JPH0128056B2 - - Google Patents

Info

Publication number
JPH0128056B2
JPH0128056B2 JP55086651A JP8665180A JPH0128056B2 JP H0128056 B2 JPH0128056 B2 JP H0128056B2 JP 55086651 A JP55086651 A JP 55086651A JP 8665180 A JP8665180 A JP 8665180A JP H0128056 B2 JPH0128056 B2 JP H0128056B2
Authority
JP
Japan
Prior art keywords
resin composition
compound
weight
aromatic vinyl
vinyl cyanide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55086651A
Other languages
Japanese (ja)
Other versions
JPS5712015A (en
Inventor
Mitsuo Abe
Yozo Kitagawa
Tadahiko Tsutsumi
Tadashi Kato
Seiichi Nochimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13892928&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0128056(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP8665180A priority Critical patent/JPS5712015A/en
Priority to US06/276,875 priority patent/US4396654A/en
Priority to BR8104021A priority patent/BR8104021A/en
Priority to MX188004A priority patent/MX158556A/en
Priority to EP81302949A priority patent/EP0043273B1/en
Priority to DE8181302949T priority patent/DE3163619D1/en
Publication of JPS5712015A publication Critical patent/JPS5712015A/en
Publication of JPH0128056B2 publication Critical patent/JPH0128056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/06Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene-diene terpolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249976Voids specified as closed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/249991Synthetic resin or natural rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/249991Synthetic resin or natural rubbers
    • Y10T428/249992Linear or thermoplastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • Y10T428/31583Nitrile monomer type [polyacrylonitrile, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐衝撃性ゴム強化樹脂組成物、特に冷
蔵庫箱体の製造に適した耐衝撃性樹脂組成物に関
するものである。 合成樹脂製の冷蔵庫内箱の如く複雑な形状を有
し且つ展開面積の大きな成形品を真空成形により
製造する場合、高度の成形技術をもつてしても成
形品の場所による厚みのバラツキが解消できず、
このためかかる成形に供する合成樹脂板は厚肉の
ものが使用されてきた。一方、最近の成形加工の
分野において省資源やコスト低減の目的から真空
成形に供する合成樹脂板の厚さを薄くすることが
一般に行われている。この様に薄肉の成形品を使
用する場合、成形品の場所による厚さのバラツキ
の少ない樹脂の発現が強く要望されている。 また、冷蔵庫箱体は内箱と外箱の間に断熱材を
介する構造を有しているが、発泡ウレタンが断熱
材として優れていることを利用して多くの場合ポ
リウレタンの注入発泡法が採用されている。この
施工法は工程が簡略化できることの他に、ポリウ
レタン発泡体の熱伝導率がガラス繊維やポリスチ
レン発泡体より低い為、断熱材層の厚さを薄くす
ることが可能となり、その分庫内の実効容積を増
加させたり、冷却エネルギーの節約を可能にする
等の利点がある。しかし乍ら、一方この施工法に
よる場合、合成樹脂製内箱はポリウレタン発泡体
の原料成分であるイソシアネート化合物、ポリオ
ール化合物及び発泡剤として使用されるフロンガ
ス等と接触することになり、合成樹脂製内箱はこ
れ等原料成分に化学的に侵蝕され強度が著しく低
下する。 又この施工法による場合、合成樹脂製内箱とポ
リウレタン発泡体とが接着するとともにその界面
に殆んど発泡していない硬いポリウレタンの層が
生成する。このポリウレタン層は弱い為、温度差
やわずかな衝撃により容易に亀裂が入り、この亀
裂が合成樹脂製内箱に対してノツチ効果として作
用し、内箱の強度を著しく低下させる。 この様にポリウレタン発泡体に接触する合成樹
脂製内箱の強度低下を防ぐため、合成樹脂製内箱
のポリウレタン発泡体に接する側に水性ゴムラテ
ツクスを塗布して塗膜を形成させてからポリウレ
タンを注入発泡させる方法(特公昭46−13547
号)、この水性ゴムラテツクス塗布の替りに耐フ
ツ化炭化水素性フイルムを設けたプラスチツク複
合材を真空成形して内箱を成形する方法(特公昭
46−13550号)、又アクリロニトリル成分が多い
ABS樹脂を中間層とし、これの両側をブタジエ
ン成分が多いABS樹脂とした三層ABSシートを
使用する方法(特開昭54−101882号)等が提案さ
れている。しかしこれ等の方法はいずれも冷蔵庫
箱体の製造工程を複雑化し、コスト高になる欠点
を有している。 本発明の目的は改良された真空成形性を有し、
特に成形品の場所による厚さのバラツキを少なく
し、かつポリウレタン発泡体との接触による強度
低下の少ない成形品を得ることのできる耐衝撃性
樹脂組成物を提供することにある。 本発明の耐衝撃性樹脂組成物はゴム質重合体に
芳香族ビニル化合物及びビニルシアン化合物が化
学的に結合したグラフト重合体と芳香族ビニル化
合物/ビニルシアン化合物共重合体とからなり、
ポリウレタン発泡層に接触する真空成形箱体の製
造に用いられるゴム強化樹脂組成物において、 〔〕 上記樹脂組成物に10〜30重量%の割合で含
まれるゴム質重合体100重量部に対して芳香族
ビニル化合物及びビニルシアン化合物の70〜
120重量部が化学的に結合しており、 〔〕 上記樹脂組成物中にマトリツクス成分とし
て含まれる遊離の芳香族ビニル化合物/ビニル
シアン化合物共重合体はその極限粘度が0.65〜
0.80であり、 〔〕 上記樹脂組成物における芳香族ビニル化合
物とビニルシアン化合物との重量比が2.3〜3.0
の範囲にあることを特徴とする。 本発明に使用されるゴム質重合体としては、ポ
リブタジエン、アクリロニトリル−ブタジエン共
重合体、ブタジエン−スチレン共重合体、ポリイ
ソプレンおよびポリクロロプレンあるいはエチレ
ン−プロピレン−ジエン系ゴム等を挙げることが
出来る。またこれらは二種以上を組合わせて使用
することも出来る。樹脂組成物中のゴム含有量
は、耐衝撃性の点から10重量%以上、望ましくは
14重量%以上であることが好ましい、又満足し得
る加熱変形温度および剛性を保持するには30重量
%以下好ましくは25重量%以下である。 また本発明で使用する芳香族ビニル化合物とし
ては、例えばスチレン、α−メチルスチレン、ジ
メチルスチレン、ビニルトルエン、アルコキシス
チレン等が挙げられる。またビニルシアン化合物
としては例えばアクリロニトリル、メタアクリロ
ニトリル等が挙げられる。上記単量体は各々一種
又は二種以上を組合わせて使用することができ
る。 前記ゴム質重合体に上記単量体混合物をグラフ
ト重合するに際しては、ラテツクス状態のゴム質
重合体に上記単量体混合物を添加して乳化重合を
遂行する方法の他、このようなグラフト重合体を
製造するに際して通常採用される方法、例えば塊
状−懸濁重合法、溶液重合法、乳化−塊状重合法
等いずれの方法によつてもよい。 本発明の耐衝撃性樹脂組成物によれば、グラフ
ト重合体はゴム質重合体100重量部に対し、化学
的に結合した単量体が70〜120重量部であること、
いわゆるグラフト率が70〜120%、望ましくは90
〜110%であることが必要である。また樹脂組成
物中にマトリツクス成分として存在する遊離の芳
香族ビニル化合物/ビニルシアン化合物共重合体
の30℃、メチルエチルケトン中の極限粘度が0.65
〜0.80であることが必要である。グラフト率が70
%未満の場合および/又はマトリツクス成分の上
記極限粘度が0.65未満の場合は、本発明の目的と
している良好な真空成形性及びポリウレタン発泡
体との接触時における良好な強度を保持すること
ができなくなる。一方グラフト率が120%を越え
るとゴム質重合体のゴム的性質が失なわれ望まし
い強度の発現を期待することができない。また極
限粘度が0.80を越えると、樹脂加工時の流動性が
大幅に低下する為望ましくない。 更に本発明のゴム強化樹脂組成物における芳香
族ビニル化合物とビニルシアン化合物との割合は
重量比で2.3〜3.0の範囲にあることが必要であ
る。この割合が3.0を越えると本発明の目的とし
ているポリウレタン発泡体との接触時における良
好な強度保持が達成されなくなり、又2.3より小
さくなると成形加工時の熱安定性が悪くなり望ま
しくない。 以上に示した所望のグラフト率を有するグラフ
ト重合体は既知の重合条件を適宜設定することに
より得ることができる。例えば乳化グラフト重合
の場合、開始剤は有機過酸化物と鉄塩のレドツク
ス系を用いるが、有機過酸化物としてはクメンハ
イドロパーオキサイド、ジイソプロピルベンゼン
ハイドロパーオキサイド、パラメンタンハイドロ
パーオキサイドなどがあり、また鉄塩としては第
1鉄塩、第2鉄塩のいずれでも良く、一般的には
硫酸塩、塩酸塩を用いる。 有機過酸化物の使用量は重合性単量体100重量
部に対して、0.1〜1.0重量部でよく、鉄塩の使用
量は0.001〜0.1重量部でよい。 乳化剤は通常の乳化重合に用いられるものであ
ればいずれも使用できるが、一般的には不均化ロ
ジン酸、水添化ロジン酸等のナトリウム塩または
カリウム塩が用いられ、また炭素数8〜18の脂肪
酸塩を用いることもできる。 更に必要に応じて重合調節剤を用いるが、重合
調節剤としてはメルカプト化合物、例えば通常ノ
ルマルまたは第3級ドデシルメルカプタンの如き
長鎖のメルカプタン、あるいはジペンテン、ター
ピノレン、α−テルピネンおよび少量の他の環状
テルペン類よりなるテルペン混合物が用いられそ
の使用量は0〜1.0重量部程度である。重合温度
は40゜〜95℃の範囲が好ましく、重合温度が40℃
未満の場合には反応が進みにくくなりまた95℃を
越えると重合系が不安定となり凝固物が生成する
傾向がある。 以上の如く適切な重合条件の選択により製造す
る他、更に当該分野で通常よく実施される方法と
して予めゴム質重合体含有量の多いグラフト重合
体を製造しておき、これに芳香族ビニル化合物と
ビニルシアン化合物との共重合体を配合すること
によりゴム質重合体の含有量を調節する方法を採
用することもできる。この場合も本発明の日的を
達成するには、最終的に得られたゴム強化樹脂組
成物が、本発明の要件を満足する必要がある。 本発明では必要に応じて上記の樹脂組成物に特
定の粘度を有するジオルガノポリシロキサン及
び/又は脂肪酸金属塩を添加することにより、ポ
リウレタン発泡体との接触時における優れた強度
保持能力を最高度に発揮させることが出来る。 ここで使用するジオルガノポリシロキサンは25
℃における粘度が5〜100000センチストークス望
ましくは5000〜50000センチストークスの範囲に
あるものがよい。またオルガノ置換基はアルキ
ル、アリールおよびビニル基およびこれらの組合
せよりなる群から選ばれる。ジオルガノポリシロ
キサンは二種以上を組合せて使用することも出来
る。その使用量は0.01〜2.0重量%望ましくは0.05
〜1.0重量%程度が本発明の目的達成の上で好ま
しい。 また脂肪酸金属塩は炭素数が12個以上の直鎖状
飽和脂肪酸例えばラウリン酸、パルミチン酸、ス
テアリン酸等の金属塩で、金属としてはマグネシ
ウム、カルシウム、ストロンチウム、バリウム、
亜鉛、カドミウム、アルミニウム、錫、鉛等の中
から選ばれる。脂肪酸金属塩は二種以上を組合せ
て使用することも出来る。その使用量は0.1〜3
重量%、望ましくは0.5〜1.5重量%の時もつとも
よく本発明の目的を達成することが出来る。 本発明の樹脂組成物と上記添加剤との混合方法
には特に制限はなく、通常の混合方法が採用され
る。例えば、両者を所定量秤量してヘンシエルミ
キサー、タンブラー等による混合や熱ロール、バ
ンバリーミキサー等による溶融混合等を採用出来
る。このようにして樹脂組成物を得る際に、安定
剤、着色剤、その他の添加剤を必要に応じて添加
配合できることは勿論である。 以下本発明を実施例により詳細に説明する。
尚、以下の実施例はゴム質重合体、ビニル芳香族
化合物およびビニルシアン化合物成分からなるゴ
ム強化樹脂組成物としてアクリロニトリル−ブタ
ジエン−スチレン樹脂(以下ABS樹脂と記す)
を用いた時の性能評価例である。 表−1に示す試料No.〜の粉末状ABS樹脂
は、乳化重合法にて10ガラス製反応器を使用し
て調製した。 表−1に示したグラフト率は次の方法によつて
測定した。即ち粉末状ABS樹脂の一定量(A)をア
セトン中に投入し、遊離のアクリロリトリル−ス
チレン共重合体を完全に溶解させ、この溶液より
遠心分離機にて不溶分(B)を得た。グラフト率は次
式により算出した。 グラフト率=B−A×ABS樹脂中のゴム分率/A×ABS樹
脂中のゴム分率× 100 実施例 1〜3 試料No.、、の粉末状ABS樹脂の各々を
50mmφ押出機にて溶融、混合してペレツトとし
た。このようにして得られたペレツトをTダイを
装着した40mmφ押出機によつて厚さ1.5mm、幅400
mmのシートとした。このシートより幅5mm長さ
110mmの短冊状平板を切出し真空成形性評価用試
験片とした。 この試験片を、前面が2重ガラスで内部を観察
することができる180℃にコントロールされた恒
温槽内に入れ、試験片の上端のみをクランプで固
定し垂直状態で吊し、5分後の試験片下端の位置
を測定することにより試験片自重による垂れ下が
り量を求めることにより真空成形性の目安とし
た。 この垂れ下がり量が大きいことは真空成形加工
時のシート加熱段階にて樹脂シートの垂れ下がり
量が大きくなることを意味している。これは樹脂
シート面の場所により加熱ヒーターとの距離が大
幅に異なることになる為加熱ムラが大きくなり、
この状態で真空成形すると成形品の場所による厚
さのバラツキが大きくなる。即ち試験片自重によ
る上記樹脂シートの垂れ下がり量が大きいことは
真空成形品の場所による厚さのバラツキが大きく
なることを意味し、望ましくない。 又発泡ポリウレタンとの接触状態での強度を測
定する目的で前記押出シートより一辺150mmの四
角形の平板を作成した。 この平板を別途用意した一辺150mm、深さ30mm
の底付き四角形中空箱の上端に置きその中空部に
三井日曹ウレタン(株)製発泡ポリウレタン原料
(PRG R×510〔ポリオール〕とTDI−TRC〔イソ
シアネート〕を100対83.2の割合にて撹拌混合し
たもの)を注入し発泡させた。このようにして得
た片面に発泡ポリウレタンが接着した状態の平板
を−30℃の低温室内で状態調節した後、デユポン
式落錘衝撃試験機を使用してこの温度における落
錘衝撃強度を測定した。この測定ではABS樹脂
シートが上側になる様に固定し、打撃棒は先端半
径が1/4インチのものを使用した。 実施例 4 試料No.の粉末状ABS樹脂にステアリン酸マ
グネシウムを1.0PHR加えヘンシエルミキサーに
て撹拌混合した。以後は実施例1〜3と同じとし
た。 実施例 5 実施例4にてステアリン酸マグネシウムの替り
にステアリン酸アルミニウムを用いた他は実施例
4と同様にして評価した。 実施例 6 実施例4にてステアリン酸マグネシウムの替り
にポリジメチルシロキサン(粘度10000センチス
トークス)を0.2PHR加えた他は実施例4と同じ
とした。 実施例 7 実施例4にて更にポリジメチルシロキサン(粘
度10000センチストークス)を0.2PHR加えた他
は実施例4と同じとした。 比較例 1〜3 試料No.、、の粉末状ABS樹脂各々を50
mmφ押出機にて溶融混合してペレツトとした。以
後は実施例1〜3と同じとした。 比較例 4 試料No.の粉末状ABS樹脂にステアリン酸マ
グネシウムを1.0PHR加えヘンシエルミキサーに
て撹拌混合した。以後は実施例1〜3と同じとし
た。 比較例 5 比較例4にてステアリン酸マグネシウムの替り
にステアリン酸アルミニウムを用いた他は比較例
4と同様にして評価した。 比較例 6 比較例4にてステアリン酸マグネシウムの替り
にポリジメチルシロキサン(粘度10000センチス
トークス)を0.2PHR加えた他は比較例4と同じ
とした。 比較例 7 比較例4にて更にポリジメチルシロキサン(粘
度10000センチストークス)を0.2PHR加えた他
は比較例4と同じとした。 以上の実施例1〜7及び比較例1〜7の落錘衝
撃強度評価結果を表−2に示した。 表−2に示した評価結果より本発明による樹脂
組成物は真空成形性が良くまた発泡ポリウレタン
との接触状態に於て良好な強度保持を示すことは
明らかである。
The present invention relates to an impact-resistant rubber-reinforced resin composition, particularly an impact-resistant resin composition suitable for manufacturing refrigerator boxes. When manufacturing a molded product with a complex shape and large development area, such as a synthetic resin refrigerator inner box, by vacuum forming, even with advanced molding technology, variations in thickness depending on the location of the molded product can be resolved. I can't do it,
For this reason, thick synthetic resin plates have been used for such molding. On the other hand, in recent years in the field of molding, it has been common practice to reduce the thickness of synthetic resin plates used for vacuum forming for the purpose of resource conservation and cost reduction. When such thin-walled molded products are used, there is a strong demand for a resin that exhibits less variation in thickness depending on the location of the molded product. In addition, refrigerator boxes have a structure in which an insulating material is interposed between the inner box and the outer box, but in many cases, polyurethane injection foaming method is adopted because urethane foam is excellent as an insulating material. has been done. This construction method not only simplifies the process, but because the thermal conductivity of polyurethane foam is lower than that of glass fiber or polystyrene foam, it is possible to reduce the thickness of the insulation layer, and the It has advantages such as increasing effective volume and saving cooling energy. However, when using this construction method, the synthetic resin inner box comes into contact with isocyanate compounds and polyol compounds, which are the raw material components of polyurethane foam, and fluorocarbon gas used as a blowing agent. The box is chemically attacked by these raw materials and its strength is significantly reduced. In addition, when this construction method is used, the synthetic resin inner box and the polyurethane foam are bonded together, and a hard polyurethane layer with almost no foaming is formed at the interface. Since this polyurethane layer is weak, it easily cracks due to temperature differences or slight impacts, and these cracks act as a notch effect on the synthetic resin inner box, significantly reducing the strength of the inner box. In order to prevent the strength of the synthetic resin inner box that comes into contact with the polyurethane foam from decreasing, water-based rubber latex is applied to the side of the synthetic resin inner box that comes into contact with the polyurethane foam to form a film, and then the polyurethane is injected. Foaming method (Special Publication No. 46-13547)
(No. 1), a method in which the inner box is formed by vacuum forming a plastic composite material coated with a fluoride-resistant hydrocarbon film instead of applying water-based rubber latex (Tokuko Showa).
46-13550), and also contains a lot of acrylonitrile component.
A method has been proposed in which a three-layer ABS sheet is used in which an intermediate layer is made of ABS resin and both sides are made of ABS resin containing a large amount of butadiene (Japanese Patent Laid-Open No. 101882/1982). However, all of these methods have the drawback of complicating the manufacturing process of the refrigerator box and increasing costs. The object of the present invention is to have improved vacuum formability;
In particular, it is an object of the present invention to provide an impact-resistant resin composition which can reduce variations in thickness depending on the location of a molded product and can provide a molded product with less loss of strength due to contact with a polyurethane foam. The impact-resistant resin composition of the present invention comprises a graft polymer in which an aromatic vinyl compound and a vinyl cyanide compound are chemically bonded to a rubbery polymer, and an aromatic vinyl compound/vinyl cyanide compound copolymer,
In a rubber-reinforced resin composition used for manufacturing a vacuum-formed box body in contact with a polyurethane foam layer, [] an aromatic compound based on 100 parts by weight of a rubbery polymer contained in the resin composition at a ratio of 10 to 30% by weight; 70~ for group vinyl compounds and vinyl cyanide compounds
120 parts by weight are chemically bonded, and [] the free aromatic vinyl compound/vinyl cyanide compound copolymer contained as a matrix component in the resin composition has an intrinsic viscosity of 0.65 to
0.80, [] The weight ratio of the aromatic vinyl compound to the vinyl cyanide compound in the resin composition is 2.3 to 3.0.
It is characterized by being in the range of Examples of the rubbery polymer used in the present invention include polybutadiene, acrylonitrile-butadiene copolymer, butadiene-styrene copolymer, polyisoprene, polychloroprene, and ethylene-propylene-diene rubber. Moreover, these can also be used in combination of two or more types. The rubber content in the resin composition is preferably 10% by weight or more from the viewpoint of impact resistance.
The content is preferably 14% by weight or more, and is preferably 30% by weight or less and preferably 25% by weight or less in order to maintain a satisfactory heat deformation temperature and stiffness. Examples of the aromatic vinyl compound used in the present invention include styrene, α-methylstyrene, dimethylstyrene, vinyltoluene, and alkoxystyrene. Examples of vinyl cyanide compounds include acrylonitrile and methacrylonitrile. The above monomers can be used alone or in combination of two or more. When graft polymerizing the monomer mixture to the rubbery polymer, there is a method in which emulsion polymerization is carried out by adding the monomer mixture to the rubbery polymer in a latex state. Any method commonly employed for producing the polymer may be used, such as a bulk-suspension polymerization method, a solution polymerization method, an emulsion-bulk polymerization method, etc. According to the impact-resistant resin composition of the present invention, the graft polymer contains 70 to 120 parts by weight of chemically bonded monomers to 100 parts by weight of the rubbery polymer;
The so-called graft rate is 70-120%, preferably 90
~110% is required. Furthermore, the intrinsic viscosity of the free aromatic vinyl compound/vinyl cyanide compound copolymer present as a matrix component in the resin composition in methyl ethyl ketone at 30°C is 0.65.
~0.80 is required. Graft rate is 70
% and/or when the above-mentioned intrinsic viscosity of the matrix component is less than 0.65, it becomes impossible to maintain the good vacuum formability and good strength when in contact with the polyurethane foam, which are the objectives of the present invention. . On the other hand, if the grafting ratio exceeds 120%, the rubbery polymer loses its rubbery properties and cannot be expected to exhibit desired strength. Moreover, if the intrinsic viscosity exceeds 0.80, it is not desirable because the fluidity during resin processing will be significantly reduced. Furthermore, the ratio of the aromatic vinyl compound to the vinyl cyanide compound in the rubber-reinforced resin composition of the present invention needs to be in the range of 2.3 to 3.0 in terms of weight ratio. If this ratio exceeds 3.0, good strength retention during contact with the polyurethane foam, which is the objective of the present invention, will not be achieved, and if it is less than 2.3, thermal stability during molding will deteriorate, which is undesirable. The graft polymer having the desired graft ratio shown above can be obtained by appropriately setting known polymerization conditions. For example, in the case of emulsion graft polymerization, a redox system of organic peroxide and iron salt is used as an initiator, and organic peroxides include cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramenthane hydroperoxide, etc. The iron salt may be either a ferrous salt or a ferric salt, and sulfates and hydrochlorides are generally used. The amount of organic peroxide used may be 0.1 to 1.0 parts by weight, and the amount of iron salt used may be 0.001 to 0.1 parts by weight, based on 100 parts by weight of the polymerizable monomer. Any emulsifier used in normal emulsion polymerization can be used, but sodium or potassium salts of disproportionated rosin acid, hydrogenated rosin acid, etc. are generally used; 18 fatty acid salts can also be used. Further, if necessary, polymerization regulators are used, including mercapto compounds, such as usually long-chain mercaptans such as normal or tertiary dodecyl mercaptan, or dipentene, terpinolene, α-terpinene, and small amounts of other cyclic mercaptans. A terpene mixture consisting of terpenes is used, and the amount used is about 0 to 1.0 parts by weight. The polymerization temperature is preferably in the range of 40° to 95°C, and the polymerization temperature is 40°C.
If it is less than 95°C, the reaction will be difficult to proceed, and if it exceeds 95°C, the polymerization system will become unstable and a coagulum will tend to form. In addition to manufacturing by selecting appropriate polymerization conditions as described above, a method commonly practiced in this field is to prepare a graft polymer with a high rubbery polymer content in advance, and add an aromatic vinyl compound to this graft polymer. It is also possible to adopt a method of adjusting the content of the rubbery polymer by blending a copolymer with a vinyl cyanide compound. In this case as well, in order to achieve the purpose of the present invention, the rubber-reinforced resin composition finally obtained must satisfy the requirements of the present invention. In the present invention, by adding a diorganopolysiloxane and/or a fatty acid metal salt having a specific viscosity to the above resin composition as necessary, the excellent strength retention ability when in contact with the polyurethane foam is maximized. can be demonstrated. The diorganopolysiloxane used here is 25
The viscosity at °C is preferably in the range of 5 to 100,000 centistokes, preferably 5,000 to 50,000 centistokes. Organo substituents are also selected from the group consisting of alkyl, aryl and vinyl groups and combinations thereof. Two or more diorganopolysiloxanes can also be used in combination. The amount used is 0.01-2.0% by weight, preferably 0.05
About 1.0% by weight is preferable in order to achieve the purpose of the present invention. Fatty acid metal salts are metal salts of linear saturated fatty acids having 12 or more carbon atoms, such as lauric acid, palmitic acid, and stearic acid, and the metals include magnesium, calcium, strontium, barium,
Selected from zinc, cadmium, aluminum, tin, lead, etc. Two or more fatty acid metal salts can also be used in combination. The amount used is 0.1 to 3
The object of the present invention can be easily achieved when the amount is preferably 0.5 to 1.5% by weight. There is no particular restriction on the method of mixing the resin composition of the present invention and the above-mentioned additives, and a conventional mixing method may be employed. For example, a predetermined amount of both may be weighed and mixed using a Henschel mixer, tumbler, etc., or melt mixing may be performed using a hot roll, Banbury mixer, etc. Of course, when obtaining the resin composition in this way, stabilizers, colorants, and other additives can be added and blended as necessary. The present invention will be explained in detail below with reference to Examples.
The following examples use acrylonitrile-butadiene-styrene resin (hereinafter referred to as ABS resin) as a rubber-reinforced resin composition consisting of a rubbery polymer, a vinyl aromatic compound, and a vinyl cyanide compound component.
This is an example of performance evaluation when using . Powdered ABS resins of sample No. ~ shown in Table 1 were prepared by emulsion polymerization using a 10 glass reactor. The grafting ratio shown in Table 1 was measured by the following method. That is, a certain amount of powdered ABS resin (A) was poured into acetone to completely dissolve the free acrylolitrile-styrene copolymer, and the insoluble portion (B) was obtained from this solution using a centrifuge. . The grafting rate was calculated using the following formula. Grafting ratio = B - A × Rubber fraction in ABS resin / A × Rubber fraction in ABS resin × 100 Examples 1 to 3 Each of the powdered ABS resins of Sample No.
The mixture was melted and mixed in a 50 mmφ extruder to form pellets. The pellets obtained in this way are made into 1.5 mm thick and 40 mm wide extruders using a 40 mmφ extruder equipped with a T-die.
mm sheet. Width 5mm longer than this sheet
A 110 mm rectangular flat plate was cut out and used as a test piece for evaluating vacuum formability. This test piece was placed in a constant temperature chamber controlled at 180°C with a double-glazed front panel so that the inside could be observed, and only the upper end of the test piece was fixed with a clamp and hung vertically. The amount of sagging due to the test piece's own weight was determined by measuring the position of the lower end of the test piece, which was used as a measure of vacuum formability. This large amount of sagging means that the amount of sagging of the resin sheet becomes large during the sheet heating stage during vacuum forming processing. This is because the distance from the heating heater varies greatly depending on the location on the resin sheet surface, which increases heating unevenness.
If vacuum forming is performed in this state, the thickness of the molded product will vary greatly depending on its location. That is, a large amount of sagging of the resin sheet due to the test piece's own weight means that the thickness of the vacuum-formed product will vary widely depending on the location, which is not desirable. In addition, a rectangular flat plate with sides of 150 mm was prepared from the extruded sheet for the purpose of measuring the strength in contact with foamed polyurethane. This flat plate was prepared separately with a side of 150 mm and a depth of 30 mm.
Place the foamed polyurethane raw materials (PRG R x 510 [polyol] and TDI-TRC [isocyanate]) manufactured by Mitsui Nisso Urethane Co., Ltd. in the upper end of a rectangular hollow box with a bottom and mix in the hollow part with stirring at a ratio of 100:83.2. ) was injected and foamed. The thus obtained flat plate with foamed polyurethane adhered to one side was conditioned in a low temperature room at -30°C, and then the falling weight impact strength at this temperature was measured using a Dupont type falling weight impact tester. . In this measurement, the ABS resin sheet was fixed on the upper side, and a striking rod with a tip radius of 1/4 inch was used. Example 4 1.0 PHR of magnesium stearate was added to powdered ABS resin of sample No. and mixed with stirring using a Henschel mixer. The rest was the same as in Examples 1 to 3. Example 5 Evaluation was carried out in the same manner as in Example 4 except that aluminum stearate was used instead of magnesium stearate. Example 6 The procedure was the same as in Example 4 except that 0.2 PHR of polydimethylsiloxane (viscosity 10,000 centistokes) was added instead of magnesium stearate. Example 7 The procedure was the same as in Example 4 except that 0.2 PHR of polydimethylsiloxane (viscosity 10,000 centistokes) was further added. Comparative Examples 1 to 3 Sample No. 50 each of powdered ABS resin
The mixture was melt-mixed using a mmφ extruder to form pellets. The rest was the same as in Examples 1 to 3. Comparative Example 4 1.0 PHR of magnesium stearate was added to the powdered ABS resin of sample No. and mixed with stirring using a Henschel mixer. The rest was the same as in Examples 1 to 3. Comparative Example 5 Evaluation was carried out in the same manner as in Comparative Example 4, except that aluminum stearate was used instead of magnesium stearate. Comparative Example 6 The procedure was the same as in Comparative Example 4 except that 0.2 PHR of polydimethylsiloxane (viscosity 10,000 centistokes) was added instead of magnesium stearate. Comparative Example 7 The procedure was the same as in Comparative Example 4 except that 0.2 PHR of polydimethylsiloxane (viscosity 10,000 centistokes) was further added. The falling weight impact strength evaluation results of Examples 1 to 7 and Comparative Examples 1 to 7 are shown in Table 2. From the evaluation results shown in Table 2, it is clear that the resin composition according to the present invention has good vacuum moldability and exhibits good strength retention when in contact with foamed polyurethane.

【表】【table】

【表】 実施例8〜11、比較例8〜11 表−3に示す試料No.〜のABS樹脂を製造
し、各々を50mmφ押出機を用いて溶融混合し、ペ
レツトとした。以後は実施例1と同様にして真空
成形および落錘衝撃強度を評価した。結果を表−
4に示す。 比較例10に示されるように、グラフト率が極め
て高い場合、あるいは比較例11の如くマトリツク
ス成分の極限粘度が極めて高い場合には、成形加
工性が極端に悪くなる。この結果、シートの肉厚
が不均一になる為、真空成形性が悪くなり、又シ
ートに配向が生じる為、落錘衝撃強度が低下す
る。 又、本発明の規定条件である芳香族ビニル化合
物とビニルシアン化合物との重量比、マトリツク
ス成分の芳香族ビニル化合物/ビニルシアン化合
物共重合体の極限粘度及びグラフト重合体のグラ
フト率のいずれか1つでもはずれた場合は、比較
例に示す如く、真空成形性と落錘衝撃強度とが共
に大きく低下する。 すなわち、本発明の規定条件を満足した場合の
み、実施例に示す如く、樹脂組成物の真空成形性
が良く、また発泡ポリウレタンとの接触状態に於
て良好な強度保持を示すことは明らかである。
[Table] Examples 8 to 11, Comparative Examples 8 to 11 ABS resins of sample No. shown in Table 3 were manufactured, and each was melt-mixed using a 50 mmφ extruder to form pellets. Thereafter, vacuum forming and falling weight impact strength were evaluated in the same manner as in Example 1. Display the results -
4. As shown in Comparative Example 10, when the grafting ratio is extremely high, or when the intrinsic viscosity of the matrix component is extremely high as in Comparative Example 11, moldability becomes extremely poor. As a result, the thickness of the sheet becomes non-uniform, resulting in poor vacuum formability, and the sheet becomes oriented, resulting in a decrease in falling weight impact strength. Furthermore, any one of the specified conditions of the present invention, such as the weight ratio of the aromatic vinyl compound and the vinyl cyanide compound, the intrinsic viscosity of the aromatic vinyl compound/vinyl cyanide compound copolymer of the matrix component, and the grafting ratio of the graft polymer, is satisfied. If even one of them comes off, as shown in the comparative example, both the vacuum formability and the falling weight impact strength are greatly reduced. That is, it is clear that only when the specified conditions of the present invention are satisfied, as shown in the examples, the resin composition has good vacuum formability and exhibits good strength retention when in contact with foamed polyurethane. .

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ゴム質重合体に芳香族ビニル化合物及びビニ
ルシアン化合物が化学的に結合したグラフト重合
体と芳香族ビニル化合物/ビニルシアン化合物共
重合体とからなり、ポリウレタン発泡層に接触す
る真空成形箱体の製造に用いられるゴム強化樹脂
組成物において、 〔〕 上記樹脂組成物に10〜30重量%の割合で含
まれるゴム質重合体100重量部に対して芳香族
ビニル化合物及びビニルシアン化合物の70〜
120重量部が化学的に結合しており、 〔〕 上記樹脂組成物中にマトリツクス成分とし
て含まれる遊離の芳香族ビニル化合物/ビニル
シアン化合物共重合体はその極限粘度が0.65〜
0.80であり、 〔〕 上記樹脂組成物における芳香族ビニル化合
物とビニルシアン化合物との重量比が2.3〜3.0
の範囲にあることを特徴とする耐衝撃性樹脂組
成物。 2 ゴム質重合体に芳香族ビニル化合物及びビニ
ルシアン化合物が化学的に結合したグラフト重合
体と芳香族ビニル化合物/ビニルシアン化合物共
重合体とからなり、ポリウレタン発泡層に接触す
る真空成形箱体の製造に用いられるゴム強化樹脂
組成物において、 〔〕 上記樹脂組成物に10〜30重量%の割合で含
まれるゴム質重合体100重量部に対して芳香族
ビニル化合物及びビニルシアン化合物の70〜
120重量部が化学的に結合しており、 〔〕 上記樹脂組成物中にマトリツクス成分とし
て含まれる遊離の芳香族ビニル化合物/ビニル
シアン化合物共重合体はその極限粘度が0.65〜
0.80であり、 〔〕 上記樹脂組成物における芳香族ビニル化合
物とビニルシアン化合物との重量比が2.3〜3.0
の範囲にあり、 〔〕 上記樹脂組成物に更に25℃における粘度が
5〜100000センチストークスのジオルガノポリ
シロキサン0.01〜2.0重量%及び/又は脂肪酸
金属塩0.1〜3重量%を配合してなる耐衝撃性
樹脂組成物。
[Scope of Claims] 1. Consists of a graft polymer in which an aromatic vinyl compound and a vinyl cyanide compound are chemically bonded to a rubbery polymer, and an aromatic vinyl compound/vinyl cyanide compound copolymer, and is in contact with a polyurethane foam layer. In a rubber-reinforced resin composition used for manufacturing a vacuum-formed box, [] an aromatic vinyl compound and a 70~ of cyanide
120 parts by weight are chemically bonded, and [] the free aromatic vinyl compound/vinyl cyanide compound copolymer contained as a matrix component in the resin composition has an intrinsic viscosity of 0.65 to
0.80, [] The weight ratio of the aromatic vinyl compound to the vinyl cyanide compound in the resin composition is 2.3 to 3.0.
An impact-resistant resin composition characterized by being in the range of 2. A vacuum-formed box made of a graft polymer in which an aromatic vinyl compound and a vinyl cyanide compound are chemically bonded to a rubbery polymer, and an aromatic vinyl compound/vinyl cyanide compound copolymer, and in contact with a polyurethane foam layer. In the rubber-reinforced resin composition used for production, [] 70 to 70 parts by weight of an aromatic vinyl compound and a vinyl cyanide compound per 100 parts by weight of the rubbery polymer contained in the resin composition at a ratio of 10 to 30% by weight.
120 parts by weight are chemically bonded, and [] the free aromatic vinyl compound/vinyl cyanide compound copolymer contained as a matrix component in the resin composition has an intrinsic viscosity of 0.65 to
0.80, [] The weight ratio of the aromatic vinyl compound to the vinyl cyanide compound in the resin composition is 2.3 to 3.0.
[] 0.01 to 2.0% by weight of a diorganopolysiloxane having a viscosity of 5 to 100,000 centistokes at 25°C and/or 0.1 to 3% by weight of a fatty acid metal salt is added to the above resin composition. Impact resin composition.
JP8665180A 1980-06-27 1980-06-27 Impact-resistant resin composition Granted JPS5712015A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8665180A JPS5712015A (en) 1980-06-27 1980-06-27 Impact-resistant resin composition
US06/276,875 US4396654A (en) 1980-06-27 1981-06-24 Impact resistant resin composition
BR8104021A BR8104021A (en) 1980-06-27 1981-06-25 IMPACT RESISTANT RESIN COMPOSITION AND REFRIGERATOR BOX BODY
MX188004A MX158556A (en) 1980-06-27 1981-06-25 IMPROVED IMPACT RESISTANT RESIN COMPOSITION
EP81302949A EP0043273B1 (en) 1980-06-27 1981-06-29 Impact-resistant resin composition and a product produced from it
DE8181302949T DE3163619D1 (en) 1980-06-27 1981-06-29 Impact-resistant resin composition and a product produced from it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8665180A JPS5712015A (en) 1980-06-27 1980-06-27 Impact-resistant resin composition

Publications (2)

Publication Number Publication Date
JPS5712015A JPS5712015A (en) 1982-01-21
JPH0128056B2 true JPH0128056B2 (en) 1989-05-31

Family

ID=13892928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8665180A Granted JPS5712015A (en) 1980-06-27 1980-06-27 Impact-resistant resin composition

Country Status (6)

Country Link
US (1) US4396654A (en)
EP (1) EP0043273B1 (en)
JP (1) JPS5712015A (en)
BR (1) BR8104021A (en)
DE (1) DE3163619D1 (en)
MX (1) MX158556A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3301161A1 (en) * 1983-01-15 1984-07-19 Bayer Ag, 5090 Leverkusen THERMOPLASTIC MOLDS
JPS60252650A (en) * 1984-05-30 1985-12-13 Sumitomo Naugatuck Co Ltd Heat-resistant resin composition
JPS61233044A (en) * 1985-04-09 1986-10-17 Denki Kagaku Kogyo Kk Thermoplastic resin composition
US5397842A (en) * 1991-08-20 1995-03-14 Rohm And Haas Company Polyolefin/segmented copolymer blend and process
US5635565A (en) * 1995-01-13 1997-06-03 Japan Synthetic Rubber Co., Ltd. Polymerized aromatic vinyl and vinyl cyanide onto rubber
US20150102716A1 (en) * 2013-10-15 2015-04-16 General Electric Company Refrigerator appliance and a method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357293A (en) * 1976-11-04 1978-05-24 Asahi Chem Ind Co Ltd Preparation of impact resistant thermoplastic resin
JPS5365385A (en) * 1976-11-24 1978-06-10 Kanegafuchi Chem Ind Co Ltd Preparation of nitrile type resin

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3010936A (en) * 1958-08-07 1961-11-28 Borg Warner Blend of graft copolymer of polybutadiene, styrene and acrylonitrile with interpolymer of alpha methyl styrene and acrylonitrile
FR1387102A (en) * 1963-11-08 1965-01-29 Ver Deutsche Metallwerke Ag Refrigerated cabinets, such as refrigerated or deep refrigeration cabinets
US3624183A (en) * 1966-01-27 1971-11-30 Us Rubber Co Graft copolymer products and method of making same
JPS4929947B1 (en) * 1969-12-12 1974-08-08
US3928494A (en) * 1973-01-09 1975-12-23 Monsanto Co Polyblend of two types of ABS graft polymers and a copolymer matrix
DE2503966B1 (en) * 1975-01-31 1975-08-07 Basf Ag Impact-resistant thermoplastic molding compounds
US4107234A (en) * 1975-03-21 1978-08-15 Uniroyal, Inc. ABS Composition having improved impact strength and weather aging resistance and latex suspension process therefor
US4048274A (en) * 1975-07-10 1977-09-13 Monsanto Company Process for refrigerator construction
US4202948A (en) * 1977-09-26 1980-05-13 Uniroyal, Inc. Impact-resistant thermoplastic composition based on graft copolymer
JPS6017307B2 (en) * 1978-01-31 1985-05-02 住友ノ−ガタック株式会社 Thermoplastic resin composition with excellent heat cycle properties
JPS5662845A (en) * 1979-10-29 1981-05-29 Japan Synthetic Rubber Co Ltd Molding resin composition
US4264747A (en) * 1980-07-14 1981-04-28 Uniroyal, Inc. High impact strength styrene-acrylonitrile resin blend

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357293A (en) * 1976-11-04 1978-05-24 Asahi Chem Ind Co Ltd Preparation of impact resistant thermoplastic resin
JPS5365385A (en) * 1976-11-24 1978-06-10 Kanegafuchi Chem Ind Co Ltd Preparation of nitrile type resin

Also Published As

Publication number Publication date
EP0043273B1 (en) 1984-05-16
BR8104021A (en) 1983-02-01
MX158556A (en) 1989-02-14
JPS5712015A (en) 1982-01-21
EP0043273A1 (en) 1982-01-06
DE3163619D1 (en) 1984-06-20
US4396654A (en) 1983-08-02

Similar Documents

Publication Publication Date Title
US5314925A (en) Use of polytetrafluoroethylene resins as a nucleating agent for foam molded thermoplastics
JP5075637B2 (en) Thermoplastic resin composition for refrigerators with excellent environmental stress resistance
US5229457A (en) Thermoplastic resin composition
KR101811485B1 (en) Thermoplastic Resin Composition and Molded Article Thereof
US5180779A (en) Thermoplastic resin compositions resistant to fluorinated/chlorinated hydrocarbons and the use thereof
JPH0128056B2 (en)
US20070298201A1 (en) Expandable or expanded mastic composition for the structural reinforcement of a hollow metal body and such a hollow body
KR20020050475A (en) Thermoplastic Resin Composition Having Excellent Chemical Resistance And Easy Vacuum Formability
US5747587A (en) HCFC resistant resin composition
KR101154063B1 (en) Thermoplastic resin composition
JPH0141647B2 (en)
KR960011093B1 (en) Abs resin compositions with excellent fluidity and hcfc 141b resistance
KR100396910B1 (en) Thermoplastic Resin Compositions with Good Chemical Resistance and Flow-ability for a Refrigerator
JP3520575B2 (en) Rubber reinforced styrene resin composition and heat insulating structure
JP3010715B2 (en) Rubber reinforced styrenic resin composition
KR0185510B1 (en) Coextrusion sheet
EP0712895B1 (en) Impact modified alpha alkyl substituted vinyl aromatic-vinyl cyanide thermoplastic compositions
JP2596634B2 (en) Insulation box
KR101350519B1 (en) Thermoplastic resin composition
KR101549724B1 (en) Thermoplastic resin composition and article produced therefrom
KR101441162B1 (en) Acryllonitrile-butadiene-styrene resin composition having good adhesive strength to urethane resin
WO1990010674A1 (en) Molding compositions comprising carbonate polymer, rubber modified vinyl aromatic-nitrile graft copolymer and methyl(meth)acrylate-butadiene-styrene graft copolymer and blow molding and thermoforming processes using such compositions
JPH0121186B2 (en)
US5238719A (en) Thermoplastic resin compositions resistant to fluorinated/chlorinated hydrocarbons and the use thereof
JPH05155949A (en) Resin composition for inner box of refrigerator