JPS6323468B2 - - Google Patents

Info

Publication number
JPS6323468B2
JPS6323468B2 JP10078183A JP10078183A JPS6323468B2 JP S6323468 B2 JPS6323468 B2 JP S6323468B2 JP 10078183 A JP10078183 A JP 10078183A JP 10078183 A JP10078183 A JP 10078183A JP S6323468 B2 JPS6323468 B2 JP S6323468B2
Authority
JP
Japan
Prior art keywords
air
switching
flow path
heat exchanger
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10078183A
Other languages
Japanese (ja)
Other versions
JPS59229172A (en
Inventor
Michimasa Okabe
Hisazumi Ishizu
Yasuo Tasaka
Masayoshi Nunomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10078183A priority Critical patent/JPS59229172A/en
Publication of JPS59229172A publication Critical patent/JPS59229172A/en
Publication of JPS6323468B2 publication Critical patent/JPS6323468B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、空気の液化深冷分離装置に使用され
ている原料空気中の水分および炭酸ガスを流路切
替によつて除去する可逆式熱交換器の流路切替方
法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a reversible heat exchanger that removes moisture and carbon dioxide from feed air by switching channels, which is used in an air liquefaction cryogenic separation device. The present invention relates to a flow path switching method for a vessel.

〔発明の背景〕[Background of the invention]

原料空気中の水分および炭酸ガスを流路切替に
よつて昇華除去する可逆式熱交換器を使用する空
気分離装置においては、従来、可逆式熱交換器の
原料空気流路と精溜塔で分離された廃ガス流路を
切替える方法として、2個の空気側切替弁と2個
の廃ガス側切替弁、並びにこれと一緒に作動する
逆止弁2基を一組とする切替装置を設けて流路切
替を行なつている。この切替装置は、空気分離装
置の容量に応じて一組を単位として数組を併設す
る方法が採用されている。
Conventionally, in air separation equipment that uses a reversible heat exchanger that sublimates and removes moisture and carbon dioxide from the feed air by switching the flow path, separation is performed between the feed air flow path of the reversible heat exchanger and the rectification column. As a method for switching the waste gas flow path, a switching device is provided that includes two air-side switching valves, two waste gas-side switching valves, and two check valves that operate together. The flow path is being switched. This switching device employs a method in which several sets are installed together, with one set as a unit, depending on the capacity of the air separation device.

また、一組の切替装置には、可逆式熱交換器が
最少1個以上装置の大きさに応じて複数個設置さ
れている。
Furthermore, one set of switching devices is provided with at least one reversible heat exchanger or a plurality of reversible heat exchangers depending on the size of the device.

可逆式熱交換器の切替流路は、原料空気中の水
分および炭酸ガスで流路が閉塞するのを防止する
ため、一般に10〜20分毎に原料空気と精溜塔で分
離された廃ガスを切替えて通ることによつて、切
替流路の伝熱面上に凝結付着した氷やドライアイ
スを廃ガスで昇華し、除去している。従来の流路
切替方法を第1図により更に詳細に説明する。
In order to prevent the flow path from being blocked by moisture and carbon dioxide in the feed air, the switching flow path of a reversible heat exchanger generally switches between the feed air and the waste gas separated in the rectification column every 10 to 20 minutes. By switching the flow through the switching channel, the ice or dry ice that has condensed on the heat transfer surface of the switching channel is sublimated and removed by the waste gas. The conventional flow path switching method will be explained in more detail with reference to FIG.

原料空気は圧縮機1に送られて昇圧された後、
導管2を経て水洗冷却塔3で水ポンプ4から送ら
れてくる冷却水で直接冷却されて導管5より流路
切替式の可逆式熱交換器8に空気側切替弁6A,
6Bのいずれか一方の流路を通つて導かれる。
After the raw air is sent to compressor 1 and pressurized,
It is directly cooled by the cooling water sent from the water pump 4 in the water washing cooling tower 3 via the conduit 2, and then from the conduit 5 to the flow path switching type reversible heat exchanger 8 with an air side switching valve 6A,
6B.

可逆式熱交換器8に導入された原料空気は、熱
交換器内の切替流路9A,9Bのいずれか一方の
流路を通過する際に、もう一方の切替流路を通る
分離された廃ガス、および切替のないその他の流
路を通る製品ガス、ならびに再熱空気によつて温
度約25℃から−172℃まで冷却される。この際、
原料空気中に含まれている水分および炭酸ガス
は、冷却につれて切替流路9A,9Bの伝熱面上
に凝結付着される。切替流路9A,9Bは10〜20
分毎に切替弁6A,6B,7A,7Bおよび逆止
弁10A,10Bによつて、切替装置を介して自
動的に切替えられる。
When the raw air introduced into the reversible heat exchanger 8 passes through one of the switching channels 9A and 9B in the heat exchanger, it passes through the other switching channel and separates the waste air. It is cooled from a temperature of about 25°C to -172°C by gas and product gas through other non-switched flow paths and reheated air. On this occasion,
Moisture and carbon dioxide contained in the raw air are condensed and deposited on the heat transfer surfaces of the switching channels 9A and 9B as they cool. Switching channels 9A and 9B are 10 to 20
It is automatically switched every minute via a switching device by switching valves 6A, 6B, 7A, 7B and check valves 10A, 10B.

この流路切替によつて、原料空気が持込んだ水
分および炭酸ガスの凝結付着物は、廃ガスが流れ
る際に、原料空気と廃ガス中に存在する不純物の
蒸気圧の差によつて昇華除去され、次の切替周期
までに流路の伝熱面は元のきれいな表面に復帰さ
れる。この周期的な流路切替によつて、可逆式熱
交換器は不純物による閉塞なしに1年以上の長期
間連続運転が可能となる。
By switching the flow path, the moisture and carbon dioxide condensation deposits brought in by the feed air are sublimated when the waste gas flows due to the difference in vapor pressure of the impurities present in the feed air and waste gas. The heat transfer surface of the flow path is restored to its original clean surface by the next switching cycle. This periodic flow switching allows the reversible heat exchanger to operate continuously for a long period of one year or more without being blocked by impurities.

可逆式熱交換器8で冷却され清浄になつた原料
空気は、逆止弁10A,10Bより導管11を通
り、その大部分は導管12より精溜塔下塔13の
下部に吹込まれる。残りの原料空気の一部は、導
管11より導管14で分岐し、可逆式熱交換器8
の再熱空気流路およびそのバイパス流路を通つて
導管15より膨張機16に導かれ、ここで断熱膨
張することによつて外部仕事を行ない、自身低温
となつて装置の寒冷を補償している。膨張した空
気は、導管17より精溜塔上塔18中部に吹込ま
れる。下塔13に吹込まれた原料空気は、精溜分
離によつて上部の液体窒素と下部の液体空気に分
離される。分離された液体窒素は、下塔13の上
部より導管19を経て膨張弁20で上塔18の圧
力まで減圧され、導管21より上塔18の還流液
として供給される。液体空気は、下塔13の下部
より導管22を経て熱交換器23を通り、上塔1
8で分離された分離ガスと熱交換して過冷却さ
れ、導管24より膨張弁25で上塔18の圧力ま
で減圧され、導管26から上塔18の中部に還流
液として供給される。
The feed air cooled and purified by the reversible heat exchanger 8 passes through the conduit 11 through the check valves 10A and 10B, and most of it is blown into the lower part of the lower column 13 of the rectification column through the conduit 12. A portion of the remaining raw material air is branched from the conduit 11 through the conduit 14 and transferred to the reversible heat exchanger 8.
The reheated air is guided from the conduit 15 to the expander 16 through the reheated air flow path and its bypass flow path, where it performs external work by adiabatic expansion and becomes low temperature itself to compensate for the coldness of the equipment. There is. The expanded air is blown into the middle part of the upper column 18 of the rectification column through the conduit 17. The raw air blown into the lower column 13 is separated into liquid nitrogen in the upper part and liquid air in the lower part by rectification separation. The separated liquid nitrogen passes from the upper part of the lower column 13 through a conduit 19, is reduced in pressure to the pressure of the upper column 18 by an expansion valve 20, and is supplied as a reflux liquid to the upper column 18 through a conduit 21. The liquid air is passed from the lower part of the lower column 13 through the conduit 22 and the heat exchanger 23 to the upper column 1.
The liquid is subcooled by heat exchange with the separated gas separated in step 8, and is reduced in pressure through a conduit 24 to the pressure of the upper column 18 by an expansion valve 25, and is supplied as a reflux liquid to the middle part of the upper column 18 through a conduit 26.

上塔18内では、精溜分離によつて酸素は上塔
18の下部に液体酸素として溜められる。窒素は
上塔18の上部から取出される。製品酸素は上塔
18の下部に設けられた主凝縮器35で、下塔1
3の窒素で液体酸素を蒸発させた上昇ガスの一部
を導管27より取出し、熱交換器23を通り、導
管28より可逆熱交換器8の切替の無い流路を通
つて原料空気と熱交換し、常温となつて導管29
より酸素の使用端に送られる。上塔18の上部か
ら取出された窒素ガスは、導管30より熱交換器
23を通り、導管31より逆止弁10A,10B
を通つて可逆式熱交換器8の原料空気と反対の切
替流路9A,9Bを通つて、原料空気と熱交換し
て昇温するとともに、切替流路9A,9Bの伝熱
面上に付着した水分および炭酸ガス等の不純物を
昇華除去し、廃ガス側切替弁7A,7Bのいずれ
か一方を通つて、導管32より大気へ放出され
る。なお、窒素の一部を製品ガスとして取出す場
合は、可逆式熱交換器8に切替の無い流路を設け
て、分岐して取出すことができる。
In the upper column 18, oxygen is stored in the lower part of the upper column 18 as liquid oxygen by rectification separation. Nitrogen is removed from the top of the upper column 18. Product oxygen is supplied to the main condenser 35 provided at the lower part of the upper column 18, and then to the lower column 1.
A part of the rising gas obtained by evaporating the liquid oxygen with nitrogen in step 3 is taken out from the conduit 27, passes through the heat exchanger 23, and is passed through the conduit 28 through a flow path without switching of the reversible heat exchanger 8, where it is heat exchanged with the raw air. When the temperature reaches room temperature, the conduit 29
More oxygen is sent to the end where it is used. Nitrogen gas taken out from the upper part of the upper tower 18 passes through the heat exchanger 23 through a conduit 30, and then passes through the check valves 10A and 10B through a conduit 31.
through the switching channels 9A, 9B opposite to the feed air of the reversible heat exchanger 8, exchanging heat with the feed air to raise the temperature, and adhering to the heat transfer surfaces of the switching channels 9A, 9B. Impurities such as moisture and carbon dioxide are removed by sublimation, and the waste gas is discharged into the atmosphere from the conduit 32 through either one of the waste gas side switching valves 7A and 7B. In addition, when a part of nitrogen is taken out as a product gas, a flow path without switching can be provided in the reversible heat exchanger 8, and the nitrogen can be taken out in a branched manner.

可逆式熱交換器8で原料空気中の水分および炭
酸ガスを廃ガスで昇華除去するためには、熱交換
上で原料空気と廃ガスの切替流路9A,9Bの各
ゾーンで、ある許容温度差以内にする必要があ
る。もし、この温度差が守られない場合は、切替
流路は炭廃ガスの不純物の分圧の不足分だけ氷や
ドライアイスが昇華されずに蓄積されて行くこと
になり、長い時間のうちには切替流路全体を閉塞
させてしまうことになる。このために、従来から
可逆式熱交換器8が複数個配列されている場合
は、この熱交換器の温度制御がうまく行かず、こ
れまで数多くの改善が行なわれてきた。しかしな
がら、これらのすべての方法は、複数個の可逆式
熱交換器8の温度差を全体で均一化させようとい
う考え方や、流路切替時に可逆式熱交換器8の切
替流路9A,9Bのいずれか一方の内に蓄積され
ている高圧の原料空気が、廃ガス側切替弁7A,
7Bのいずれか一方を通つて大気に放出される原
料空気のパージロスを、切替流路9A,9Bにバ
イパス用切替弁33を設けて、廃ガス側切替弁7
A,7Bから放出する前にバイパス切替弁33を
開放し、その他の切替弁6A,6B,7A,7B
をすべて全閉にして、可逆式熱交換器8の切替流
路9A,9Bのいずれか一方に入つている高圧の
原料空気を、他の一方に回収しようという考え方
などが優先し、切替弁6A,6B,7A,7Bが
瞬時に切替わる時の大量の流量変動による水分お
よび炭酸ガスの可逆式熱交換器8への持込みを、
本質的に減らそうという考え方はこれまで提案さ
れていなかつた。
In order to sublimate and remove moisture and carbon dioxide in the feed air with waste gas in the reversible heat exchanger 8, a certain allowable temperature is required in each zone of the feed air and waste gas switching channels 9A and 9B during heat exchange. It is necessary to keep it within the difference. If this temperature difference is not maintained, ice and dry ice will accumulate in the switching flow path without being sublimated due to the lack of partial pressure of impurities in the coal waste gas, and over a long period of time ice and dry ice will accumulate. This results in the entire switching flow path being blocked. For this reason, conventionally, when a plurality of reversible heat exchangers 8 are arranged, temperature control of the heat exchangers has been difficult, and many improvements have been made so far. However, all of these methods are based on the concept of equalizing the temperature difference among the plurality of reversible heat exchangers 8 as a whole, or the idea of equalizing the temperature difference between the reversible heat exchangers 8 and the switching flow paths 9A and 9B of the reversible heat exchanger 8 at the time of flow path switching. The high pressure raw material air accumulated in either one of the waste gas side switching valves 7A,
A bypass switching valve 33 is provided in the switching flow paths 9A and 9B to reduce the purge loss of raw material air released into the atmosphere through either one of the waste gas side switching valves 7B and 7B.
Before discharging from A, 7B, the bypass switching valve 33 is opened, and the other switching valves 6A, 6B, 7A, 7B are
The idea is to completely close all of the switching valves 6A and 9B and recover the high-pressure feed air that has entered one of the switching channels 9A and 9B of the reversible heat exchanger 8 to the other one. , 6B, 7A, and 7B are instantaneously switched, moisture and carbon dioxide are brought into the reversible heat exchanger 8 due to large flow rate fluctuations.
Until now, no idea had been proposed to essentially reduce it.

このため、従来の可逆式熱交換器8の伝熱面積
は、化工計算上で得られる必要伝熱面積より相当
大きなものが必要であるばかりでなく、切替時の
短時間の多量の流動変動により、持込まれた水分
および炭酸ガスの昇華が完全に行なわれず、長時
間の運転で切替流路9A,9Bがしだいに閉塞し
て行くなどの悪影響を及ぼしていた。
For this reason, the heat transfer area of the conventional reversible heat exchanger 8 not only needs to be considerably larger than the required heat transfer area obtained from chemical engineering calculations, but also due to large flow fluctuations in a short period of time during switching. The introduced moisture and carbon dioxide gas were not completely sublimated, causing adverse effects such as the switching channels 9A and 9B gradually becoming clogged during long-term operation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、かかる欠点を改善して、可逆
式熱交換器に導入される原料空気量を、流路切替
時においてもほぼ一定に制御して、不純物の昇華
除去が完全に行われる可逆式熱交換器の流路切替
方法を提供することにある。
The object of the present invention is to improve such drawbacks, to control the amount of feed air introduced into the reversible heat exchanger to be almost constant even when switching channels, and to completely remove impurities by sublimation. An object of the present invention is to provide a flow path switching method for a type heat exchanger.

〔発明の概要〕[Summary of the invention]

従来の可逆式熱交換器の流路切替は、空気側切
替弁および廃ガス側切替弁のいずれか一方を急閉
し、他の一方を急開するという方法がとられてい
たが、本発明は、原料空気を可逆式熱交換器に導
入するための空気側切替弁の切替時の開度を2段
階以上に操作して、切替弁を通つて可逆式熱交換
器に流入する原料空気量を切替時であつても定常
時に近い量に制御するようにしたものである。
In conventional reversible heat exchangers, flow path switching was performed by rapidly closing either the air-side switching valve or the waste gas-side switching valve and quickly opening the other. is the amount of raw material air that flows into the reversible heat exchanger through the switching valve by operating the opening degree of the air side switching valve in two or more steps to introduce the raw material air into the reversible heat exchanger. is controlled to an amount close to that during steady state even when switching.

一般に空気分離装置は、消費電力を最小にする
ために各部の流路抵抗は最小に設計される。この
ため、切替弁の流路抵抗も普通0.01Kg/cm2程度、
ガス流速にして10〜20m/secに制限されるのが
一般的である。一方、切替弁の切替時の開閉速度
は1〜2秒間で作動させる必要がある。開閉速度
が遅過ぎると、原料空気側は圧縮機の出口から空
気側切替弁までの流路に、圧縮機から吐出された
空気が滞溜し、圧力が急上昇する。圧力が上がり
過ぎると、圧縮機に遠心形ブロワーを使用してい
る場合はサージング現象を起し、機械を破損させ
る恐れもある。
Generally, an air separation device is designed to minimize the flow path resistance of each part in order to minimize power consumption. For this reason, the flow path resistance of the switching valve is usually around 0.01Kg/ cm2 ,
Generally, the gas flow velocity is limited to 10 to 20 m/sec. On the other hand, the switching speed of the switching valve must be 1 to 2 seconds. If the opening/closing speed is too slow, the air discharged from the compressor will accumulate in the flow path from the outlet of the compressor to the air side switching valve on the raw air side, causing the pressure to rise rapidly. If the pressure rises too much, a surging phenomenon may occur if a centrifugal blower is used for the compressor, and there is a risk of damage to the machine.

また、廃ガス側切替弁についても同様で、開閉
速度が遅いと、上塔から廃ガス側切替弁までの流
路にガスが停滞して圧力が上昇し、精溜塔の上昇
ガスが少なくなるために、製品ガスの純度を維持
することができなくなつてしまう。このため、切
替弁の開閉速度は弁の機械的能力一杯に早める必
要がある。
The same applies to the waste gas side switching valve; if the opening/closing speed is slow, gas will stagnate in the flow path from the upper tower to the waste gas side switching valve, increasing the pressure and reducing the amount of gas rising in the rectification tower. Therefore, it becomes impossible to maintain the purity of the product gas. Therefore, it is necessary to increase the opening and closing speed of the switching valve to the full mechanical capacity of the valve.

このように、可逆式熱交換器の流路切替には特
殊な条件があり、このため、従来は精溜塔側への
切替の影響を少なくするという考え方が優先し、
切替時の可逆式熱交換器に導入される空気量の大
きな流量変動は可逆式熱交換器の特性としてさけ
られない現象であると考えられていた。
As described above, there are special conditions for flow path switching in a reversible heat exchanger, and for this reason, conventionally, the idea of reducing the effect of switching on the rectification column side has been prioritized.
Large fluctuations in the amount of air introduced into the reversible heat exchanger during switching were considered to be a phenomenon that cannot be avoided as a characteristic of the reversible heat exchanger.

このような従来方法では、原料空気を空気側切
替弁6A,6Bを通して切替流路9A,9Bに流
す時、定常運転時は導管5の圧力と切替流路9
A,9Bのいずれか一方の空気流路の圧力差は、
空気側切替弁6A,6Bの流通抵抗分しかなく、
この抵抗差約0.01Kg/cm2によつて原料空気が流れ
ている。しかし、流路切替時には、低圧の廃ガス
流路に高圧の原料空気を流すため、この時切替弁
の抵抗差は約5Kg/cm2となる。この大きな圧力差
によつて、瞬間的に定常時の10倍近い原料空気が
空気側切替弁6A,6Bを通つて可逆式熱交換器
8の切替流路9A,9Bに流れることになる。こ
のような多量の空気が可逆式熱交換器8を通る
と、空気は伝熱面積の不足をきたし、完全に冷却
されないまま通過するため、本来、氷やドライア
イスの無いゾーンまで水分や炭酸ガスが持込ま
れ、完全に昇華されないまま蓄積されることにな
る。
In such a conventional method, when the raw air is flowed through the air side switching valves 6A, 6B to the switching channels 9A, 9B, the pressure in the conduit 5 and the switching channel 9 during steady operation are
The pressure difference between the air flow paths of either A or 9B is
There is only the flow resistance of the air side switching valves 6A and 6B,
The raw material air flows due to this resistance difference of approximately 0.01Kg/cm 2 . However, when switching the flow path, high-pressure raw material air is passed through the low-pressure waste gas flow path, so the resistance difference of the switching valve at this time is about 5 kg/cm 2 . Due to this large pressure difference, almost 10 times as much raw material air as in the steady state momentarily flows into the switching channels 9A, 9B of the reversible heat exchanger 8 through the air side switching valves 6A, 6B. When such a large amount of air passes through the reversible heat exchanger 8, the heat transfer area becomes insufficient and the air passes through without being completely cooled. is brought in and accumulated without being completely sublimated.

本発明は、従来の流路切替方法を解析するとと
もに、実際の運転データをつき合わせて、これま
で不可能と考えられていた流路切替時の可逆式熱
交換器への原料空気を、定常時とほぼ同じ量に制
御するようにしたものである。
The present invention analyzes conventional flow path switching methods and compares actual operation data to achieve a constant flow of feed air to reversible heat exchangers during flow path switching, which was previously thought to be impossible. The amount is controlled to be approximately the same as always.

本発明は、流路切替直後の空気側切替弁を原料
空気が通る流量について、切替前の廃ガス流路の
圧力が切替弁を通つて原料空気が流入することに
よつて昇圧され、切替弁の2次側の圧力が臨界圧
力(入口圧力の約1/2の圧力)までは流量が切替
弁の口径に比例することに着目し、切替弁の開度
を2次圧力が臨界圧力に達するまでの間約2秒間
程度開度をロツクし、その後全開まで開けて行く
ようにしたもので、切替後一時的に弁開度をロツ
クする開度の大きさは、圧縮機から吐出される空
気量が流れるだけの開度とすれば、切替流路の一
方を加圧している間も圧縮機の吐出圧力が上昇せ
ず、しかも従来より加圧時間が延びても実際に精
溜塔側に与える影響が無いことを確認した。
In the present invention, regarding the flow rate of raw material air passing through the air side switching valve immediately after switching the flow path, the pressure in the waste gas flow path before switching is increased by the flow of raw material air through the switching valve, and the switching valve Focusing on the fact that the flow rate is proportional to the diameter of the switching valve until the pressure on the secondary side reaches the critical pressure (approximately 1/2 of the inlet pressure), we determined the opening degree of the switching valve so that the secondary pressure reaches the critical pressure. The valve opening is locked for about 2 seconds until the valve is switched, and then the valve is opened to full open. If the opening is set just enough for the amount to flow, the discharge pressure of the compressor will not increase while one side of the switching flow path is pressurized, and even if the pressurization time is longer than before, the pressure will actually flow to the rectification column side. It was confirmed that there was no impact.

また、切替弁の開度を中間でロツクするのと同
じ効果を得るもう一つの方法としては、従来の空
気側切替弁に、圧縮機の吐出し量を流せるバイパ
ス用の子弁切替弁を併設し、切替指令と同時に子
弁切替弁を急開し、その後2次圧力が臨界圧力に
なる時間を経過してから従来の空気側切替弁を開
けて行く方法がある。
Another method to achieve the same effect as locking the opening of the switching valve in the middle is to add a bypass slave switching valve to the conventional air-side switching valve to allow the discharge amount of the compressor to flow. However, there is a method in which the slave valve switching valve is suddenly opened at the same time as the switching command is issued, and then the conventional air side switching valve is opened after the time period when the secondary pressure reaches the critical pressure has elapsed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による流路切替方法を1個の可逆
式熱交換器で1組の切替弁および逆止弁を使用し
た、酸素を製品ガスとして取出す全低圧式空気分
離装置に適用した場合の一実施例を第2図により
説明する。
Hereinafter, an example of the case where the flow path switching method according to the present invention is applied to a total low pressure air separation device that uses one reversible heat exchanger and one set of switching valves and check valves and extracts oxygen as a product gas. An example will be explained with reference to FIG.

第2図において、第1図と同部分は同符号で示
し、説明を省略する。
In FIG. 2, the same parts as in FIG. 1 are indicated by the same symbols, and their explanation will be omitted.

6Aa,6Bbは空気側切替弁6A,6Bに併設
されたバイパス用子弁切替弁であつて、いま、可
逆式熱交換器8の切替流路9A側に原料空気が、
9B側に廃ガスが流れているとすると、この時、
空気側切替弁6A,6Aaおよび廃ガス側切替弁
7Bは全開、空気側切替弁6B,6Bbおよび廃
ガス側切替弁7Aは全閉となつている。
Reference numerals 6Aa and 6Bb are bypass slave switching valves attached to the air side switching valves 6A and 6B.
Assuming that the waste gas is flowing to the 9B side, at this time,
The air side switching valves 6A, 6Aa and the waste gas side switching valve 7B are fully open, and the air side switching valves 6B, 6Bb and the waste gas side switching valve 7A are fully closed.

しかして、可逆式熱交換器の切替指令により、
切替弁は空気の廃ガス切替弁7Bからの放出を防
止するため一時的に全部を全閉とし、全閉後直ち
に次の弁開度に移行する。すなわち、空気側切替
弁6Bのバイパス用子弁切替弁6Bbおよび廃ガ
ス側切替弁7Aは全開、その他の弁は全閉のまま
とする。バイパス用子弁切替弁6Bbは全開で圧
縮機1より吐出される原料空気量以上の量を低圧
の切替流路に流すように設計されているため、圧
縮機1の吐出流路の圧力上昇を防止することがで
き、しかも可逆式熱交換器8の切替流路9Bに流
入する原料空気量を定常時の流量に押えることが
できる。可逆式熱交換器8の切替流路9B内の圧
力が上昇して、圧縮機1の吐出圧力の約1/2まで
達すると、空気側切替弁6Bが開き始め、バイパ
ス用子弁切替弁6Bbだけでは差分が小さくなり
過ぎて流量が不足するので、この分を空気側切替
弁6Bで流す。切替流路9B内の圧力が上昇して
精溜塔下塔13の圧力より高くなると、可逆式熱
交換器8で冷却されて水分,炭酸ガスを切替流路
9Bの伝熱面上に凝結付着し、清浄になつた原料
空気が逆止弁10Bを通つて下塔13,膨張機1
6に流入し、元の定常状態に復帰する。
However, due to the switching command of the reversible heat exchanger,
The switching valves are temporarily fully closed to prevent air from being released from the waste gas switching valve 7B, and immediately after being fully closed, the switching valves shift to the next valve opening degree. That is, the bypass slave switching valve 6Bb of the air side switching valve 6B and the waste gas side switching valve 7A are fully opened, and the other valves remain fully closed. The bypass slave valve switching valve 6Bb is designed to flow into the low-pressure switching flow path an amount greater than the amount of raw air discharged from the compressor 1 when fully open, so it prevents the pressure increase in the discharge flow path of the compressor 1 from increasing. In addition, the amount of raw air flowing into the switching flow path 9B of the reversible heat exchanger 8 can be suppressed to the steady flow rate. When the pressure in the switching flow path 9B of the reversible heat exchanger 8 rises and reaches approximately 1/2 of the discharge pressure of the compressor 1, the air side switching valve 6B starts to open, and the bypass slave switching valve 6Bb starts to open. Since the difference becomes too small and the flow rate is insufficient, this amount is flowed by the air side switching valve 6B. When the pressure in the switching channel 9B rises and becomes higher than the pressure in the lower column 13 of the rectifying column, it is cooled by the reversible heat exchanger 8, and moisture and carbon dioxide condense and adhere to the heat transfer surface of the switching channel 9B. , the purified raw material air passes through the check valve 10B to the lower column 13 and the expander 1.
6 and returns to the original steady state.

この切替周期は10〜20分毎に行なわれ、1年以
上の連続運転が行なわれる。
This switching cycle is performed every 10 to 20 minutes, and continuous operation is performed for more than one year.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、可逆式熱交
換器の流路切替時においても、切替流路に流れる
空気量は定常時とほぼ同程度に制御することがで
きるため、従来のように、切替時の瞬間の最大流
量に合せた設計をすることが必要なくなり、可逆
式熱交換器の伝熱面積を必要最小限に押えること
ができ、また、従来は可逆式熱交換器にかなり大
きな伝熱面積を設けても、切替時の定常の10倍に
近い空気量を十分冷却することはできないので、
切替時の水分、炭酸ガスの低温ゾーンへの侵入を
防止できなかつたが、本発明によれば、これらの
弊害を完全に防ぐことができ、空気分離装置の安
定した長期連続運転に大きな効果が得られる。更
にまた、圧縮機の吐出圧力の変化も従来のものよ
り小さくすることができ、水洗冷却塔からの水分
同伴も防ぐことができるという大きな効果があ
る。
As described above, according to the present invention, even when switching the flow paths of a reversible heat exchanger, the amount of air flowing through the switching flow path can be controlled to be almost the same as during steady state, so , it is no longer necessary to design according to the instantaneous maximum flow rate at the time of switching, and the heat transfer area of the reversible heat exchanger can be kept to the minimum necessary. Even if a heat transfer area is provided, it is not possible to sufficiently cool the amount of air that is nearly 10 times the steady state during switching.
Although it has not been possible to prevent moisture and carbon dioxide gas from entering the low-temperature zone during switching, the present invention can completely prevent these harmful effects and has a significant effect on stable, long-term continuous operation of air separation equipment. can get. Furthermore, the change in the discharge pressure of the compressor can be made smaller than in the conventional method, and there is a great effect that entrainment of water from the water washing cooling tower can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の可逆式熱交換器を採用した全低
圧空気分離装置の系統図、第2図は本発明方法を
実施した可逆式熱交換器を用いた全低圧空気分離
装置の一例を示す系統図である。 2,5,11,12,14,15,17,1
9,21,22,24,26〜32…導管、1…
空気圧縮器、3…水洗冷却塔、4…水ポンプ、6
A,6B…空気側切替弁、6Aa,6Bb…バイパ
ス用子弁切替弁、7A,7B…廃ガス側切替弁、
8…可逆式熱交換器、9A,9B…切替流路、1
0A,10B…逆止弁、13…精溜塔下塔、16
…膨張機、18…精溜塔上塔、20,25…膨張
弁、23…熱交換器、33…バイパス切替弁、3
5…主凝縮器。
Figure 1 is a system diagram of a total low-pressure air separation device that uses a conventional reversible heat exchanger, and Figure 2 shows an example of a total low-pressure air separation device that uses a reversible heat exchanger that implements the method of the present invention. It is a system diagram. 2, 5, 11, 12, 14, 15, 17, 1
9, 21, 22, 24, 26-32... conduit, 1...
Air compressor, 3...Water cooling tower, 4...Water pump, 6
A, 6B... Air side switching valve, 6Aa, 6Bb... Bypass child valve switching valve, 7A, 7B... Waste gas side switching valve,
8... Reversible heat exchanger, 9A, 9B... Switching flow path, 1
0A, 10B...Check valve, 13...Rectification column lower column, 16
... Expander, 18... Rectification column upper column, 20, 25... Expansion valve, 23... Heat exchanger, 33... Bypass switching valve, 3
5...Main condenser.

Claims (1)

【特許請求の範囲】 1 原料空気中の水分および炭酸ガスを除去する
ため、熱交換器の原料空気の流路と、精溜塔で分
離された廃ガスの流路を切替弁で周期的に切替
え、高圧の原料空気流路として使われた時に熱交
換器の伝熱表面上に析出,凝結した水分および炭
酸ガスを低圧の廃ガス流路として使用した時に昇
華除去するようにした可逆式熱交換器を用いた空
気の液化深冷分離装置において、可逆式熱交換器
の流路切替時に高圧側の原料空気を切替前の低圧
側廃ガス流路に切替弁を通して導入する際、空気
側切替弁を通つて切替前の廃ガス流路に導入され
る単位時間当りの原料空気量を切替周期を通して
ほぼ一定に制御するようにしたことを特徴とする
可逆式熱交換器を用いた空気分離装置の流路切替
方法。 2 特許請求の範囲第1項において、可逆式熱交
換器の原料空気入口流路に設置される空気側切替
弁を各流路毎に1個又は複数個並列に設置し、可
逆式熱交換器の流路切替時に、空気側切替弁を全
閉位置から全開位置にする際に、最初の1段階
で、空気側切替弁を通つて流入する高圧側の原料
空気の2次圧力が、臨界圧力(入口絶対圧力の1/
2相当)近くに達するまでは、定常運転時の原料
空気流量に近い流量が流れるだけの断面積に空気
側切替弁の開度を固定し、次いで2次圧力が臨界
圧力近くに上昇した時点で、空気側切替弁を流れ
る流量が定常運転時の原料空気流量に近くなるよ
うに最初の1段階に固定された断面積から全開の
開度まで断面積を増加させるように、少なくとも
2段階以上の操作で空気側切替弁を作動させるよ
うにしたことを特徴とする可逆式熱交換器を用い
た空気分離装置の流路切替方法。
[Claims] 1. In order to remove moisture and carbon dioxide from the feed air, the flow path of the feed air of the heat exchanger and the flow path of the waste gas separated in the rectification column are periodically connected using a switching valve. A reversible heat exchanger that sublimates and removes moisture and carbon dioxide that precipitates and condenses on the heat transfer surface of the heat exchanger when used as a high-pressure raw air flow path. In air liquefaction cryogenic separation equipment using an exchanger, when the flow path of a reversible heat exchanger is switched, the air side is switched when the feed air on the high pressure side is introduced through the switching valve into the low pressure side waste gas flow path before switching. An air separation device using a reversible heat exchanger, characterized in that the amount of feed air introduced per unit time through a valve into a waste gas flow path before switching is controlled to be almost constant throughout the switching period. flow path switching method. 2. In claim 1, the reversible heat exchanger is provided with one or more air-side switching valves installed in the feed air inlet flow path of the reversible heat exchanger in parallel for each flow path. When switching the flow path, when changing the air side switching valve from the fully closed position to the fully open position, in the first step, the secondary pressure of the high pressure side raw material air flowing through the air side switching valve reaches the critical pressure. (1/of inlet absolute pressure
2), the opening of the air side switching valve is fixed to a cross-sectional area that allows a flow rate close to the raw material air flow rate during steady operation, and then when the secondary pressure rises to near the critical pressure. , at least two or more steps are performed to increase the cross-sectional area from the fixed cross-sectional area at the first step to the fully open opening so that the flow rate flowing through the air side switching valve becomes close to the raw material air flow rate during steady operation. A flow path switching method for an air separation device using a reversible heat exchanger, characterized in that an air side switching valve is actuated by operation.
JP10078183A 1983-06-08 1983-06-08 Method of changing over flow path of air separator using reversible type heat exchanger Granted JPS59229172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10078183A JPS59229172A (en) 1983-06-08 1983-06-08 Method of changing over flow path of air separator using reversible type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10078183A JPS59229172A (en) 1983-06-08 1983-06-08 Method of changing over flow path of air separator using reversible type heat exchanger

Publications (2)

Publication Number Publication Date
JPS59229172A JPS59229172A (en) 1984-12-22
JPS6323468B2 true JPS6323468B2 (en) 1988-05-17

Family

ID=14283001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10078183A Granted JPS59229172A (en) 1983-06-08 1983-06-08 Method of changing over flow path of air separator using reversible type heat exchanger

Country Status (1)

Country Link
JP (1) JPS59229172A (en)

Also Published As

Publication number Publication date
JPS59229172A (en) 1984-12-22

Similar Documents

Publication Publication Date Title
US3225517A (en) Gas drying method
US2496380A (en) Gas purifying method and apparatus
US2918801A (en) Process and apparatus for separating gas mixtures
CN215822390U (en) Liquid nitrogen condensing system for oil gas recovery
US2509034A (en) Method and apparatus for liquefying gaseous fluids
US2568223A (en) Process and apparatus for extracting oxygen from atmospheric air
US2556850A (en) Oxygen separation
US2940269A (en) Process and apparatus for separating gaseous mixtures by rectification
US2958203A (en) Gas purification method
US3039274A (en) Process and apparatus for purifying and separating compressed gas mixtures
JPS6323468B2 (en)
US2663168A (en) Method for defrosting gas separation systems
US3063247A (en) Low temperature purification of an impurity-containing gas
US3097940A (en) Process for purifying gases
US3469271A (en) Process and apparatus for low boiling gas mixtures
US5740683A (en) Cryogenic rectification regenerator system
US4299607A (en) Process for recovering nitrogen in low pressure type air separation apparatus
CA1144057A (en) Production of nitrogen by air separation
US3126265A (en) Process and apparatus for separating
US3064441A (en) Low temperature cleaning of an impurity-containing gas
US3119676A (en) Process and apparatus for purifying and separating compressed gas mixtures
US3060697A (en) Apparatus for and method of separating gases
JPS6113152B2 (en)
JPH0371633B2 (en)
JPS6354991B2 (en)