JPH01281752A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01281752A
JPH01281752A JP11103588A JP11103588A JPH01281752A JP H01281752 A JPH01281752 A JP H01281752A JP 11103588 A JP11103588 A JP 11103588A JP 11103588 A JP11103588 A JP 11103588A JP H01281752 A JPH01281752 A JP H01281752A
Authority
JP
Japan
Prior art keywords
forming
layer
resist pattern
polycrystalline silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11103588A
Other languages
Japanese (ja)
Inventor
Toshihiko Kondo
俊彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP11103588A priority Critical patent/JPH01281752A/en
Publication of JPH01281752A publication Critical patent/JPH01281752A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent initial failure due to deterioration of gate breakdown strength by forming an opening with a resist pattern, thereby forming a metallic silicide film after introducing N<+>-type impurities. CONSTITUTION:A resist pattern 12 is formed so as to remove a connecting part between a substrate 1 and a gate metal. Polycrystalline silicon 4 and a gate oxide film 2 are etched continuously by using the resist pattern 12 as a mask. Then, the resist pattern is removed and N<+>-type impurities are introduced by diffusing thermally or by driving As, P, and the like with ions into polycrystalline silicon 4. In such a case, an N-type impurity layer 6 is formed on the substrate surface of an opening 9. Then, a metallic silicide film 5 is formed and a wiring layer consisting of only the metallic silicide layer 5 is constructed in the opening 9 and its layer is connected to the first wiring layer. And then, its layer is connected to a diffusion layer 6 which is formed directly on the substrate 1. Thus, initial failure due to deterioration of gate breakdown strength is prevented.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は半導体装置特に多結晶シリコンと金属あるいは
金属シリサイドの2層構造からなるゲート金属を有する
ことを特徴とする半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device, and particularly to a method for manufacturing a semiconductor device characterized by having a gate metal having a two-layer structure of polycrystalline silicon and metal or metal silicide.

〔従来の技術〕[Conventional technology]

従来の半導体装置の構造および製造工程を図を用いて説
明する。
The structure and manufacturing process of a conventional semiconductor device will be explained using figures.

第3図に従来構造を示す0図に於いてlは半導体基板、
2はゲート絶縁膜、3は素子分離絶縁膜、4は第一の配
線層を形成する多結晶シリコン、5は同じ(第一の配線
層を形成する金属又は金属シリサイド膜、6は第一の配
線と基板との接続部の下の拡散層、7はLDD構造のサ
イドウオール、8はソース又はドレインの拡散層である
In Figure 3, which shows a conventional structure, l is a semiconductor substrate;
2 is a gate insulating film, 3 is an element isolation insulating film, 4 is polycrystalline silicon forming the first wiring layer, 5 is the same (metal or metal silicide film forming the first wiring layer, 6 is the first wiring layer) A diffusion layer under the connection portion between the wiring and the substrate, 7 a sidewall of the LDD structure, and 8 a source or drain diffusion layer.

第4図は従来構造の平面図を示す0図中では9は前記ゲ
ート電極と基板との接続のための開口部でありlOはア
クティブ領域、11は第一の配線層である。従来構造に
於いて前記第一の配線層からなるゲート電極と基板とが
直接接触しているためこの両者の接続に於いて、通常の
方法で第一の配線層の上部の第二の配線層でつなぐもの
に比べ自由度が増しさらにこの部分の面積が小さくでき
るため微細化、高集積化に適している。
FIG. 4 shows a plan view of a conventional structure. In FIG. 4, 9 is an opening for connection between the gate electrode and the substrate, IO is an active region, and 11 is a first wiring layer. In the conventional structure, the gate electrode made of the first wiring layer and the substrate are in direct contact with each other. The degree of freedom is increased compared to the type connected by , and the area of this part can be reduced, making it suitable for miniaturization and high integration.

さらに第5図(a)〜(e)は従来構造の製造方法を示
した図である。第5図(a)は従来の方法で素子分1J
111i3とゲート絶縁膜2を形成したところであり、
第5図(b)はレジストパターン12を形成し必要部分
9のゲート絶縁膜を除去し。
Furthermore, FIGS. 5(a) to 5(e) are diagrams showing a method of manufacturing a conventional structure. Figure 5(a) shows that the element is 1J in the conventional method.
111i3 and gate insulating film 2 have been formed.
In FIG. 5(b), a resist pattern 12 is formed and the required portion 9 of the gate insulating film is removed.

さらに第5図(C)ではゲート電極ともなる第一の配線
層の多結晶シリコン4を形成したところである。このと
き開口部9内はレジストハクリの薬液処理等で基板表面
が酸化されており、これを除去しないと多結晶シリコン
と基板と接触がとれない、また第5図(d)は多結晶シ
リコンに不純物を導入した後、金属または金属シリサイ
ド膜を形成したところであり、第5図(e)は第一の配
線層を必要部分なのこしてエツチングしたところである
。以下従来の方法にてサイドウオールを形成しソースド
レインの拡散層を形成したのが第3図である0以上が従
来構造の形成方法である。
Furthermore, in FIG. 5(C), polycrystalline silicon 4 of the first wiring layer which also serves as the gate electrode has been formed. At this time, inside the opening 9, the substrate surface is oxidized due to chemical treatment for resist peeling, and unless this is removed, contact between the polycrystalline silicon and the substrate cannot be established. After introducing impurities, a metal or metal silicide film is formed, and FIG. 5(e) shows that the first wiring layer is etched, leaving only the necessary portion. The sidewalls were formed using the conventional method and the source/drain diffusion layers were formed as shown in FIG.

[発明が解決しようとする課題] 以上の如き従来構造の半導体装置の問題点は次のような
点が挙げられる。
[Problems to be Solved by the Invention] Problems with the semiconductor device having the conventional structure as described above include the following points.

前記従来技術の説明の中にあったように、第5図Cのよ
うに多結晶シリコンを形成する前には開口部9内のSi
表面にできた薬品処理又は水洗等で形成された薄膜の酸
化膜を除去するために湿式又は乾式のエツチングを行わ
なければならない。
As mentioned in the description of the prior art, before forming polycrystalline silicon as shown in FIG.
Wet or dry etching must be performed to remove the thin oxide film formed on the surface by chemical treatment or water washing.

このエツチング処理によりG a T e Ba 2の
部分もエツチングされ絶縁耐圧の劣化による初期不良の
増大だけでなく、経時的絶縁破壊いわゆるTDDBが発
生し信頼性不良が発生し問題となった。
This etching process also etched the G a T e Ba 2 portion, which not only increased the number of initial failures due to deterioration of dielectric strength voltage, but also caused problems such as dielectric breakdown over time, so-called TDDB, and poor reliability.

本発明は以上の如き問題点を解決する半導体装置の製造
方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a semiconductor device that solves the above-mentioned problems.

【課題を解決するための手段1 本発明は半導体基板上に素子分離絶縁膜となる第一の絶
縁膜を形成する工程と、第二の絶、!!膜を形成する工
程と、多結晶シリコン層を形成する工程と、所定部分を
開口するための第一のレジストパターンを形成する工程
と、該多結晶シリコンを除去する工程と、該第二絶縁膜
を除去する工程と、該第一のレジストパターンを除去す
る工程と、不純物を導入する工程と、金属又は金属シリ
サイド膜を形成する工程と、ゲート電極又は配線パター
ンを形成する工程からなることを特徴とする半導体装置
の製造方法であり、さらに前記多結晶シリコン層を形成
後、前記不純物を導入する工程が行なわれることを特徴
とする半導体装置の製造方法である。
[Means for Solving the Problems 1] The present invention includes a step of forming a first insulating film serving as an element isolation insulating film on a semiconductor substrate, and a second step! ! a step of forming a film, a step of forming a polycrystalline silicon layer, a step of forming a first resist pattern for opening a predetermined portion, a step of removing the polycrystalline silicon, and a step of the second insulating film. a step of removing the first resist pattern; a step of introducing impurities; a step of forming a metal or metal silicide film; and a step of forming a gate electrode or wiring pattern. This is a method of manufacturing a semiconductor device, further comprising a step of introducing the impurity after forming the polycrystalline silicon layer.

[実 施 例] 本発明の実施例をNチャンネル領域に適用した例につい
て説明する。
[Example] An example in which an example of the present invention is applied to an N-channel region will be described.

第1 (a)図から第1 (f)図は本発明の製造方法
の説明図である。
FIG. 1(a) to FIG. 1(f) are explanatory diagrams of the manufacturing method of the present invention.

面図に於いて第2図〜第3図の符合と同符合は同−又は
相当部分を示す。
In the plan views, the same reference numerals as those in FIGS. 2 and 3 indicate the same or corresponding parts.

(1)第1 (a)図は従来技術を用いて、P型板又は
基板上に形成されたP−領域l上に素子分離絶縁膜3と
ゲート酸化膜2を形成したところである0図中に於いて
、素子分離絶縁膜3はLOCO3法を用いた例であるが
、基板1に凹部形成しそこに絶縁物を充てんしてなるト
レンチ法に於いても本発明の製造方法は適用できる。
(1) Figure 1 (a) shows the state in which an element isolation insulating film 3 and a gate oxide film 2 are formed on a P-region l formed on a P-type plate or substrate using a conventional technique. In this example, the element isolation insulating film 3 is formed using the LOCO3 method, but the manufacturing method of the present invention can also be applied to a trench method in which a recess is formed in the substrate 1 and filled with an insulator.

(2)次に第1 (b)図に示す様に多結晶シリコン4
を形成する。このとき従来例と違いゲート膜をエツチン
グする様な前処理は必要なくゲート耐圧の劣化やTDD
B特性の劣化は全く生じない6しかし、いかに基板とゲ
ート金属とを接続するかが問題であり、以下の工程によ
りこれが実現した。
(2) Next, as shown in Figure 1 (b), polycrystalline silicon 4
form. At this time, unlike the conventional method, there is no need for pretreatment such as etching the gate film, which reduces the risk of deterioration of gate breakdown voltage and TDD.
No deterioration of the B characteristics occurred.6 However, the problem was how to connect the substrate and the gate metal, and this was achieved through the following steps.

(3)次に第4(c)図の様に基板lとゲート金属との
接続部分を開口するためのレジストパターン12を形成
し、これをマスクとして前記多結晶シリコン4とゲート
酸化IE!2を連続的にエツチングする。
(3) Next, as shown in FIG. 4(c), a resist pattern 12 is formed to open the connecting portion between the substrate l and the gate metal, and using this as a mask, the polycrystalline silicon 4 and the gate oxidation IE are formed. 2 is etched continuously.

このときエツチング方法としては、フッ化炭素系ガスを
用いたプラズマエツチングやRIE又は塩化炭素系ガス
等によるRIE等従来と同様の方法で、酸化膜について
はHFによる湿式エツチングやフッ化水素系ガスを用い
た乾式エツチング等これも従来方法で良い。
At this time, the etching method is the same as conventional methods such as plasma etching or RIE using fluorocarbon gas, or RIE using carbon chloride gas, etc. For the oxide film, wet etching using HF or hydrogen fluoride gas is used. Conventional methods such as dry etching may also be used.

(4)次に第1(d)図の様に、前記レジストパターン
を除去し、多結晶シリコン4に熱拡散又はAs、P等の
イオン打ち込みによりN°型不純物を導入する。このと
き開口部9の基板表面上にN型不純物層6が形成される
(4) Next, as shown in FIG. 1(d), the resist pattern is removed, and N° type impurities are introduced into the polycrystalline silicon 4 by thermal diffusion or ion implantation of As, P, etc. At this time, an N-type impurity layer 6 is formed on the surface of the substrate in the opening 9.

(5)次に、第1(e)図の様にMo、Ti、W等の金
属又は金属シリサイド115を形成し、これにより開口
部9内は前記金属又は金属シリサイド層5のみによって
配線が構成され第一の配線層と接続される。またこれに
より直接基板l上に形成された拡散層6と接続すること
ができた。
(5) Next, as shown in FIG. 1(e), a metal such as Mo, Ti, W, etc. or metal silicide 115 is formed, so that wiring is formed in the opening 9 only by the metal or metal silicide layer 5. and connected to the first wiring layer. Moreover, this made it possible to connect directly to the diffusion layer 6 formed on the substrate l.

(6)次に第1 (f)図の様に所定部分にゲート電極
又は配線層を形成する。
(6) Next, as shown in FIG. 1(f), a gate electrode or wiring layer is formed in a predetermined portion.

(7)次に第1 (g)図の様に従来方法により、サイ
ドウオール7およびソース、トレインとなるべき拡散層
8を形成する。
(7) Next, as shown in FIG. 1(g), sidewalls 7 and diffusion layers 8 to serve as sources and trains are formed by a conventional method.

以上本発明の製造方法により、ゲート耐圧の劣化やTD
DB特性等の信頼性不良をなくすことができた。
As described above, by the manufacturing method of the present invention, deterioration of gate breakdown voltage and TD
We were able to eliminate reliability defects such as DB characteristics.

尚本発明の実施例に於いては、P型基板又はN型基板上
に形成されたP−領域上のNチャンネル領域の例につい
て述べたが、N型基板又はP型基板上に形成されたN−
領域上のPチャンネル領域についても適用できることは
言うまでもない。
In the embodiments of the present invention, an example of an N channel region on a P- region formed on a P-type substrate or an N-type substrate has been described. N-
It goes without saying that this can also be applied to the P channel area on the area.

〔発明の効果1 本発明の製造方法を用いることにより、ゲート配線層と
基板との接続部を有する半導体装置に於いて、ゲート耐
圧の劣化により初期不良がなくなり、歩留りが向上し、
かつ経時的絶縁膜破壊も少なくなり、信頼性が向上した
[Effect of the invention 1] By using the manufacturing method of the present invention, in a semiconductor device having a connection portion between a gate wiring layer and a substrate, initial defects due to deterioration of gate breakdown voltage are eliminated, yield is improved,
In addition, breakdown of the insulation film over time has been reduced, improving reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)は本発明の半導体装置の製造方法
の説明図、第2図及び第3図は従来の構造および接続部
の説明図、第4図(a)〜(e)は従来の製造方法の説
明図である。 図中に於いて、 1・・・基板 2・・・ゲート絶縁膜 3・・・素子分離絶縁膜 4・・・多結晶シリコン 5・・・金属又は金属シリサイド膜 6・・・拡散層 7・・・サイドウオール 8・・・ソース又はドレインとなる拡散層9・・・開口
部 10・・・アクティブ領域 11・・・第1の配線層 12・・・レジストパターン 以上 出願人 セイコーエプソン株式会社
FIGS. 1(a) to (g) are explanatory diagrams of the method for manufacturing a semiconductor device of the present invention, FIGS. 2 and 3 are explanatory diagrams of the conventional structure and connection parts, and FIGS. 4(a) to (e) ) is an explanatory diagram of a conventional manufacturing method. In the figure, 1...substrate 2...gate insulating film 3...element isolation insulating film 4...polycrystalline silicon 5...metal or metal silicide film 6...diffusion layer 7... ...Side wall 8...Diffusion layer 9 serving as source or drain...Opening 10...Active region 11...First wiring layer 12...Resist pattern and above Applicant: Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に素子分離絶縁膜となる第1の絶縁
膜を形成する工程と、第二の絶縁膜を形成する工程と、
多結晶シリコン層を形成する工程と、所定部分を開口す
るための第一のレジストパターンを形成する工程と、該
多結晶シリコンを除去する工程と、該第二絶縁膜を除去
する工程と該第一のレジストパターンを除去する工程と
不純物を導入する工程と、金属又は金属シリサイド膜を
形成する工程と、ゲート電極又は配線パターンを形成す
る工程からなることを特徴とする半導体装置の製造方法
(1) A step of forming a first insulating film to serve as an element isolation insulating film on a semiconductor substrate, and a step of forming a second insulating film,
a step of forming a polycrystalline silicon layer, a step of forming a first resist pattern for opening a predetermined portion, a step of removing the polycrystalline silicon, a step of removing the second insulating film, and a step of removing the second insulating film. A method for manufacturing a semiconductor device, comprising the steps of removing one resist pattern, introducing impurities, forming a metal or metal silicide film, and forming a gate electrode or wiring pattern.
(2)請求項1に記載の半導体装置の製造方法に於いて
、前記多結晶シリコン層を形成後、前記不純物を導入す
る工程が行なわれることを特徴とする半導体装置の製造
方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the step of introducing the impurity is performed after forming the polycrystalline silicon layer.
JP11103588A 1988-05-07 1988-05-07 Manufacture of semiconductor device Pending JPH01281752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11103588A JPH01281752A (en) 1988-05-07 1988-05-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11103588A JPH01281752A (en) 1988-05-07 1988-05-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01281752A true JPH01281752A (en) 1989-11-13

Family

ID=14550753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11103588A Pending JPH01281752A (en) 1988-05-07 1988-05-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01281752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335891A (en) * 1997-03-31 2007-12-27 Freescale Semiconductor Inc Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335891A (en) * 1997-03-31 2007-12-27 Freescale Semiconductor Inc Semiconductor device

Similar Documents

Publication Publication Date Title
US20060128123A1 (en) Methods of forming integrated circuits structures including epitaxial silicon layers in a active regions
JPH07273063A (en) Semiconductor device and its manufacture
US6441444B1 (en) Semiconductor device having a nitride barrier for preventing formation of structural defects
US6521942B2 (en) Electrically programmable memory cell
JPH01281752A (en) Manufacture of semiconductor device
US6756259B2 (en) Gate insulating structure for power devices, and related manufacturing process
KR100223736B1 (en) Method of manufacturing semiconductor device
JPH01281755A (en) Semiconductor device
JPH01276645A (en) Semiconductor device
JPH10308448A (en) Isolation film of semiconductor device and formation method thereof
KR19990026904A (en) Manufacturing Method of Semiconductor Device
KR950011021B1 (en) Making method of semiconductor device
JPS6178138A (en) Manufacture of semiconductor device
JPH0974188A (en) Semiconductor device and its manufacture
JPH05326497A (en) Manufacture of semiconductor device
JPH0621089A (en) Semiconductor device and manufacture thereof
JPS61208271A (en) Manufacture of mis type semiconductor device
KR920004328B1 (en) Method of fabricating a self-alinged contact
KR100451756B1 (en) Method for fabricating semiconductor device the same
JPH06181219A (en) Manufacture of semiconductor device
JPH09213955A (en) Manufacture of semiconductor device
JPH07283300A (en) Semiconductor device and manufacture thereof
JPH05109652A (en) Manufacture of semiconductor device
JPH01238026A (en) Manufacture of semiconductor device
JPH05226590A (en) Semiconductor device and manufacture thereof