
is provided.
壁体12は例えば金属焼結体からなり、水素ガスは透過
するが、金属水素化物は透過しないものになされる。The wall 12 is made of, for example, a metal sintered body, and is made to be permeable to hydrogen gas but not permeable to metal hydride.
筒状壁11と壁体12によって反応測定室13とブラン
ク室14が形成される。A reaction measurement chamber 13 and a blank chamber 14 are formed by the cylindrical wall 11 and the wall body 12 .
反応測定室13とブランク室14の中には水素ガスも透
過せず、弾性変形可能な隔壁15,15が周縁部を固定
されて反応測定室13とブランク室14が仕切られてい
る。Hydrogen gas does not permeate into the reaction measurement chamber 13 and the blank chamber 14, and the reaction measurement chamber 13 and the blank chamber 14 are partitioned off by elastically deformable partition walls 15, 15 whose peripheral edges are fixed.
隔壁15.15はステンレス鋼等の薄板が好適である。The partition wall 15.15 is preferably made of a thin plate of stainless steel or the like.
反応測定室13の壁体12と隔壁15の間に金属水素化
物16が見かけ上隙間なく充填される。The metal hydride 16 is filled between the wall 12 and the partition wall 15 of the reaction measurement chamber 13 with no apparent gap.
金属水素化物16は金属水素化物1と同じ種類であれば
、水素化反応度測定に換算は必要はない。If the metal hydride 16 is the same type as the metal hydride 1, no conversion is necessary for measuring the hydrogenation reactivity.
反応測定室13の隔壁15は水素ガス圧と金属水素化物
16の体積変化に応じて、中央部を中心に弾性変形する
。The partition wall 15 of the reaction measurement chamber 13 is elastically deformed around the center in response to hydrogen gas pressure and changes in the volume of the metal hydride 16.
ブランク室14の隔壁15は水素ガス圧の変化に応じて
弾性変形する。The partition wall 15 of the blank chamber 14 is elastically deformed in response to changes in hydrogen gas pressure.
隔壁15゜15と容器壁10の間は気密になされてもよ
いし、外気と通じるようにされてもよい。The space between the partition wall 15.degree. 15 and the container wall 10 may be airtight or may be communicated with the outside air.
隔壁15には隔壁15の変形検出素子17が設けられて
いる。The partition wall 15 is provided with a deformation detection element 17 for the partition wall 15 .
隔壁15と壁体12の間は反応容器4と同じ水素ガス圧
になされ、反応測定室13が反応容器4の内側に形成さ
れているから同じ温度雰囲気になされているから、金属
水素化物16は反応容器4内の金属水素化物1とはゾ同
じ反応条件になされている。The space between the partition wall 15 and the wall 12 is kept at the same hydrogen gas pressure as the reaction vessel 4, and since the reaction measurement chamber 13 is formed inside the reaction vessel 4, the atmosphere is at the same temperature. The reaction conditions are the same as those for the metal hydride 1 in the reaction vessel 4.
ブランク室14の隔壁15の変形検出素子17によって
補正されて、反応測定室13の隔壁15の変形検出素子
17によって金属水素化物16の体積変化が即時応答的
に検出され、金属水素化物16即ち金属水素化物1の水
素化成、応度が測定される。The change in volume of the metal hydride 16 is corrected by the deformation detection element 17 of the partition wall 15 of the blank chamber 14, and the change in volume of the metal hydride 16 is detected in real time by the deformation detection element 17 of the partition wall 15 of the reaction measurement chamber 13. Hydrogenation and response of hydride 1 are measured.
隔壁15の変形検出素子17は歪ゲージ、インダクタン
ス式変位変換器、キャパシタンス式変位変換器、差動変
圧器、抵抗変換器等が使用される。As the deformation detection element 17 of the partition wall 15, a strain gauge, an inductance displacement transducer, a capacitance displacement transducer, a differential transformer, a resistance transducer, or the like is used.
第5図は金属水素化物反応測定装置の別の例を示してい
る。FIG. 5 shows another example of a metal hydride reaction measuring device.
反応測定室13の筒状壁11において隔壁15より容器
壁10側の部分に水素ガスを透過し、金属水素化物1は
透過しない水素ガス透過部18を設けている。A hydrogen gas permeable section 18 is provided in a portion of the cylindrical wall 11 of the reaction measurement chamber 13 closer to the container wall 10 than the partition wall 15, through which hydrogen gas permeates, but through which the metal hydride 1 does not permeate.
従って、隔壁15の両側で水素ガスは同一にさ札水素ガ
ス圧変化の補正は必要なくなる。Therefore, since the hydrogen gas is the same on both sides of the partition wall 15, there is no need to correct changes in hydrogen gas pressure.
実験例
ステンレス製の反応容器4と一体に、外径24mm、内
径20mmの円筒状の筒状壁11が内側に設けられ、筒
状壁11の先端開口部を塞ぐようにステンレス製の金属
焼結体の壁体12(2μの濾過能力)が設けられている
。Experimental Example A cylindrical wall 11 with an outer diameter of 24 mm and an inner diameter of 20 mm is provided inside the reaction vessel 4 made of stainless steel, and a stainless steel metal sintered wall 11 is provided inside the reaction vessel 4 made of stainless steel so as to close the opening at the tip of the cylindrical wall 11. A body wall 12 (2μ filtration capacity) is provided.
壁体12から10龍の間隔に厚さ1闘のステンレス製薄
板の隔壁15を設け、壁体12と隔壁15の間の内容積
3.2dの空間に金属水素化物LaNi516.8 、
!li’を見かけ上空間を満たすように充填した。A partition wall 15 made of a thin stainless steel plate with a thickness of 1 mm is provided at a distance of 10 mm from the wall body 12, and a metal hydride LaNi516.8,
! li' was filled to apparently fill the space.
隔壁15に隔壁15の変形検出素子17として新興通信
工業■製ポリイミド箔歪ゲージB−FAE、−5−12
を貼着し、隔壁15の変形を歪ゲージの歪量で検出した
。Polyimide foil strain gauge B-FAE, -5-12 manufactured by Shinko Tsushin Kogyo ■ is used as the deformation detection element 17 of the partition wall 15 on the partition wall 15.
was attached, and the deformation of the partition wall 15 was detected by the amount of strain using a strain gauge.
LaNi5の水素吸蔵量が0の場合の歪量がOになるよ
うにして、水素吸蔵量と歪量の関係を確認した。The relationship between the hydrogen storage amount and the strain amount was confirmed by setting the strain amount to O when the hydrogen storage amount of LaNi5 was 0.
L a N 15の最大水素吸蔵量を1として水素吸蔵
量が0.2の時歪量は0.0097、水素吸蔵量が0.
8の時歪量は0.0388であった。When the maximum hydrogen storage amount of L a N 15 is 1, when the hydrogen storage amount is 0.2, the strain amount is 0.0097, and the hydrogen storage amount is 0.
8, the amount of distortion was 0.0388.
この結果は第6図に示す通り、直線関係が成立ち、金属
水素化物の水素反応度が金属水素化物の体積変化で測定
できることが確認された。As shown in FIG. 6, the results showed that a linear relationship was established, and it was confirmed that the hydrogen reactivity of the metal hydride could be measured by the change in the volume of the metal hydride.
以上の通り、本発明金属水素化物反応測定装置は金属水
素化物の水素化反応度を即時応答式に測定することがで
き、金属水素化物の反応を利用したシステム、装置の運
転、制御を容易に行なうことができる。As described above, the metal hydride reaction measuring device of the present invention can measure the hydrogenation reactivity of metal hydrides in an instant response manner, and facilitates the operation and control of systems and devices that utilize metal hydride reactions. can be done.
又、本発明装置は金属水素化物反応容器の内側で、金属
水素化物の一部を試料として反応測定室で、その金属水
素化物の体積変化を測定するものであり、反応条件が金
属水素化物反応容器と同じになり構造が簡単であると共
に安価で且つ信頼性の高いものであって、複雑な計算プ
ロセスも必要としない利点がある。Furthermore, the device of the present invention measures the volume change of a metal hydride in a reaction measurement chamber using a part of the metal hydride as a sample inside the metal hydride reaction vessel, and the reaction conditions are such that a metal hydride reaction is required. It has the advantage that it is the same as a container, has a simple structure, is inexpensive, has high reliability, and does not require a complicated calculation process.
第1図は金属水素化物の水素圧一温度線図、第2図は同
じく水素圧−金属水素化物組成線図、第3図は本発明金
属水素化物反応測定装置を利用した冷暖房装置を示す断
面図、第4図、第5図は本発明金属水素化物反応測定装
置の一例の要部を示す断面図、第6図は本発明金属水素
化物反応測定装置の実験結果を示す金属水素化物組成−
歪量線図である。
1・・・・・・金属水素化物、2,3,4,5・・・・
・・金属水素化物反応容器、6・・・・・・熱交換部、
7・・・・・・連通管、8・・・・・・バルブ、9・・
・・・・フィルター、10・・・・・・反応容器壁、1
1・・・・・・筒状壁、12・・・・・・水素ガスを透
過するが金属水素化物を透過しない壁体、13・・・・
・・反応測定室、14・・・・・・ブランク室、15・
・・・・・弾性変形可能な隔壁、16・・・・・・金属
水素化物、17・・・・・・隔壁15の変形検出素子、
18・・・・・・水素ガス透過部、TH・・・・・・高
温熱源、TM・・・・・・中温熱源、TL・・・・・・
低温熱源、P・・・・・・熱媒循環ポンプ。Figure 1 is a hydrogen pressure-temperature diagram of a metal hydride, Figure 2 is a hydrogen pressure-metal hydride composition diagram, and Figure 3 is a cross section showing an air conditioning system using the metal hydride reaction measuring device of the present invention. 4 and 5 are cross-sectional views showing essential parts of an example of the metal hydride reaction measuring device of the present invention, and FIG. 6 is a metal hydride composition showing the experimental results of the metal hydride reaction measuring device of the present invention.
It is a strain amount diagram. 1...Metal hydride, 2,3,4,5...
...Metal hydride reaction vessel, 6...Heat exchange section,
7...Communication pipe, 8...Valve, 9...
... Filter, 10 ... Reaction vessel wall, 1
1... Cylindrical wall, 12... Wall that permeates hydrogen gas but does not permeate metal hydride, 13...
...Reaction measurement chamber, 14...Blank chamber, 15.
. . . Elastically deformable partition wall, 16 . . . Metal hydride, 17 . . . Deformation detection element for partition wall 15,
18...Hydrogen gas permeation section, TH...High temperature heat source, TM...Medium temperature heat source, TL...
Low temperature heat source, P... Heat medium circulation pump.
Claims (1)
内側に、水素ガスは透過するが金属水素化物は透過しな
い壁体を有する反応測定室が形成され、該反応測定室の
中に弾性変形可能な隔壁が設けられ、該隔壁と水素ガス
を透過するが金属水素化物は透過しない壁体の間に金属
水素化物を充填し、該反応測定室に該弾性変形可能な隔
壁の変形検出素子が設けられていることを特徴とする金
属水素化物反応測定装置。1. A reaction measurement chamber having a wall through which hydrogen gas permeates but not metal hydride is formed inside a metal hydride reaction container filled with metal hydride, and inside the reaction measurement chamber there is formed an elastically deformable wall. a partition wall is provided, a metal hydride is filled between the partition wall and a wall that allows hydrogen gas to pass through but not metal hydride, and a deformation detection element for the elastically deformable partition wall is provided in the reaction measurement chamber. A metal hydride reaction measuring device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55179534A JPS5946882B2 (en) | 1980-12-17 | 1980-12-17 | Metal hydride reaction measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55179534A JPS5946882B2 (en) | 1980-12-17 | 1980-12-17 | Metal hydride reaction measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57106501A JPS57106501A (en) | 1982-07-02 |
JPS5946882B2 true JPS5946882B2 (en) | 1984-11-15 |
Family
ID=16067428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55179534A Expired JPS5946882B2 (en) | 1980-12-17 | 1980-12-17 | Metal hydride reaction measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5946882B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5895603A (en) * | 1981-11-27 | 1983-06-07 | Agency Of Ind Science & Technol | Hydrogenation reaction rate control in metal hydride |
-
1980
- 1980-12-17 JP JP55179534A patent/JPS5946882B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57106501A (en) | 1982-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Boser | Hydrogen sorption in LaNi5 | |
Gopal et al. | Studies on heat and mass transfer in metal hydride beds | |
Sharma et al. | Effect of measurement parameters on thermodynamic properties of La-based metal hydrides | |
CA1178790A (en) | Flexible means for storing and recovering hydrogen | |
Corgnale et al. | High pressure thermal hydrogen compression employing Ti1. 1CrMn metal hydride material | |
Osumi et al. | Hydrogen absorption-desorption characteristics of mischmetal-nickel-aluminum alloys | |
Supper et al. | Reaction kinetics in metal hydride reaction beds with improved heat and mass transfer | |
Urbanczyk et al. | Demonstration of Mg 2 FeH 6 as heat storage material at temperatures up to 550 C | |
Madaria et al. | Effect of heat transfer enhancement on the performance of metal hydride based hydrogen compressor | |
JP7491945B2 (en) | Hydrogen Storage System | |
Suda et al. | Experimental measurements of thermal conductivity | |
Muthukumar et al. | Measurement of thermodynamic properties of some hydrogen absorbing alloys | |
Sarath Babu et al. | Thermodynamic characterization of Mg‐50 wt% LaNi5 composite hydride for thermochemical energy storage application | |
Bjurström et al. | The metal hydride heat pump: dynamics of hydrogen transfer | |
JPS5946882B2 (en) | Metal hydride reaction measurement device | |
CN106770396B (en) | Method for measuring hydrogen storage material hydrogen discharge reaction thermodynamic parameter | |
Lynch | Operating characteristics of high performance commercial metal hydride heat exchangers | |
Linder | Automotive cooling systems based on metal hydrides | |
JPH0128341B2 (en) | ||
CN114113194A (en) | Thermal signal testing device and system based on phase change latent heat of solid hydrogen storage and supply material and thermal signal testing and analyzing method | |
Tkacz | Enthalpies of formation and decomposition of nickel hydride and nickel deuteride derived from (p, c, T) relationships | |
Josephy et al. | Kinetic measurements of LaNi5Hx and MmNi4. 15 Fe0. 85Hx with constant pressure differentials | |
JP2717297B2 (en) | How to measure the amount of stored hydrogen in the hydrogen storage tank | |
Li | Hydrogen Storage | |
Cai et al. | Intermetallic hydrides:(I) investigation of the rate of phase transformation |