JPH0128312B2 - - Google Patents

Info

Publication number
JPH0128312B2
JPH0128312B2 JP56052542A JP5254281A JPH0128312B2 JP H0128312 B2 JPH0128312 B2 JP H0128312B2 JP 56052542 A JP56052542 A JP 56052542A JP 5254281 A JP5254281 A JP 5254281A JP H0128312 B2 JPH0128312 B2 JP H0128312B2
Authority
JP
Japan
Prior art keywords
temperature
air
heat exchanger
expander
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56052542A
Other languages
Japanese (ja)
Other versions
JPS57166465A (en
Inventor
Teruji Kaneko
Nobunao Nakamura
Shigeru Kadokura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP5254281A priority Critical patent/JPS57166465A/en
Publication of JPS57166465A publication Critical patent/JPS57166465A/en
Publication of JPH0128312B2 publication Critical patent/JPH0128312B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は空気液化分離装置の起動運転に関す
るもので、特に、空気液化分離装置の自動起動に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the startup operation of an air liquefaction separation device, and particularly to the automatic startup of an air liquefaction separation device.

蓄冷器あるいは切換式熱交換器(以下、切換式
熱交換器と略称する。)および膨脹エンジンある
いは膨脹タービン(以下、膨脹機と略称する。)
を有する全低圧式空気分離装置は原料空気中の水
分や炭酸ガスを切換式熱交換器内で空気を冷却す
ると同時に析出除去させ、空気を低温下で液化精
溜せしめるに必要な寒冷を膨脹機で得るプロセス
で構成されている。
A regenerator or a switching heat exchanger (hereinafter referred to as a switching heat exchanger) and an expansion engine or an expansion turbine (hereinafter referred to as an expansion machine).
The all-low-pressure air separation equipment has an expansion machine that cools and removes moisture and carbon dioxide from the feed air in a switching heat exchanger while simultaneously precipitating the air and liquefying and rectifying the air at low temperatures. It consists of the process of obtaining

切換式熱交換器での水分や炭酸ガスを除去する
機構は、例えば約5Kg/cm2Gに圧縮された空気中
の水分や炭酸ガスをその圧力における飽和蒸気圧
で冷却温度に従い凝結析出させ、切換式熱交換器
内壁に付着させる。次に、この熱交換器を切換え
空気流路を略大気圧の戻りガス流路に切換え、熱
交換器内壁の析出水分、炭酸ガスを戻りガスによ
つて昇華パージせしめ、戻りガスに同伴させて大
気中に放出する。この凝結析出と昇華パージは、
原料空気の圧力と戻りガスの圧力による飽和蒸気
圧の差により実行されるが、空気と戻りガスの
各々の流量差、温度差により影響を受け、第1図
に示すような空気の温度と流量差によつて決まる
水分と炭酸ガスを昇華パージすることが可能であ
る温度差(パージ限界温度差)が規定される。す
なわち、第1図中のAおよびa線は水分に関する
ものであり、Bおよびb線は炭酸ガスに関するも
のであり、AおよびBは空気量と戻りガス量が等
しい場合(空気分離装置起動運転時)であり、
a,bは戻りガス量が空気量から製品量を差し引
いた量の場合(空気分離装置定常運転時)を表わ
している。従つて、この熱交換器の温度分布は、
いずれの点においても限界温度差の範囲内にある
ことが必要で、例えば、C線のような温度分布に
する必要がある。このような温度分布を得るため
に、熱交換器の冷端側に原料空気の一部を戻し、
中間部より抜き出す再熱系を設けるか、あるいは
原料空気の一部を中間部より抜き出す中間抽気系
を設けている。(以下、この再熱系あるいは中間
抽気系を再熱系と略称する。) このような切換式熱交換器と必要な寒冷を発生
する膨脹機とを有する空気液化分離装置の起動運
転は空気液化分離装置の各部の温度を一定の基準
に従つて順次冷却してゆき、且つ各部の温度分布
を一定に保つことが必要となるので、慎重な運転
が要求され熟練オペレータを必要としていた。
The mechanism for removing moisture and carbon dioxide in a switching heat exchanger is to condense and precipitate moisture and carbon dioxide in air compressed to approximately 5 kg/cm 2 G at the saturated vapor pressure at that pressure according to the cooling temperature. Attach to the inner wall of the switching heat exchanger. Next, the heat exchanger is switched and the air flow path is switched to a return gas flow path at approximately atmospheric pressure, and the moisture and carbon dioxide precipitated on the inner wall of the heat exchanger are sublimated and purged by the return gas and entrained in the return gas. Release into the atmosphere. This coagulation precipitation and sublimation purge are
It is executed by the difference in saturated vapor pressure due to the pressure of raw material air and the pressure of return gas, but it is affected by the difference in flow rate and temperature of air and return gas, and the temperature and flow rate of air are as shown in Figure 1. A temperature difference (purge limit temperature difference) at which moisture and carbon dioxide can be sublimated and purged is determined by the difference. That is, lines A and a in Figure 1 are related to moisture, lines B and b are related to carbon dioxide gas, and lines A and B are for the case where the amount of air and the amount of return gas are equal (at the time of starting operation of the air separation device). ) and
a and b represent the case where the return gas amount is the amount obtained by subtracting the product amount from the air amount (during steady operation of the air separation device). Therefore, the temperature distribution of this heat exchanger is
It is necessary that each point be within the range of the critical temperature difference, and for example, it is necessary to have a temperature distribution similar to line C. In order to obtain such a temperature distribution, some of the feed air is returned to the cold end of the heat exchanger,
Either a reheat system is provided to extract air from the intermediate section, or an intermediate extraction system is provided to extract part of the raw air from the intermediate section. (Hereinafter, this reheat system or intermediate extraction system will be abbreviated as the reheat system.) The start-up operation of an air liquefaction separation device that has such a switching heat exchanger and an expansion machine that generates the necessary refrigeration is performed during air liquefaction. Since it is necessary to sequentially cool down the temperature of each part of the separator according to a certain standard and to maintain a constant temperature distribution in each part, careful operation is required and a skilled operator is required.

従来の起動方法の一例を説明すると、第1段階
として、切換式交換器冷端部より出る空気を直接
膨脹機入口に導く起動系統を使用して膨脹機を起
動後、切換式熱交換器のみの冷却運転に入り、膨
脹機で断熱膨脹して低温になつた空気を全量切換
式熱交換器の戻りガス側に戻し、熱交換器冷端部
より出る空気温度が水分がほとんど存在しない温
度(約−60℃)まで熱交換器の冷却を進める。第
2段階として、熱交換器冷端部よりの空気および
膨脹機出口の空気の一部を精溜塔、過冷器、液化
器等を冷却するためにこれら機器に流す。この
際、熱交換器での水分のパージ除去が可能な温度
差を保つように再熱系の流量を調節しながら膨脹
機出口にて炭酸ガスが凝結析出しない温度(約−
130℃)まで冷却を進める。次に第3段階として、
各部の冷却を中止し、切換式熱交換器のみを急速
に冷却して熱交換器内で空気中の炭酸ガスが凝結
析出するようにする。この際、熱交換器の冷端温
度差として炭酸ガスのパージ除去が可能となる温
度差を保つように再熱系の流量を調節し、かつ膨
脹機出口において通過空気が液化することにより
膨脹機が破損をきたすことがないように、切換式
熱交換器冷端部より膨脹機入口に至る起動系統に
設けられた流量調節弁を操作しつつ、冷却を進
め、切換式熱交換器が充分に冷却された状態(例
えば、冷端部より出る空気の温度が−160℃程度
となる状態。)にする。
To explain an example of a conventional startup method, in the first step, after starting the expander using a startup system that directs the air coming out of the cold end of the switching heat exchanger directly to the expander inlet, only the switching heat exchanger The cooling operation begins, and the air that has become low temperature through adiabatic expansion in the expander is returned to the return gas side of the full-volume switching heat exchanger, and the temperature of the air exiting from the cold end of the heat exchanger reaches a temperature at which almost no moisture is present ( Continue cooling the heat exchanger to approximately -60°C. In the second stage, the air from the cold end of the heat exchanger and a portion of the air from the expander outlet are passed through a rectifier, a subcooler, a liquefier, etc. to cool these devices. At this time, while adjusting the flow rate of the reheating system to maintain a temperature difference that allows water to be purged and removed in the heat exchanger, the temperature at which carbon dioxide gas does not condense and precipitate at the outlet of the expander (approximately -
Continue cooling to 130℃). Next, as the third step,
Stop cooling each part and rapidly cool only the switching heat exchanger so that carbon dioxide in the air condenses and precipitates inside the heat exchanger. At this time, the flow rate of the reheat system is adjusted so as to maintain a temperature difference at the cold end of the heat exchanger that makes it possible to purge and remove carbon dioxide gas, and the air passing through the expander is liquefied at the outlet of the expander. In order to prevent damage to the switching heat exchanger, the flow control valve installed in the startup system from the cold end of the switching heat exchanger to the expansion machine inlet is operated to proceed with cooling and to ensure that the switching heat exchanger is fully functioning. Set it in a cooled state (for example, a state in which the temperature of the air exiting from the cold end is about -160°C).

ついで、第4段階として、第2段階と同様に精
溜塔、過冷器、液化器などを冷却するために、切
換式熱交換器冷端部よりの空気および膨脹機出口
の空気の一部を上記機器に送給する。この際、こ
の空気の送給量を切換式熱交換器の冷端部空気温
度が所定温度(約−160℃)を越えないように、
徐々に、増加するようにし、空気液化分離装置全
体の冷却を行い、下部塔底部に液体空気が溜るま
で冷却し、最終的に精溜塔の各棚段に液が乗るま
で冷却を進めるが、この時も膨脹機出口において
通過空気が液化しないように膨脹機処理量を調整
し、寒冷のバランスを調整する。以上の第1段階
から第4段階の複雑な起動冷却運転を熟練運転員
が遠隔操作および現場操作で人為的に行つていた
ので、操作に手間がかかり、またベテラン運転員
でなければ起動運転が出来ないなどの不都合があ
つた。
Then, in the fourth stage, in order to cool the rectification column, subcooler, liquefier, etc., as in the second stage, air from the cold end of the switching heat exchanger and a part of the air at the expander outlet are used. is sent to the above equipment. At this time, the amount of air supplied is adjusted so that the air temperature at the cold end of the switching heat exchanger does not exceed a predetermined temperature (approximately -160°C).
The air liquefaction separation device is cooled as a whole until liquid air accumulates at the bottom of the lower tower, and cooling is continued until liquid air finally reaches each stage of the rectification tower. At this time as well, the throughput of the expander is adjusted so that the passing air does not liquefy at the outlet of the expander, and the balance of cooling is adjusted. The complicated start-up cooling operation from the first stage to the fourth stage described above was performed manually by skilled operators using remote control and on-site operation, so it was time-consuming to operate, and the start-up operation was performed only by experienced operators. There were some inconveniences such as not being able to.

この発明は上記事情に鑑みてなされたもので、
前記の複雑な起動運転の各工程を自動制御し、自
動起動運転が可能な空気液化分離装置を提供する
ことを目的とし、切換式熱交換器の再熱系路と切
換式熱交換器の冷端部から膨脹機入口に至る起動
系路とに夫々流量調節弁を設け、さらに切換式熱
交換器冷端部の空気と戻りガスとの温度差を検出
する温度差調節計と、切換式熱交換器再熱系出口
の空気温度を検出する温度調節計と、膨脹機出口
の空気温度を検出する温度調節計と、膨脹機入口
に設けた膨脹機容量を調節する容量調節弁と、切
換式熱交換器内に析出する水分と炭酸ガスを昇華
除去しうる空気と戻りガスとの温度差の関係を組
み込み前記温度差調節計をカスケード制御する折
線変換器と、再熱系出口の空気温度を検出する温
度調節計にプログラム指令を与えるプログラム設
定器と、これら温度調節計からの出力信号を切換
える切換スイツチ機構とを設けて、各温度調節計
からの検出信号をプログラム制御により切換えも
しくは優先させて、前記流量調節弁を制御し、か
つ膨脹機出口の空気温度を検出する温度調節計で
膨脹機の容量を制御して冷却を進め、空気液化分
離装置を自動的に起動させることを特徴とするも
のである。
This invention was made in view of the above circumstances,
The purpose is to provide an air liquefaction separation device that automatically controls each process of the above-mentioned complicated start-up operation and is capable of automatic start-up operation. A flow rate control valve is installed in each of the start-up line from the end to the expander inlet, and a temperature difference controller is installed to detect the temperature difference between the air at the cold end of the switching heat exchanger and the return gas, and a switching heat exchanger is installed. A temperature controller that detects the air temperature at the outlet of the exchanger reheat system, a temperature controller that detects the air temperature at the expander outlet, and a capacity control valve that adjusts the expander capacity installed at the expander inlet. A polygonal converter incorporates the relationship between the temperature difference between the return gas and the air capable of sublimating and removing moisture and carbon dioxide precipitated in the heat exchanger, and controls the temperature difference controller in cascade, and the air temperature at the outlet of the reheating system is adjusted. A program setting device that gives program commands to the temperature controllers to be detected and a changeover switch mechanism that switches the output signals from these temperature controllers are provided, and the detection signals from each temperature controller can be switched or prioritized by program control. , the capacity of the expander is controlled by a temperature controller that controls the flow rate control valve and detects the air temperature at the outlet of the expander to proceed with cooling, and automatically starts the air liquefaction separation device. It is something.

以下、この発明を図面を参照して詳しく説明す
る。第3図はこの発明の空気液化分離装置の一例
を示す概略構成図で、約5Kg/cm2Gに圧縮された
空気は図示されていない空気流路と戻りガス流路
を切換える自動切換弁機構により管1および管2
から切換式熱交換器3,3′に送入され、膨脹し
て低温となつた戻りガスは管4,5を通り、自動
切換弁機構を経て大気に放出される。切換式熱交
換器3,3′に導入された空気はこの熱交換器3,
3′中で戻りガスと向流熱交換することによつて
冷却され、水分や炭酸ガスを凝結、析出し戻止弁
6を経て管7に至る。空気液化分離装置の起動冷
却時には管7からの空気は3分され、その1部は
管8、起動系流量調節弁9、管10,11,12
および13を経て、膨脹タービン14および15
に送入され、また1部の空気は管16、再熱系流
量調節弁17、管18を経て、切換式熱交換器
3,3′にて凝結、析出した炭酸ガスがパージ除
去されるような温度分布を得るために切換式熱交
換器3,3′の再熱系に導入され、管19を通り
膨脹タービン14,15に送給される。残りの空
気は管20を通り、精溜塔、液化器、過冷器(い
ずれも図示せず)の冷却に用いられ、管21,2
2、戻止弁6を経て戻りガスとして切換式熱交換
器3,3′に戻つてくる。一方、膨脹タービン1
4,15に供給された空気は断熱膨脹して温度が
低下し、寒冷を発生し、管23,24,25を経
た後、さらに三方弁26で管27と管28に分配
され、管27を通る空気は精溜塔等を冷却して管
21に戻り、管28からの空気と合流して、管2
2を経て切換式熱交換器3,3′に入り、ここで
凝結、析出している炭酸ガス、水分を昇華、パー
ジし、流入してくる空気と向流熱交換しつつ、昇
温し、管2,4を通り、自動切換弁機構を経て、
大気に放出される。以上のように構成されたこの
発明の空気液化分離装置において、以下に起動動
作を説明する。
Hereinafter, the present invention will be explained in detail with reference to the drawings. Figure 3 is a schematic configuration diagram showing an example of the air liquefaction separation device of the present invention, in which air compressed to approximately 5 kg/cm 2 G is transferred to an automatic switching valve mechanism that switches between an air flow path and a return gas flow path (not shown). By tube 1 and tube 2
The expanded and cooled return gas is fed into the switching heat exchangers 3, 3', passes through pipes 4, 5, and is discharged to the atmosphere via an automatic switching valve mechanism. The air introduced into the switching heat exchangers 3, 3' is
It is cooled by countercurrent heat exchange with the return gas in 3', condenses and precipitates moisture and carbon dioxide, and reaches the pipe 7 via the return valve 6. During startup cooling of the air liquefaction separation device, the air from pipe 7 is divided into three parts, one part of which is divided into three parts: pipe 8, startup system flow control valve 9, and pipes 10, 11, 12.
and 13, expansion turbines 14 and 15
A part of the air passes through the pipe 16, the reheating system flow control valve 17, and the pipe 18, and is then condensed and precipitated in the switching heat exchangers 3 and 3' so that the carbon dioxide gas is purged and removed. In order to obtain a uniform temperature distribution, the heat exchanger is introduced into the reheat system of the switching heat exchanger 3, 3', and is fed through the pipe 19 to the expansion turbine 14, 15. The remaining air passes through pipe 20 and is used to cool the rectification column, liquefier, and supercooler (all not shown), and passes through pipes 21 and 2.
2. It passes through the return valve 6 and returns to the switching heat exchangers 3, 3' as return gas. On the other hand, expansion turbine 1
The air supplied to tubes 4 and 15 expands adiabatically, lowers its temperature, generates cold air, passes through tubes 23, 24, and 25, and is further divided into tubes 27 and 28 by a three-way valve 26. The air passing through cools the rectification tower, etc., returns to the pipe 21, joins with the air from the pipe 28, and returns to the pipe 2.
2, enters the switching heat exchanger 3, 3', where the condensed and precipitated carbon dioxide and moisture are sublimated and purged, and the temperature is raised while exchanging countercurrent heat with the inflowing air. Passes through pipes 2 and 4, passes through an automatic switching valve mechanism,
released into the atmosphere. In the air liquefaction separation apparatus of the present invention configured as described above, the starting operation will be described below.

第4図はこの発明の空気液化分離装置を常温状
態から起動させた時の各部分の温度変化を示すも
のであり、図中A線は切換式熱交換器3の再熱系
出口温度を、B線は膨脹タービン14,15入口
温度を、C線は切換式熱交換器3の冷端部出口空
気温度を、D線は切換式熱交換器3の冷端部の戻
りガス入口温度を、E線は膨脹タービン14,1
5の出口温度を表わしている。時点θ1で原料空気
を管1(および2)→切換式熱交換器3,3′→
戻止弁6→管7→管8→起動系流量調節弁9→管
10→管11→管12および管13→膨脹タービ
ン14および15→管23および24→管25→
三方弁26→管28→管22→戻止弁6→切換式
熱交換器3,3′→管4および2の経路で流し、
膨脹タービン14,15、2台を起動し、切換式
熱交換器3,3′の冷却を開始する。この時点で
は切換式熱交換器3,3′のみが冷却されるので、
第4図の時点θ1→θ2のように切換式熱交換器3,
3′は急激に冷却され、切換式熱交換器3,3′の
内部で速みやかに空気中の水分が析出するように
なり、空気分離装置内への水分の侵入が最小限に
される。時点θ2で切換式熱交換器3冷端部の出口
温度(C)がほとんど水分を含まない温度t1(約−60
℃)になると、この温度を温度検出器29で検出
し、この検出信号により三方弁26を管27側に
開として空気液化分離装置の全系を冷却する。ま
た、管20にも原料空気を流す。これによつて空
気液化分離装置の構成機器、弁、配管等が冷却さ
れ、空気は管21より帰還する。この冷却過程で
は切換式熱交換器3,3′が析出する水分で閉塞
されないように戻りガス中に昇華させ、除去しな
ければならない。そのため、第1図のA線に示す
水分のパージ限界温度差内に切換式熱交換器3,
3′の冷端部の出口空気と戻りガスとの温度差を
押えることが必要であり、このために、切換式熱
交換器3,3′冷端部の出口空気管7と戻りガス
管22に測温体を設け、この測温体で検出した温
度の温度差を検出する温度差調節計30により、
起動系流量調節弁9と再熱系流量調節弁17を制
御する。すなわち、切換スイツチ31の接点31
aを接点31bに接続しておき、あらかじめ、第
2図に示したx線あるいはy線のような冷端空気
温度に対する許容温度差を組込んだ折線変換器3
2からの許容温度差信号と前記温度差とを温度差
調節計30で比較し、この比較結果により起動系
流量調節弁9、再熱系流量調節弁17をコントロ
ールする。例えば、空気温度が−70℃とすればx
線による許容温度差は約8℃となり、前記温度差
が8℃を越えようとすると、再熱系流量調節弁1
7は開方向に、起動系流動調節弁9は閉方向に制
御される。
FIG. 4 shows the temperature changes in each part when the air liquefaction separation device of the present invention is started from room temperature. In the figure, line A indicates the reheat system outlet temperature of the switching heat exchanger 3. The B line represents the inlet temperature of the expansion turbines 14 and 15, the C line represents the outlet air temperature at the cold end of the switching heat exchanger 3, and the D line represents the return gas inlet temperature at the cold end of the switching heat exchanger 3. The E line is the expansion turbine 14,1
5 represents the outlet temperature. At time θ 1 , feed air is transferred from tubes 1 (and 2) → switching heat exchangers 3, 3' →
Return valve 6 → Pipe 7 → Pipe 8 → Start-up system flow control valve 9 → Pipe 10 → Pipe 11 → Pipe 12 and pipe 13 → Expansion turbine 14 and 15 → Pipe 23 and 24 → Pipe 25 →
It flows through the route of three-way valve 26 → pipe 28 → pipe 22 → return valve 6 → switching type heat exchanger 3, 3' → pipes 4 and 2,
The two expansion turbines 14 and 15 are activated and cooling of the switching heat exchangers 3 and 3' is started. At this point, only the switching heat exchangers 3 and 3' are being cooled, so
As shown in the time θ 1 →θ 2 in Figure 4, the switching heat exchanger 3,
3' is rapidly cooled, moisture in the air quickly precipitates inside the switching heat exchangers 3 and 3', and the intrusion of moisture into the air separation device is minimized. . At time θ 2 , the outlet temperature (C) of the cold end of the switching heat exchanger 3 reaches a temperature t 1 (approximately −60
℃), this temperature is detected by the temperature detector 29, and based on this detection signal, the three-way valve 26 is opened to the pipe 27 side to cool the entire system of the air liquefaction separation device. In addition, raw air is also made to flow through the pipe 20. This cools the components, valves, piping, etc. of the air liquefaction separation device, and the air returns through the pipe 21. In this cooling process, the precipitated moisture must be sublimated into the return gas and removed so that the switching heat exchangers 3, 3' are not clogged with the precipitated moisture. Therefore, the switching heat exchanger 3,
It is necessary to suppress the temperature difference between the outlet air and the return gas at the cold end of the switchable heat exchanger 3, 3', and the outlet air pipe 7 and the return gas pipe 22 at the cold end of the switchable heat exchanger 3, 3'. A temperature measuring element is provided at the temperature measuring element, and a temperature difference controller 30 detects the temperature difference detected by the temperature measuring element.
Controls the startup system flow rate control valve 9 and the reheat system flow rate control valve 17. That is, the contact 31 of the changeover switch 31
A is connected to the contact point 31b, and a broken line converter 3 is constructed in which the allowable temperature difference for the cold end air temperature, such as the x-line or y-line shown in FIG. 2, is incorporated in advance.
A temperature difference controller 30 compares the allowable temperature difference signal from 2 and the temperature difference, and the startup system flow rate control valve 9 and the reheat system flow rate control valve 17 are controlled based on the comparison result. For example, if the air temperature is -70℃, x
The allowable temperature difference between the lines is approximately 8°C, and if the temperature difference exceeds 8°C, the reheat system flow control valve 1
7 is controlled in the opening direction, and the starting system flow control valve 9 is controlled in the closing direction.

このように、切換式熱交換器3,3′の冷端部
の出口空気と戻りガスとの温度差を制御しつつ冷
却を続け、膨脹タービン14,15の出口の温度
が炭酸ガスの析出温度t2(約−130℃)になると、
温度検出器33および34でこれを検出し、その
時点θ3で、三方弁26を管27側に閉として全量
管28に流れるようにし、かつ管20への流れも
停止して切換式熱交換器3,3′のみを急速に冷
却し、空気中の炭酸ガスが切換式熱交換器3,
3′内で速みやかに凝結、析出するようにする。
この期間θ3―θ4においても、前記温度差を制御
し、常に炭酸ガスパージ限界温度差内に保もたれ
るようにする。こうして、切換式熱交換器3,
3′の冷端部空気温度が約−160℃に達すると空気
中の炭酸ガスは略完全に熱交換器3,3′内に析
出し、除去されるが、この時点θ4からは管20、
管27を通して冷却空気を精溜塔等に流しこれら
を冷却するがこの際も前記温度差による制御がな
されている。この運転中、例えば時点θ5で、膨脹
タービン14,15の出口温度がこの出口で空気
が液化する温度(約−188℃)になると、これを
温度検出器33,34で検出し、切換スイツチ3
5の接点35aを接点35bに接続し、切換スイ
ツチ36の接点36aを接点36bに接続し、切
換スイツチ31の接点31cを接点31aに、接
点31dを接点31aに接続し、起動系流量調節
弁9および再熱系流量調節弁17は膨脹タービン
14,15の出口温度調節計37,38により制
御され、膨脹タービン14,15の出口での空気
の液化が防止される。この操作は再熱系流量を増
して膨脹タービン14,15の入口温度を上げる
ことになり、切換式熱交換器3,3′冷端部の温
度差を小さくする方向に動作することになり、前
記の温度差制御を外してもよい。
In this way, cooling is continued while controlling the temperature difference between the outlet air at the cold ends of the switching heat exchangers 3, 3' and the return gas, and the temperature at the outlet of the expansion turbines 14, 15 reaches the carbon dioxide precipitation temperature. When the temperature reaches t 2 (approximately −130℃),
This is detected by the temperature detectors 33 and 34, and at that point θ 3 , the three-way valve 26 is closed to the pipe 27 side so that the entire amount flows to the pipe 28, and the flow to the pipe 20 is also stopped, thereby switching heat exchange. Only the heat exchanger 3, 3' is rapidly cooled, and the carbon dioxide in the air is removed by the switching heat exchanger 3,
3' so that it quickly coagulates and precipitates.
During this period θ 34 as well, the temperature difference is controlled so that it is always kept within the carbon dioxide purge limit temperature difference. In this way, the switching heat exchanger 3,
When the air temperature at the cold end of tube 3' reaches approximately -160°C, carbon dioxide in the air is almost completely deposited in heat exchangers 3 and 3 ' and removed; ,
Cooling air is flowed through the pipe 27 to the rectification tower and the like to cool them, but this time too, control is performed based on the temperature difference. During this operation, for example at time θ 5 , when the outlet temperature of the expansion turbines 14, 15 reaches the temperature at which the air liquefies at the outlet (approximately -188°C), this is detected by the temperature detectors 33, 34, and the changeover switch is activated. 3
The contact 35a of the changeover switch 36 is connected to the contact 36b, the contact 31c of the changeover switch 31 is connected to the contact 31a, and the contact 31d is connected to the contact 31a. The reheat system flow control valve 17 is controlled by outlet temperature controllers 37 and 38 of the expansion turbines 14 and 15, and liquefaction of air at the exits of the expansion turbines 14 and 15 is prevented. This operation increases the flow rate of the reheating system and raises the inlet temperature of the expansion turbines 14 and 15, and works in the direction of reducing the temperature difference between the cold ends of the switching heat exchangers 3 and 3'. The temperature difference control described above may be removed.

こうして冷却を進めると時点θ6で管27に接続
する下部筒に液体空気が発生しはじめる。
As the cooling progresses in this manner, liquid air begins to be generated in the lower cylinder connected to the pipe 27 at time θ 6 .

ついで時点θ7で再熱系の管19の温度が、熱交
換器3,3″の中間部で空気中の炭酸ガスが析出
しない温度(約−130℃)まで低下すると、これ
を温度検出器39で検出し、切換スイツチ31の
接点31eは接点31aに接続され、起動系流量
調節弁9および再熱系流量調節弁17は再熱系出
口温度調節計40で制御される。この温度調節計
40はプログラム設定器41によりカスケード設
定され、管19の温度が約−130℃のときはその
状態に保持され、この温度が低下すると再熱系の
流量を減少するように、起動系流量調節弁9は開
方向に、再熱系流量調節弁17は閉方向に制御さ
れる。この操作により膨脹タービン14,15の
入口温度が低下し、出口温度も低下するため、2
台で運転されている膨脹タービン14,15の
内、あらかじめ優先的に停止するように決められ
ている1台の膨脹タービン例えば14の容量を減
少させ発生寒冷を減らして、入口温度の低下を防
止する。これには切換スイツチ35の接点35c
を接点35aに、切換スイツチ36の接点36c
を接点36aに接続し、膨脹タービン出口温度調
節計37,38で容量調整弁42,43を制御す
る。なお、容量調整弁42,43の代りに膨脹タ
ービン14,15の可変ノズルの翼開度を変えた
り、パーシヤルアドミツシヨン弁等を用いてもよ
い。
Then, at time θ 7 , when the temperature of the reheat system tube 19 drops to a temperature (approximately -130°C) at which carbon dioxide gas in the air does not precipitate in the middle part of the heat exchangers 3, 3'', this is detected by a temperature detector. 39, the contact 31e of the changeover switch 31 is connected to the contact 31a, and the startup system flow control valve 9 and the reheat system flow control valve 17 are controlled by a reheat system outlet temperature controller 40.This temperature controller 40 is set in cascade by the program setting unit 41, and is a startup system flow control valve so that when the temperature of the pipe 19 is about -130°C, it is maintained at that state, and when this temperature decreases, the flow rate of the reheat system is reduced. 9 is controlled in the opening direction, and the reheat system flow rate control valve 17 is controlled in the closing direction.This operation lowers the inlet temperature of the expansion turbines 14 and 15, and also lowers the outlet temperature.
Among the expansion turbines 14 and 15 operated in the same unit, the capacity of one expansion turbine, for example 14, which is determined in advance to be stopped preferentially, is reduced to reduce the cold generation and prevent a drop in the inlet temperature. do. This includes the contact 35c of the changeover switch 35.
to the contact 35a, and the contact 36c of the changeover switch 36
is connected to the contact point 36a, and the capacity adjustment valves 42, 43 are controlled by the expansion turbine outlet temperature controllers 37, 38. Note that instead of the capacity adjustment valves 42 and 43, the blade openings of the variable nozzles of the expansion turbines 14 and 15 may be changed, or partial admission valves or the like may be used.

以上の操作により冷却が進み、空気液化分離装
置の凝縮器等に液化ガスが貯まりはじめると、膨
脹タービン14,15の発生寒冷は小さくてよく
なり、いずれか一方の膨脹タービン14が停止さ
れ、ついで時点θ8で、再熱系出口温度調節計40
の調節設定温度をプログラム設定器41を用い
て、3℃/h〜10℃/hの一定の昇温速度で前記の
−130℃から定常運転時の定格値約−100℃に変更
し、起動系流量調節弁9、再熱系流量調節弁17
をこれに追従、制御させて再熱系出口温度を−
100℃に昇温させ、起動寒冷状態より定常寒冷状
態にして起動を完了する。
As cooling progresses through the above operations and liquefied gas begins to accumulate in the condenser etc. of the air liquefaction separation device, the amount of cold generated by the expansion turbines 14 and 15 becomes small, and one of the expansion turbines 14 is stopped, and then At time θ 8 , the reheat system outlet temperature controller 40
Using the program setting device 41, change the adjustment set temperature from -130°C to the rated value during steady operation of about -100°C at a constant temperature increase rate of 3°C/h to 10°C/h, and then start. System flow rate control valve 9, reheat system flow rate control valve 17
Follow this and control the reheating system outlet temperature -
Raise the temperature to 100℃ and change from the starting cold state to a steady cold state to complete the startup.

以上の説明は空気液化分離装置を常温状態より
起動するものについてのものであるが、空気液化
分離装置が低温状態にある時の起動は、操作が異
なる。第5図は低温状態にある空気液化分離装置
を起動させた時の各部の温度降下の一例を示すも
のであるが、常温からの起動では第4図のように
膨脹タービン14,15出口温度(E線)が炭酸
ガスの析出する温度t2に達する時点θ3では切換式
熱交換器3,3′の再熱系出口温度(A線)は温
度t3のようにまだかなり高いが、低温状態よりの
起動では全系が低温状態にあるので、時点Θ1
膨脹タービン14,15を起動すると各部分の温
度は接近して急速に冷却され、炭酸ガス析出温度
t2に膨脹タービン14,15の出口温度(e線)
が達するまえに再熱系出口温度(a線)が定常運
転時の温度(約−100℃)に時点Θ2で達してしま
うことがある。この場合には再熱系出口温度が約
−100℃に達した時点Θ2で、この温度検出器39
で検出し、この検出によつて再熱系出口温度調節
計40の設定をプログラム設定器41によつて約
−100℃とし、切換スイツチ31の接点31aを
接点31eに接続し、起動系流量調節弁9および
再熱系流量調節弁17を再熱系出口温度調節計4
0によつて再熱系出口温度が一定(約−100℃)
になるように制御して、全系の温度バランスを取
りながら、膨脹タービン14,15の出口温度が
温度t2に達する時点Θ3まで冷却を進める。また、
低温状態からの起動の場合は膨脹タービン141
台による運転がなされることが多く、この場合起
動過程の最終時点で膨脹タービン14の出口温度
が空気が液化する温度(−188℃)に至ることが
あるが、この時も、膨脹タービン14の出口温度
調節計37で容量調節弁42を制御し、膨脹ター
ビン14の容量を調節し、膨脹タービン14の出
口温度が空気液化温度−188℃にならないように
する。以上のような操作により空気液化分離装置
全体が定常状態の温度に近づくと膨脹タービン1
4,15の出口温度は安定的に空気液化温度(−
188℃)を上廻るようになり、全系が安定する。
この時点より凝縮器内に液化ガスが貯えられるま
での時間をタイマで設定し、この設定時間が終了
するまでに、第4図の時点θ3における操作と同様
に、再熱系出口温度調節計40の調節設定温度を
プログラム設定器41にて一定の昇温速度(3
℃/h〜10℃/h)で、−130℃から定常運転時の定
格値−100℃に変更し、再熱系出口温度を−100℃
に昇温させて空気液化分離装置を定常状態とし、
低温状態からの起動が完了する。なお、第5図中
のa線、b線、c線、d線、e線はそれぞれ第4
図のA線、B線、C線、D線、E線に対応するも
のである。
The above explanation is about starting the air liquefaction separation device from a normal temperature state, but the operation is different when starting the air liquefaction separation device when the air liquefaction separation device is in a low temperature state. Fig. 5 shows an example of the temperature drop in each part when starting the air liquefaction separation device in a low temperature state, but when starting from room temperature, the outlet temperature of the expansion turbines 14, 15 ( At the time θ 3 when the E line) reaches the temperature t 2 at which carbon dioxide gas is precipitated, the reheating system outlet temperature (A line) of the switching heat exchangers 3 and 3' is still quite high as the temperature t 3 , but it is at a low temperature. When the expansion turbines 14 and 15 are started at time Θ 1 , the temperature of each part approaches and is rapidly cooled, causing the carbon dioxide precipitation temperature to drop.
At t 2 , the outlet temperature of the expansion turbines 14 and 15 (e line)
The reheating system outlet temperature (line a) may reach the temperature during steady operation (approximately -100°C) at time Θ 2 before the temperature is reached. In this case, the temperature sensor 39
Based on this detection, the reheating system outlet temperature controller 40 is set to approximately -100°C by the program setting device 41, the contact 31a of the changeover switch 31 is connected to the contact 31e, and the startup system flow rate is adjusted. The valve 9 and the reheat system flow rate control valve 17 are connected to the reheat system outlet temperature controller 4.
0 keeps the reheat system outlet temperature constant (approximately -100℃)
While maintaining the temperature balance of the entire system, cooling is continued until the point Θ 3 when the outlet temperatures of the expansion turbines 14 and 15 reach the temperature t 2 . Also,
In the case of startup from a low temperature state, the expansion turbine 141
In many cases, the outlet temperature of the expansion turbine 14 reaches the temperature at which the air liquefies (-188°C) at the final point of the startup process. The capacity control valve 42 is controlled by the outlet temperature controller 37 to adjust the capacity of the expansion turbine 14 so that the outlet temperature of the expansion turbine 14 does not reach the air liquefaction temperature -188°C. When the temperature of the entire air liquefaction separation device approaches a steady state due to the above operations, the expansion turbine 1
The outlet temperature of 4 and 15 is stably equal to the air liquefaction temperature (-
188℃), and the entire system becomes stable.
From this point on, the time until liquefied gas is stored in the condenser is set by a timer, and by the end of this set time, the reheat system outlet temperature controller is 40 adjustment set temperature is set at a constant temperature increase rate (3
℃/h ~ 10℃/h), change from -130℃ to the rated value during steady operation -100℃, and set the reheat system outlet temperature to -100℃.
The air liquefaction separator is brought to a steady state by raising the temperature to
Startup from low temperature state is completed. Note that the a line, b line, c line, d line, and e line in Fig. 5 are the fourth line, respectively.
These correspond to lines A, B, C, D, and E in the figure.

以上説明したようにこの発明の空気液化分離装
置は、切換式熱交換器の再熱系路と切換式熱交換
器の冷端部から膨脹機入口に至る起動系路とに
夫々流量調節弁を設け、さらに切換式熱交換器冷
端部の空気と戻りガスとの温度差を検出する温度
調節計と、再熱系出口の空気温度を検出する温度
調節計と、膨脹機出口の空気温度を検出する温度
調節計と、膨脹機入口に設けられた膨脹機の容量
を調節する容量調節弁と、切換式熱交換器内に析
出する水分と炭酸ガスを昇華除去しうる空気と戻
りガスとの温度差の関係を組込み前記温度調節計
をカスケード制御する折線変換器と再熱系出口の
空気温度を検出する温度調節計にプログラム指令
を与えるプログラム設定器と、これら温度調節計
からの出力信号を切換える切換スイツチ機構とを
有し、各温度調節計からの検出信号をプログラム
制御により切換えもしくは優先させて前記流量調
節弁および前記容量調節弁を制御し、空気液化分
離装置の要部の温度バランスを取りながら冷却を
進め、空気液化分離装置を自動的に起動させるも
のであるので空気液化分離装置の複雑な起動運転
の各工程を自動制御でき、自動起動運転が可能と
なり、操作が簡単になり、未熟な運転員でも起動
運転が出来るなどの利点を有するものである。
As explained above, the air liquefaction separation device of the present invention includes flow rate control valves in the reheat system path of the switching heat exchanger and the startup system path from the cold end of the switching heat exchanger to the expander inlet. Additionally, a temperature controller is installed to detect the temperature difference between the air at the cold end of the switching heat exchanger and the return gas, a temperature controller to detect the air temperature at the reheat system outlet, and a temperature controller to detect the air temperature at the expander outlet. A temperature controller to detect the temperature, a capacity control valve installed at the inlet of the expander to adjust the capacity of the expander, and air and return gas capable of sublimating and removing moisture and carbon dioxide precipitated in the switching heat exchanger. A linear converter that incorporates the relationship between temperature differences and controls the temperature controller in a cascade manner; a program setting device that provides program commands to the temperature controller that detects the air temperature at the outlet of the reheating system; It has a changeover switch mechanism that switches or prioritizes the detection signals from each temperature controller under program control to control the flow rate control valve and the capacity control valve, and maintains the temperature balance of the main parts of the air liquefaction separation device. As the air liquefaction separator is automatically started up, each step of the complicated start-up operation of the air liquefaction separation device can be automatically controlled, automatic start-up operation is possible, and operation is simplified. This has the advantage that even an inexperienced operator can start up and operate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は切換式熱交換器における水分および炭
酸ガスの昇華パージの限界温度差を示すグラフ、
第2図は折線変換器に設定される水分と炭酸ガス
を昇華除去しうる空気と戻りガスとの温度差を示
すグラフ、第3図はこの発明の空気液化分離装置
の一例を示す概略構成図、第4図は常温状態から
の起動運転の際の空気液化分離装置の要部の温度
分布を示すグラフ、第5図は低温状態からの起動
運転の際の同じく要部の温度分布を示すグラフで
ある。 3,3′……切換式熱交換器、9……起動系流
量調節弁、14,15……膨脹タービン、17…
…再熱系流量調節弁、30……温度差調節計、3
1……切換スイツチ、32……折線変換器、35
……切換スイツチ、36……切換スイツチ、3
7,38……膨脹タービン出口温度調節計、40
……再熱系出口温度調節計、41……プログラム
設定器、42,43……容量調節弁。
Figure 1 is a graph showing the critical temperature difference for sublimation purge of moisture and carbon dioxide in a switching heat exchanger.
Fig. 2 is a graph showing the temperature difference between the return gas and the air that can sublimate and remove moisture and carbon dioxide set in the polygon converter, and Fig. 3 is a schematic configuration diagram showing an example of the air liquefaction separation device of the present invention. , Fig. 4 is a graph showing the temperature distribution of the main parts of the air liquefaction separation device during start-up operation from a normal temperature state, and Fig. 5 is a graph showing the temperature distribution of the same main parts during start-up operation from a low-temperature state. It is. 3, 3'...Switching heat exchanger, 9...Start-up system flow rate control valve, 14, 15...Expansion turbine, 17...
...Reheat system flow rate control valve, 30...Temperature difference controller, 3
1... Selector switch, 32... Broken line converter, 35
...Selector switch, 36...Selector switch, 3
7, 38... Expansion turbine outlet temperature controller, 40
...Reheat system outlet temperature controller, 41...Program setting device, 42, 43...Capacity control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 蓄冷器あるいは切換式熱交換器と膨脹機と精
溜塔などを具備する空気液化分離装置において、
蓄冷器あるいは切換式熱交換器の再熱系あるいは
中間抽気系と、蓄冷器あるいは切換式熱交換器の
冷端部から膨脹機に至る起動系にそれぞれ流量調
節弁を設けると共に蓄冷器あるいは切換式熱交換
器の冷端部の空気温度と戻りガス温度との温度差
を検出する温度差調節計と、温度差調節計をカス
ケード制御するための蓄冷器あるいは切換式熱交
換器の冷端部の空気温度に対して蓄冷器あるいは
切換式熱交換器内に析出する水分と炭酸ガスを昇
華除去しうる戻りガス温度との温度差の関係を組
込んだ折線変換器と、蓄冷器あるいは切換式熱交
換器の再熱系あるいは中間抽気系の出口の空気温
度を検出する温度調節計と、この再熱系出口の温
度調節計にプログラム指令を与えるプログラム設
定器と、膨脹機出口の空気温度を検出する温度調
節計と、膨脹機の入口に設けられ膨脹機の容量を
調節する容量調節弁と、これら温度調節計からの
出力信号を切換える切換スイツチ機構とを設け、
装置の起動時にあたり前記各温度調節計からの検
出信号をプログラム制御により切換えもしくは優
先させて前記の各流量調節弁を制御し、かつ膨脹
機出口の空気温度を検出する温度調節計で膨脹機
の容量を制御するよう構成したことを特徴とする
空気液化分離装置。
1. In an air liquefaction separation device equipped with a regenerator or switching heat exchanger, an expander, a rectification column, etc.
Flow rate control valves are provided in the reheat system or intermediate extraction system of the regenerator or switching heat exchanger, and in the startup system from the cold end of the regenerator or switching heat exchanger to the expander. A temperature difference controller that detects the temperature difference between the air temperature at the cold end of the heat exchanger and the return gas temperature, and a regenerator or the cold end of the switching heat exchanger for cascade control of the temperature difference controller. A polygonal converter that incorporates the temperature difference between the air temperature and the return gas temperature that can sublimate and remove moisture deposited in a regenerator or switching heat exchanger and carbon dioxide gas, and a regenerator or switching heat exchanger. A temperature controller that detects the air temperature at the outlet of the reheat system or intermediate extraction system of the exchanger, a program setting device that gives program commands to the temperature controller at the outlet of the reheat system, and a program setting device that detects the air temperature at the expander outlet. a capacity control valve provided at the inlet of the expander to adjust the capacity of the expander, and a changeover switch mechanism to switch the output signals from these temperature controllers,
When starting up the device, the detection signals from each of the temperature controllers are switched or prioritized by program control to control each of the flow rate control valves, and the temperature controller that detects the air temperature at the outlet of the expander controls the temperature of the expander. An air liquefaction separator characterized in that it is configured to control capacity.
JP5254281A 1981-04-08 1981-04-08 Air liquefaction separator Granted JPS57166465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5254281A JPS57166465A (en) 1981-04-08 1981-04-08 Air liquefaction separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5254281A JPS57166465A (en) 1981-04-08 1981-04-08 Air liquefaction separator

Publications (2)

Publication Number Publication Date
JPS57166465A JPS57166465A (en) 1982-10-13
JPH0128312B2 true JPH0128312B2 (en) 1989-06-01

Family

ID=12917660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5254281A Granted JPS57166465A (en) 1981-04-08 1981-04-08 Air liquefaction separator

Country Status (1)

Country Link
JP (1) JPS57166465A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122845A (en) * 1985-11-25 1987-06-04 Pioneer Electronic Corp Vehicle television apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118277A (en) * 1977-03-25 1978-10-16 Hitachi Ltd Air separator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118277A (en) * 1977-03-25 1978-10-16 Hitachi Ltd Air separator

Also Published As

Publication number Publication date
JPS57166465A (en) 1982-10-13

Similar Documents

Publication Publication Date Title
JP5785282B2 (en) Control of natural gas liquefaction
US5669238A (en) Heat exchanger controls for low temperature fluids
NO317035B1 (en) Process and apparatus for regulating production and temperature in a mixed refrigerant LNG plant
US3735599A (en) Process for automatic control of air separation apparatus
US4582519A (en) Gas-liquefying system including control means responsive to the temperature at the low-pressure expansion turbine
JP6354516B2 (en) Cryogenic air separation device and cryogenic air separation method
JPH0128312B2 (en)
US4299607A (en) Process for recovering nitrogen in low pressure type air separation apparatus
JPS5832401B2 (en) Air separation equipment operation control method
JP3213848B2 (en) Nitrogen production apparatus and control method thereof
JP4551334B2 (en) Cryogenic air separation device and control method thereof
JP2002277101A (en) Air conditioner
JP2000146432A (en) Refrigeration system for gasifying/reevaporating gas
JPH01244254A (en) Method of controlling auxiliary cold source for cryogenic refrigerating plant
JPS6346352B2 (en)
JPS6333065B2 (en)
JPS6323468B2 (en)
JPH0480558A (en) Helium liquefying refrigerator
JP2003166783A (en) Low-temperature air processing equipment
JPH0437353B2 (en)
JPS63172879A (en) Intermediate-temperature control system of reversible type heat exchanger group
JPH06147751A (en) Air liquefying and separating device
JPS5944569A (en) Method of operating nitrogen manufacturing device
JPS58142199A (en) Temperature control method of reversible heat exchangers
JPH06147749A (en) Air liquefying and separating device