JPH01280769A - Photosensitive body - Google Patents

Photosensitive body

Info

Publication number
JPH01280769A
JPH01280769A JP11067588A JP11067588A JPH01280769A JP H01280769 A JPH01280769 A JP H01280769A JP 11067588 A JP11067588 A JP 11067588A JP 11067588 A JP11067588 A JP 11067588A JP H01280769 A JPH01280769 A JP H01280769A
Authority
JP
Japan
Prior art keywords
layer
photoreceptor
ceramics powder
photoconductive
undercoat layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11067588A
Other languages
Japanese (ja)
Inventor
Yuji Shintani
雄二 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP11067588A priority Critical patent/JPH01280769A/en
Publication of JPH01280769A publication Critical patent/JPH01280769A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To lessen the dependency of residual potential on humidity and to improve the environmental stability of a photosensitive body by using ceramics powder and a binder resin on an under coating layer on a conductive base. CONSTITUTION:The under coating layer 3 formed by dispersing ceramics powder 4 into the binder resin 5 and a photoconductive layer 2 are successively laminated on the conductive base 1. The under coating layer 3 is formed by dispersing the ceramics powder subjected to a heat treatment in the production stage to stabilize the crystal structure into said layer and, therefore, the conversion of the ceramics powder 4 to the form of hydrate or water compd. and the consequent absorption of moisture do not arise even under high humidity atmosphere. The dependency of the residual potential on humidity is thereby decreased and the environmental stability of the photosensitive body is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は感光体、特に導電性支持体上に少なくとも下引
き層と光導電層とを積層してなる感光体に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a photoreceptor, and particularly to a photoreceptor having at least an undercoat layer and a photoconductive layer laminated on a conductive support.

従来技術 従来より、感光体は導電性支持体上に光導電層を形成す
ることによって構成されており、光導電層を形成する光
導電性材料として、セレン、硫化カドミウム、酸化亜鉛
、アモルファスシリコン等の無機系の光導電性材料や、
ポリビニルカルバゾール、フタロシアニン、トリニトロ
フルオレイン、ビスアゾ顔料等の有機系の光導電性材料
が一般に使用されていた。
Prior Art Conventionally, photoreceptors have been constructed by forming a photoconductive layer on a conductive support, and photoconductive materials forming the photoconductive layer include selenium, cadmium sulfide, zinc oxide, amorphous silicon, etc. inorganic photoconductive materials,
Organic photoconductive materials such as polyvinylcarbazole, phthalocyanine, trinitrofluorein, and bisazo pigments were commonly used.

しかしながら、光導電層に上記のような無機系あるいは
有機系のいずれの光導電性材料を用いたものであっても
、その製造条件や使用条件によって、その特性が劣化し
てしまうという問題があった。
However, regardless of whether the above-mentioned inorganic or organic photoconductive materials are used for the photoconductive layer, there is a problem in that its properties deteriorate depending on the manufacturing and usage conditions. Ta.

例えば、導電性支持体と光導電層の界面における電荷の
ブロッキングが不充分である場合、導電性支持体からの
電荷の注入が生じ、そのだ゛め感光体として不利な特性
、特に、初期帯電電位が低くなること、暗減衰速度が大
きくなるーこと等の問題が生じる。
For example, if the blocking of charges at the interface between the conductive support and the photoconductive layer is insufficient, charge injection from the conductive support may occur, resulting in unfavorable properties as a photoreceptor, especially the initial charging. Problems arise such as a lower potential and an increased dark decay rate.

また、導電性支持体表面に欠陥、汚れ、あるいは加工の
ムラ等がある場合、その表面状態が鋭敏に画像品質に反
映されるため、画像ノイズが発生しやすいという問題、
あるいは導電性支持体と光導電層との接着力が不充分で
ある場合、長期間使用している間に光導電層が部分的に
剥離し、画像部に白斑点が生じる問題等も存在する。
In addition, if there are defects, dirt, or uneven processing on the surface of the conductive support, the surface condition will be sensitively reflected in the image quality, resulting in the problem that image noise is likely to occur.
Alternatively, if the adhesive strength between the conductive support and the photoconductive layer is insufficient, the photoconductive layer may partially peel off during long-term use, causing white spots in the image area. .

そこで、従来より、導電性支持体と光導電層との間に下
引き層を設は上述した問題を解決しようとする技術が知
られている。
Conventionally, therefore, a technique has been known in which an undercoat layer is provided between the conductive support and the photoconductive layer in order to solve the above-mentioned problems.

上述した特性を満足するとともに、下引き層に必要な特
性としては、残留電位が低いこと、外部の環境変化(特
に湿度変化)に対して、その電気抵抗が変化しないこと
等が挙げられる。
In addition to satisfying the above-mentioned characteristics, other characteristics required for the undercoat layer include low residual potential and no change in electrical resistance against changes in the external environment (particularly changes in humidity).

しかしながら、従来、とり、らの特性をすべて満足する
ような下引き層は実用化されていないのが実情であった
However, the reality is that no undercoat layer that satisfies all of the above characteristics has been put to practical use.

発明が解決しようとする課題 本発明は、上述したような事情に鑑みてなさり。Problems that the invention aims to solve The present invention was made in view of the above-mentioned circumstances.

たものであり、残留電位が低く、環境安定性に優れてい
るとともに、キャリア注入の防止、平面平滑性、接着性
等に優れた下引き層を有する感光体を提供するものであ
る。
The present invention provides a photoreceptor having a subbing layer that has a low residual potential, excellent environmental stability, and excellent prevention of carrier injection, flat surface smoothness, adhesiveness, and the like.

課題を解決するための手段 すなわち、本発明は導電性支持体上に少なくとも下引き
層と光導電層とを積層してなる感光体において、上記小
川き層が少なくともセラミ・ノクス粉末と結着樹脂より
なることを特徴とする感光体に関するものである。
Means for Solving the Problems Specifically, the present invention provides a photoreceptor comprising at least an undercoat layer and a photoconductive layer laminated on a conductive support, in which the Ogawa layer contains at least Cerami Nox powder and a binder resin. The present invention relates to a photoreceptor characterized by the following.

第1図は、本発明感光体の構成例を示したもので、導電
性支持体(1)lに結着樹脂(5)中にセラミックス粉
末(4)を分散してなる下引き層(3)および光導電層
(2)が用自次不吉層されている。
FIG. 1 shows an example of the structure of the photoreceptor of the present invention, in which an undercoat layer (3) is formed by dispersing ceramic powder (4) in a binder resin (5) on a conductive support (1). ) and the photoconductive layer (2) are used as self-contained layers.

光導電層(2)は導電性支持体(1)上に設けられ、従
来より公知の光導電性材料を蒸着あるいは結着材中に分
散させた単層構成であってもよいし、電荷発生層と電荷
輸送層とを積層してなる機能分離型構成であってもよい
し、これら以外の構成でもよい。
The photoconductive layer (2) is provided on the conductive support (1), and may have a single layer structure in which a conventionally known photoconductive material is vapor-deposited or dispersed in a binder, or it may have a single layer structure in which a conventionally known photoconductive material is vapor-deposited or dispersed in a binder. A functionally separated structure formed by laminating a layer and a charge transport layer may be used, or a structure other than these may be used.

導電性支持体(1)は少なくとも最表面が導電性を有す
る素材であればよく、また形状も円筒形、可#4’13
性ベルト状、平板状等任意の形態をとることができる。
The conductive support (1) may be any material as long as its outermost surface is conductive, and the shape may be cylindrical or #4'13.
It can take any form such as a flexible belt or a flat plate.

本発明の感光体における下引き層(3)は結着樹脂(5
)中にセラミックス粉末(4)を分散させたものであり
、ここで言うセラミックスとは、熱処理にょって焼結体
または単結晶の形態をとった無機物質固体材料のことで
あり、使用しうる無機材料としては、例えばアルミナ、
スピネル、ジルコニア、イツトリア、チタニア、酸化マ
グネシウム、酸化亜鉛。
The undercoat layer (3) in the photoreceptor of the present invention is a binder resin (5
), in which ceramic powder (4) is dispersed. Ceramics here refers to inorganic solid materials that have taken the form of sintered bodies or single crystals through heat treatment, and can be used. Examples of inorganic materials include alumina,
Spinel, zirconia, ittria, titania, magnesium oxide, zinc oxide.

窒化ケイ素、炭化タングステン、窒化ホウ素等をあげる
ことができる。
Examples include silicon nitride, tungsten carbide, boron nitride, and the like.

前記セラミックスの製造過程で行なわれる熱処理の温度
は、各々の物質によって異なるが、それらが焼結体また
は単結晶の形態をとり、水和物および水化物を除去する
ことができればよい。
The temperature of the heat treatment carried out in the manufacturing process of the ceramics differs depending on each substance, but it is sufficient as long as the materials take the form of a sintered body or a single crystal and hydrates and hydrates can be removed.

前記セラミックスの製造方法としては、例えばアルコキ
シドの形態をとった原料を加水分解し、得られた加水分
解生成物を高温にて焼成しセラミックス微粉末を製造す
るアルコキシド加水分解法(液相法)等があるがこの方
法に限らず、凍結乾燥法、溶媒乾燥法、沈澱法等の液相
法;粉砕分級法、熱粉砕法等の同相法;蒸気凝集法、気
相反応法、プラズマ法等の気相法等によって製造するこ
とができる。
Examples of the method for manufacturing the ceramics include an alkoxide hydrolysis method (liquid phase method) in which a raw material in the form of an alkoxide is hydrolyzed and the resulting hydrolyzed product is fired at a high temperature to produce fine ceramic powder. However, it is not limited to this method; liquid phase methods such as freeze drying, solvent drying, and precipitation methods; in-phase methods such as pulverization classification method and thermal pulverization method; vapor coagulation method, gas phase reaction method, plasma method, etc. It can be manufactured by a vapor phase method or the like.

前述した事かられかるように、非セラミツクスすなわち
熱処理を行なっていない無機材料、あるいは熱処理を行
っていても焼結体重たは単結晶の形態をとっていない無
機材料ば、水和物または水化物の形をとり易くなってい
るために、セラミックスに比べて耐湿件、耐熱性および
硬度の点で劣っている。そのだめ従来のように下引き層
中に非セラミツクス粉末を分散することが、感光体の環
境安定性を低下させる要因と々っていたと考えられ、る
As can be seen from the above, non-ceramics, that is, inorganic materials that have not undergone heat treatment, or inorganic materials that have not taken the form of sintered mass or single crystal even after heat treatment, are hydrates or hydrates. Because it is easier to take the shape of, it is inferior to ceramics in terms of moisture resistance, heat resistance, and hardness. Therefore, dispersing non-ceramic powder in the undercoat layer as in the past is thought to be a factor in reducing the environmental stability of the photoreceptor.

本発明に用いられるセラミックス粉末の添加量は、20
〜90重量先、好ましくけ40〜80重量%である。添
加量が20重量%より少ないと下引き層の抵抗率が10
13Ω・cnl以」二となり残留電位の上昇が顕著にな
る。添加量が90重量えより多くなると下引き層の表面
平滑性か損なわれるとともに、結着樹脂中への分散安定
性も低下する。
The amount of ceramic powder used in the present invention is 20
~90% by weight, preferably 40-80% by weight. If the amount added is less than 20% by weight, the resistivity of the undercoat layer will be 10.
13Ω·cnl or more, the residual potential increases significantly. If the amount added is more than 90% by weight, the surface smoothness of the undercoat layer will be impaired and the dispersion stability in the binder resin will also be reduced.

本発明に用いられるセラミックス粉末の比表面積は、0
,1〜70イ/g、特に1〜5oイ/gが好ましい。
The specific surface area of the ceramic powder used in the present invention is 0
, 1 to 70 i/g, particularly preferably 1 to 5 o i/g.

比表面積が0.1Trt/gより小さいと大粒径化が進
みまた充分な抵抗率を得ることが困難になる。7Qrr
l/gよりも大きいと小粒径化が進むことによって吸油
量が大きくなシ分散性が悪くなる。また、粉末としての
取り扱いが難かしくなり、作業性が悪くなる。
If the specific surface area is smaller than 0.1 Trt/g, the grain size will increase and it will be difficult to obtain sufficient resistivity. 7Qrr
If it is larger than 1/g, the particle size will become smaller and the oil absorption will be greater and the dispersibility will be worse. Moreover, it becomes difficult to handle as a powder, resulting in poor workability.

本発明に用いられるセラミックス粉末の比抵抗は、10
6〜1013Ω・錆、特に106〜1011Ω・口が好
捷しい。比抵抗か10 0・釧より低いと下引き層を形
成した時に、支持体からの電荷の注入を充分に防止する
ことができなくなる。また比抵抗が1013Ω・mより
高いと残留電位の上昇が避けられない。
The specific resistance of the ceramic powder used in the present invention is 10
6-1013Ω・rust, especially 106-1011Ω・mouth is good. If the specific resistance is lower than 100.degree., it will not be possible to sufficiently prevent charge injection from the support when forming an undercoat layer. Furthermore, if the specific resistance is higher than 1013 Ω·m, an increase in residual potential is unavoidable.

本発明に用いられるセラミックス粉末の粒径は、001
〜03μm、特に0.05〜02μmが好ましい。粒径
が0.01μmより小さいと吸油量が増加し結着樹脂に
対する分散性が悪く々る。03μmより大きいと下引き
層の表面平滑性が損なわれてしまう。
The particle size of the ceramic powder used in the present invention is 001
~03 μm, particularly preferably 0.05 to 02 μm. If the particle size is smaller than 0.01 μm, the oil absorption will increase and the dispersibility in the binder resin will be poor. If it is larger than 0.03 μm, the surface smoothness of the undercoat layer will be impaired.

本発明の下引き層における結着剤としては、公知の熱可
塑性樹脂あるいは熱硬化性樹脂等を使用することができ
る。
As the binder in the undercoat layer of the present invention, known thermoplastic resins or thermosetting resins can be used.

適当な結着剤樹脂の例は、これに限定されるものではな
いが、飽和ポリエステル樹脂、ポリアミド樹脂、アクリ
ル樹脂、エチレン−酢酸ビニル共重合体、イオン架橋オ
レフィン共重合体(アイオノマー)、スチレン−ブタジ
ェンブロック共重合体、ボリアリレート、ポリカーボネ
ート、塩化ビニル−酢酸ビニル共重合体、セルロースエ
ステル。
Examples of suitable binder resins include, but are not limited to, saturated polyester resins, polyamide resins, acrylic resins, ethylene-vinyl acetate copolymers, ionically crosslinked olefin copolymers (ionomers), styrene- Butadiene block copolymer, polyarylate, polycarbonate, vinyl chloride-vinyl acetate copolymer, cellulose ester.

ポリイミド、スチロール樹脂等の熱可塑性結着剤;エポ
キシ樹脂、ウレタン樹脂、シリコーン樹脂。
Thermoplastic binders such as polyimide and styrene resin; epoxy resin, urethane resin, and silicone resin.

フェノール樹脂、メラミン樹脂、キシレン樹脂。Phenolic resin, melamine resin, xylene resin.

アルキッド樹脂、熱硬化性アクリル樹脂等の熱硬化結着
剤等である。これらは単独で、または紹み合わせて使用
することができる。
These include thermosetting binders such as alkyd resins and thermosetting acrylic resins. These can be used alone or in combination.

本発明の感光体における士引きj曽は、前述したセラミ
ックス粉末を結着樹脂に分散させて得られる塗布液を浸
漬コーティング法、スプレーコーチインク法、スピナー
コーティング法、フレードコーティング法、ローラーコ
ーティング法、マイヤーバーコーティング法等の色々な
コーティング法を用いて光導電層上に塗工し、乾燥する
ことにより得られる。
In the photoreceptor of the present invention, a coating solution obtained by dispersing the above-mentioned ceramic powder in a binder resin can be applied by dip coating method, spray coach ink method, spinner coating method, flake coating method, or roller coating method. It can be obtained by coating the photoconductive layer on the photoconductive layer using various coating methods such as , Meyer bar coating method, etc., and drying it.

本発明の感光体の下引き層は、0.1〜3μn〕、好ま
しくは0.3〜1μmの厚さに形成する。0.1μmよ
り薄いと支持体表面の欠陥を充分に被覆することができ
なくなる。3μmより厚いと残留電位の上昇を招きやす
い。
The undercoat layer of the photoreceptor of the present invention is formed to have a thickness of 0.1 to 3 μm, preferably 0.3 to 1 μm. If it is thinner than 0.1 μm, defects on the surface of the support cannot be sufficiently covered. If it is thicker than 3 μm, the residual potential tends to increase.

本発明に用いられる光導電層としては、Sc、5eAs
合金、5e−Te合金、CdS、 ZnO,a−8i等
の無機光導電材料やポリビニルカルバゾール(PVK 
)、フタロシアニン、トリニトロフルオレイン(1”N
F)、ジスアゾ顔料、ヒドラゾン等の有機光導電材料を
蒸着あるいは結着樹脂中に分散してなる層構成であって
もよいし、電荷輸送層と電荷発生層とを積顔してなる機
能分離型構成であってもよいし、これら以外の構成でも
よい。
As the photoconductive layer used in the present invention, Sc, 5eAs
Inorganic photoconductive materials such as alloy, 5e-Te alloy, CdS, ZnO, a-8i, polyvinyl carbazole (PVK
), phthalocyanine, trinitrofluorein (1”N
F) It may be a layered structure in which an organic photoconductive material such as a disazo pigment or hydrazone is vapor-deposited or dispersed in a binder resin, or it may be a functionally separated structure in which a charge transport layer and a charge generation layer are laminated. It may be a mold configuration or a configuration other than these.

上述したように、本発明の感光体における下引き層は、
製造過程で熱処理され、結晶構造が安定化されたセラミ
ックス粉末を分散しているだめ、高湿雰囲気下において
もセラミックス粉末が水和物または水化物の形態をとっ
て吸湿することがなく、それによって残留電位の湿度依
存性を小さくすることができ、感光体の環境安定性を向
−J−、することができる。
As mentioned above, the undercoat layer in the photoreceptor of the present invention is
Because the ceramic powder is heat-treated during the manufacturing process and has a stabilized crystal structure, the ceramic powder does not absorb moisture in the form of hydrates even in high-humidity environments. The humidity dependence of the residual potential can be reduced, and the environmental stability of the photoreceptor can be improved.

捷だ、本発明における下引き層によって、導電性支持体
から光導電層への電荷の注入を防止すること、導電性支
持体と光導電層との接着性を向上させること、および導
電性支持体の表面欠陥を埋めること等を残留重付の上昇
等の不都合を招くことなく達成することができる。
However, the undercoat layer of the present invention prevents the injection of charge from the conductive support to the photoconductive layer, improves the adhesion between the conductive support and the photoconductive layer, and the conductive support. Filling of surface defects in the body can be accomplished without causing inconveniences such as an increase in residual weight.

以下、本発明の具体的な実施例について説明する。Hereinafter, specific examples of the present invention will be described.

実施例1 エポキシ樹脂(GY260、日本チバガイギー昧)10
0重量部 α−アルミナ(UA−5305、昭和電工■)120重
量部 トリクロロエタン         20重量部以」−
の物質をサンドミルで3時間粉砕・分散した後、アミン
系硬化剤(I−IY943、日本チバガイギー■)を添
加し、更にトリクロロエタンで希釈して、最大表面粗さ
15μm、グ80x330mmの円筒形アルミニウム支
持体」−に05μn]の厚さにディッピ=IO− フグ法によって塗布した。その後、130℃で1時間乾
燥機中で乾燥し、下引き層を形成した。得られた下引き
層の体積抵抗率を測定したところ1011Ω・口であっ
た。才だ、その表面の最大粗さは03μmで、アルミニ
ウム支持体の表面の凹凸を平滑化することができた。
Example 1 Epoxy resin (GY260, Ciba Geigy Japan) 10
0 parts by weight α-alumina (UA-5305, Showa Denko ■) 120 parts by weight Trichloroethane 20 parts by weight or more
After grinding and dispersing the material in a sand mill for 3 hours, an amine hardener (I-IY943, Ciba Geigy Japan) was added, and further diluted with trichloroethane to form a cylindrical aluminum support with a maximum surface roughness of 15 μm and a size of 80 x 330 mm. It was coated on the body to a thickness of 0.05 μm by the dippi-IO blowfish method. Thereafter, it was dried in a dryer at 130° C. for 1 hour to form an undercoat layer. The volume resistivity of the obtained undercoat layer was measured and found to be 1011 Ω. The maximum roughness of the surface was 0.3 μm, and it was possible to smooth out the unevenness on the surface of the aluminum support.

なお、上記α−アルミナは1100℃で水酸化アルミニ
ウムを焼成してセラミックスとしたもので、平均粒径Q
、l pm、 ’B E T比表面M30ya’/g、
比抵抗J012Ω・αであった。
The above α-alumina is made into a ceramic by firing aluminum hydroxide at 1100°C, and has an average particle size Q.
, l pm, 'BET specific surface M30ya'/g,
The specific resistance was J012Ω·α.

」−記下引き層」―に、公知の真空蒸着装置を用いて1
O−5torrの圧力下で、アモルファスセレン化ヒ素
よりなる光導電層を50〜55μ!ηの厚さに形成した
``-undercoat layer''-- using a known vacuum evaporation device.
Under a pressure of O-5 torr, a photoconductive layer made of amorphous arsenic selenide is formed to a thickness of 50 to 55 μm! It was formed to a thickness of η.

比較例1 下引き層を形成しないこと以外は、実施例1と同様にし
て感光体を作製した。
Comparative Example 1 A photoreceptor was produced in the same manner as in Example 1, except that no undercoat layer was formed.

実施例1および比較例1の感光体をEP−550(ミノ
ルタカメラ■製)に搭載して、通常の電子写稟プロセス
を実施し、帯電位、残留電位、画質および感光体の表面
状態について、初期および耐刷10万枚後に測定した。
The photoreceptors of Example 1 and Comparative Example 1 were mounted on an EP-550 (manufactured by Minolta Camera ■) and subjected to a normal electrophotography process, and the charge potential, residual potential, image quality, and surface condition of the photoreceptor were evaluated. Measurements were taken at the initial stage and after printing 100,000 copies.

その結果を表1に示す。The results are shown in Table 1.

なお、表中、画質の欄の○印は良好、△印はやや低下、
×印は低下を示し、感光体の表面状態の欄の○印は光導
電層の剥離がまったく生じなかったことを、X印は剥離
が生じたことを示す。
In addition, in the table, in the image quality column, ○ marks are good, △ marks are slightly degraded,
An x mark indicates a decrease, an ○ mark in the photoreceptor surface condition column indicates that no peeling of the photoconductive layer occurred, and an X mark indicates that peeling occurred.

表 1 表1に示される結果より明らかなように、本発明の実施
例に係る感光体は、比較例の感光体のように、1O万枚
コピー後に残、留電位が著しく増加したり、画質が低下
するということがなく、マだ、光導電層が剥離して画像
ノイズが生じることもなかった。
Table 1 As is clear from the results shown in Table 1, the photoreceptor according to the example of the present invention, like the photoreceptor of the comparative example, did not significantly increase the residual potential after copying 100,000 sheets, or had poor image quality. There was no decrease in image quality, and no image noise was caused by peeling of the photoconductive layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の感光体の構成を示す模式的断面図であ
る。 1・・導電性支持体  2・・・光導電層3 ・下引き
層    4・・・セラミックス粉末5・・結着樹脂 出願人  ミノルタカメラ株式会社
FIG. 1 is a schematic cross-sectional view showing the structure of the photoreceptor of the present invention. 1... Conductive support 2... Photoconductive layer 3 - Undercoat layer 4... Ceramic powder 5... Binder resin applicant Minolta Camera Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、導電性支持体上に少なくとも下引き層と光導電層と
を積層してなる感光体において、上記下引き層が少なく
ともセラミックス粉末と結着樹脂よりなることを特徴と
する感光体。
1. A photoreceptor comprising at least an undercoat layer and a photoconductive layer laminated on a conductive support, wherein the undercoat layer comprises at least ceramic powder and a binder resin.
JP11067588A 1988-05-06 1988-05-06 Photosensitive body Pending JPH01280769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11067588A JPH01280769A (en) 1988-05-06 1988-05-06 Photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11067588A JPH01280769A (en) 1988-05-06 1988-05-06 Photosensitive body

Publications (1)

Publication Number Publication Date
JPH01280769A true JPH01280769A (en) 1989-11-10

Family

ID=14541608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11067588A Pending JPH01280769A (en) 1988-05-06 1988-05-06 Photosensitive body

Country Status (1)

Country Link
JP (1) JPH01280769A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160150A (en) * 1983-03-04 1984-09-10 Fuji Photo Film Co Ltd Electrophotographic sensitive body
JPS59208556A (en) * 1983-05-11 1984-11-26 Canon Inc Electrophotographic sensitive body
JPS60111255A (en) * 1983-11-18 1985-06-17 Canon Inc Electrophotographic sensitive body and its manufacture
JPS6132065A (en) * 1984-07-24 1986-02-14 Sony Corp Electrophotographic sensitive material
JPS61122653A (en) * 1984-11-20 1986-06-10 Canon Inc Electrophotographic sensitive body and formation of image
JPS61179464A (en) * 1985-02-05 1986-08-12 Canon Inc Forming method for electrostatic image
JPS63187253A (en) * 1987-01-30 1988-08-02 Canon Inc Electrophotographic sensitive body
JPS63298250A (en) * 1987-05-29 1988-12-06 Ricoh Co Ltd Electrophotographic sensitive body
JPS6473353A (en) * 1987-09-14 1989-03-17 Ricoh Kk Electrophotographic sensitive body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160150A (en) * 1983-03-04 1984-09-10 Fuji Photo Film Co Ltd Electrophotographic sensitive body
JPS59208556A (en) * 1983-05-11 1984-11-26 Canon Inc Electrophotographic sensitive body
JPS60111255A (en) * 1983-11-18 1985-06-17 Canon Inc Electrophotographic sensitive body and its manufacture
JPS6132065A (en) * 1984-07-24 1986-02-14 Sony Corp Electrophotographic sensitive material
JPS61122653A (en) * 1984-11-20 1986-06-10 Canon Inc Electrophotographic sensitive body and formation of image
JPS61179464A (en) * 1985-02-05 1986-08-12 Canon Inc Forming method for electrostatic image
JPS63187253A (en) * 1987-01-30 1988-08-02 Canon Inc Electrophotographic sensitive body
JPS63298250A (en) * 1987-05-29 1988-12-06 Ricoh Co Ltd Electrophotographic sensitive body
JPS6473353A (en) * 1987-09-14 1989-03-17 Ricoh Kk Electrophotographic sensitive body

Similar Documents

Publication Publication Date Title
JP4740473B2 (en) Blocking layer comprising light scattering particles having a rough surface
JPH01280769A (en) Photosensitive body
JPS60111255A (en) Electrophotographic sensitive body and its manufacture
JP7380287B2 (en) Photoelectric conversion element, organic photoreceptor, image forming method, image forming device, and organic EL element
JPS6059353A (en) Electrophotographic sensitive body
TWI802833B (en) Electronic device and method for producing the same, image forming method, and image forming apparatus
US20230202842A1 (en) Metal oxide particles, laminated body, solar cell, photoconductor, method of manufacturing metal oxide particles, and method of manufacturing laminated body
JPS62272277A (en) Production of electrophotographic sensitive body
JPS62187358A (en) Electrophotographic sensitive body
JPH02191964A (en) Electrophotographic sensitive body
JPS58121044A (en) Electrophotographic receptor
JPH04278957A (en) Electrophotographic sensitive body and its production
TW202214439A (en) Laminate, device using the same, and production methods thereof
JP2007171291A (en) Electrophotographic photoreceptor and its manufacturing method, image forming apparatus, and process cartridge
JP2022035992A (en) Laminate, device using the same, and manufacturing methods therefor
JP2021181393A (en) Metal oxide particle having p-type semiconductivity, electronic device using the same, method for manufacturing electronic device, and image forming apparatus
JPS61275845A (en) Photoconductive element
JPH038437A (en) Method and equipment for producing and recovering ultrafine particle
JPH09274329A (en) Electrophotographic photoreceptor
JPH0331856A (en) Organic photosensitive body superior in oxidation prevention performance
JPH02210455A (en) Electrophotographic sensitive body
JPH05297608A (en) Electrophotographic sensitive body and electrophotographic recorder
JPS6162041A (en) Electrophotografic sensitive body for electrophotography
JP2003043718A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic device
JPS62195675A (en) Production of electrophotographic sensitive body