JP3010715B2 - Rubber reinforced styrenic resin composition - Google Patents
Rubber reinforced styrenic resin compositionInfo
- Publication number
- JP3010715B2 JP3010715B2 JP2256596A JP25659690A JP3010715B2 JP 3010715 B2 JP3010715 B2 JP 3010715B2 JP 2256596 A JP2256596 A JP 2256596A JP 25659690 A JP25659690 A JP 25659690A JP 3010715 B2 JP3010715 B2 JP 3010715B2
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- resin composition
- resin
- styrenic resin
- box
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Graft Or Block Polymers (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明はゴム補強スチレン系樹脂組成物に係り、詳し
くは、ウレタン発泡断熱材を用いた断熱用箱体を製造す
る用途に好適に使用されるゴム補強スチレン系樹脂組成
物に関し、更に詳しくは、1,1−ジクロロ−1−フロロ
エタン(以下「HCFC−141b」と称す。)を発泡剤とする
ウレタン発泡断熱材に接する構造材料の製造原料として
好適なゴム補強スチレン系樹脂組成物に関する。The present invention relates to a rubber-reinforced styrenic resin composition, and more specifically, is suitably used for producing a heat insulating box using a urethane foam heat insulating material. More specifically, the present invention relates to a rubber-reinforced styrene-based resin composition, and more particularly to a raw material for producing a structural material in contact with a urethane foam insulation material using 1,1-dichloro-1-fluoroethane (hereinafter referred to as “HCFC-141b”) as a foaming agent. The present invention relates to a rubber-reinforced styrenic resin composition suitable as a rubber composition.
[従来の技術] 冷蔵庫、製氷機などの保冷を目的とする断熱用箱体
は、一般に、例えば塗装或いはコーティングを施した鋼
板を外箱形状(門型又は逆門型など)に成形し、次に所
定の形状に成形した合成樹脂製内箱と組み合わせ、この
内箱と外箱との間にウレタン発泡断熱材の原料であるウ
レタン原液を注入した後発泡させ、ウレタン発泡断熱材
により外箱と内箱とを接合一体化する。即ち、ウレタン
発泡断熱材を、断熱材としての役割を果たさせると共
に、構造体としての強度部材として利用している。な
お、使用目的により、外箱と内箱とは、同材質であって
も異材質であっても良い。[Background Art] Insulating boxes for the purpose of keeping cold, such as refrigerators and ice machines, are generally formed by, for example, forming a coated or coated steel sheet into an outer box shape (a gate type or a reverse gate type). Combined with a synthetic resin inner box molded into a predetermined shape, urethane stock solution which is a raw material of urethane foam insulation is injected between the inner box and the outer box and then foamed, and the outer box is formed by urethane foam insulation. The inner box is joined and integrated. That is, the urethane foam heat insulating material plays a role as a heat insulating material and is used as a strength member as a structure. The outer box and the inner box may be made of the same material or different materials depending on the purpose of use.
ところで、ウレタン発泡の際には、ウレタンの硬化反
応時の発熱によりウレタン発泡断熱材の中心部では60℃
以上の高温となる。このため、ウレタンの硬化反応後、
冷却時にウレタン発泡断熱材は収縮を起こし、収縮応力
を発生する。そして、この収縮応力により、ウレタン発
泡断熱材や内箱に歪が生じ、内箱材料の強度が不十分で
あると内箱に白化現象やクラックが発生することにな
る。そのため、内箱材料としては、成形性が良好であ
り、ウレタン発泡断熱材との接着性が良好で、かつ、低
温収縮に対する応力耐性に優れ、また、使用に際し、内
部に収納した品物の落下に対する耐衝撃性、更には、収
納物、例えば、食用油、調味料等の汚染に対する耐薬品
性に優れること等が要求され、従来、これらを満足する
材料としてABS樹脂(アクリロニトリル−ブタジエン−
スチレン3元共重合体)やスチロール樹脂又は塩化ビニ
ル樹脂などが用いられている。By the way, at the time of urethane foaming, the central part of the urethane foam insulation is 60 ° C. due to the heat generated during the urethane curing reaction.
The above high temperature is reached. For this reason, after the urethane curing reaction,
Upon cooling, the urethane foam insulation shrinks, generating shrinkage stress. The shrinkage stress causes distortion in the urethane foam heat insulating material and the inner box. If the strength of the inner box material is insufficient, a whitening phenomenon and cracks occur in the inner box. Therefore, as the inner box material, the moldability is good, the adhesiveness with the urethane foam insulation material is good, and the stress resistance against low-temperature shrinkage is excellent. It is required to be excellent in impact resistance and also in chemical resistance to contamination of stored things, for example, edible oils, seasonings, etc. Conventionally, ABS resin (acrylonitrile-butadiene-
(Styrene terpolymer), styrene resin, vinyl chloride resin, and the like.
一方、ウレタン発泡断熱材の発泡剤としては、フロン
(CCl3F:トリクロロフロロメタン)であるCFC−11が断
熱性、毒性、安全性、作業性、コストの点から最も一般
的に用いられている。そして、このCFC−11はウレタン
原料中に液状で混合され、ウレタン発泡時にウレタン樹
脂の反応熱により気化し、微細なセルを形成する。この
セル中のCFC−11は経時的に発泡体セルから外部に拡散
する。このため、内箱はウレタン原料注入時はもちろん
のこと、発泡後もセル内からの拡散によりCFC−11の影
響を受ける。On the other hand, as a foaming agent for urethane foam insulation, CFC-11, which is a fluorocarbon (CCl 3 F: trichlorofluoromethane), is the most commonly used in terms of heat insulation, toxicity, safety, workability, and cost. I have. Then, the CFC-11 is mixed in a liquid state with the urethane raw material, and is vaporized by the reaction heat of the urethane resin at the time of urethane foaming to form fine cells. CFC-11 in this cell diffuses out of the foam cell over time. Therefore, the inner box is affected by CFC-11 not only when urethane material is injected but also after foaming due to diffusion from inside the cell.
従来、内箱材料としてスチロール樹脂を用いた場合に
は、このCFC−11に対する耐性が低いために、発泡材に
直接接触しないように防御フィルムや防御コートを必要
としている。また、塩化ビニル樹脂は、CFC−11からの
影響を受けにくい反面、耐熱性が低く、断熱材の硬化反
応時の熱により変形を生じたり、衝撃強度が低く割れ易
いという欠点がある。これに対して、ABS樹脂は、成形
性、耐衝撃性、耐溶剤性、耐CFC−11性等のバランスに
優れた材料であり、現在では最も広く用いられている。Conventionally, when a styrene resin is used as an inner box material, a protection film or a protection coat is required to prevent direct contact with the foamed material due to low resistance to the CFC-11. Further, the vinyl chloride resin is less susceptible to the influence of CFC-11, but has low heat resistance, and is disadvantageous in that it is deformed by heat during the curing reaction of the heat insulating material, has a low impact strength, and is easily cracked. On the other hand, ABS resin is a material having an excellent balance of moldability, impact resistance, solvent resistance, CFC-11 resistance and the like, and is currently most widely used.
ところで、最近になって、CFC−11をはじめフロンの
放出が成層圏のオゾン層を破壊する原因として、フロン
物質の生産及び消費に関して国際的に規制され始めた。
CFC−11は、この規制対象物質に含まれているため、上
記のようなウレタン発泡断熱材の発泡剤としての使用が
困難となり、代替発泡剤の使用が検討されている。CFC
−11の代替発泡剤としては、CFC−11と物理特性(沸
点、蒸発潜熱等)が類似するものであって、フロン規制
対象外物質であるHCFC−141bなどが提案されている。By the way, recently, the production and consumption of chlorofluorocarbons have begun to be regulated internationally as a cause of the depletion of the ozone layer in the stratosphere due to the release of chlorofluorocarbons including CFC-11.
Since CFC-11 is contained in this regulated substance, it becomes difficult to use the urethane foam heat insulating material as a foaming agent as described above, and the use of an alternative foaming agent is being studied. CFC
As an alternative foaming agent for -11, HCFC-141b, which is similar to CFC-11 in physical properties (boiling point, latent heat of evaporation, etc.) and is a substance not subject to the regulation of chlorofluorocarbons, has been proposed.
[発明が解決しようとする課題] しかし、HCFC−141bは、CFC−11と比較して高分子材
料に対する溶解性が高く、従来の内箱用箱体材料である
スチロール樹脂やABS樹脂に対する膨潤、溶解能が大き
い。このため、これらの発泡剤による代替は、箱体の強
度低下や破壊、外観不良につながる。例えば、ウレタン
発泡断熱材の発泡剤としてHCFC−141bを用いた場合、従
来、内箱材料として最も広く使用されているABS樹脂で
は、発泡剤のアタックが大きく、内箱にクラック或いは
白化を発生し、冷蔵庫箱体等の強度不足や外観不良とな
るという問題がある。そのため、内箱材料の肉厚を非常
に厚くするか、或いはHCFC−141bに優れた耐性を示すフ
ィルムをラミネートするなどの対策が講じられている
が、内箱材料の肉厚を厚くしても経時的にHCFC−141bの
影響を受け、長期では冷蔵庫箱体等の品質が低下するこ
とになり、本質的な解決策とはならない。また、肉厚を
厚くすると成形時間が長くなり、生産性が低下したり材
料重量が大きくなり、断熱用箱体の重量が増加するとい
う欠点もある。また、体HCFC−141b性に優れた材料をラ
ミネートすることは、必要最小限の厚みでHCFC−141bか
らのアタックを防止する効果があるが、内箱の切り欠き
部に対するHCFC−141bからの影響を防止するための保護
構造が必要となり、製造が複雑になること、異種材料か
ら構成されるため材料の再生利用が困難であること等の
問題がある。[Problems to be Solved by the Invention] However, HCFC-141b has higher solubility in a polymer material than CFC-11, and swells in a styrene resin or an ABS resin which is a conventional inner box material. Large dissolving ability. For this reason, substitution with these foaming agents leads to a decrease in strength, breakage, and poor appearance of the box. For example, when HCFC-141b is used as the foaming agent of the urethane foam insulation, the attack of the foaming agent is large in the ABS resin, which is conventionally most widely used as the inner box material, and the inner box cracks or whitens. However, there is a problem that the strength of the refrigerator box or the like is insufficient or the appearance is poor. Therefore, measures such as making the inner box material extremely thick or laminating a film exhibiting excellent resistance to HCFC-141b have been taken, but even if the inner box material is made thicker, Over time, it is affected by HCFC-141b, and in the long term, the quality of refrigerator boxes and the like deteriorates, which is not an essential solution. Further, when the wall thickness is increased, the molding time becomes longer, the productivity is reduced, the material weight is increased, and the weight of the heat insulating box increases. In addition, laminating a material having excellent body HCFC-141b property has an effect of preventing an attack from the HCFC-141b with a necessary minimum thickness, but the effect of the HCFC-141b on the cutout portion of the inner box. There is a problem that a protective structure is required to prevent the occurrence of the problem, the production becomes complicated, and it is difficult to recycle the material because it is composed of different materials.
また、ガラス繊維(以下「GF」と称す。)及び炭素繊
維(以下「CF」と称す。)等の充填材を混入し、材料の
機械的特性を向上させることも一般的に良く行なわれて
いるが、GF及びCFはいずれも繊維径が5〜20μmで長さ
が100μm〜数mmと形状が大きく、成形品の表面平滑
性、表面意匠性を著しく低下させるという欠点がある。
また、繊維により材料の成形性が低下するという欠点も
あり、GFやCF等の充填材の使用は好ましいことではな
い。It is also commonly practiced to mix fillers such as glass fibers (hereinafter referred to as "GF") and carbon fibers (hereinafter referred to as "CF") to improve the mechanical properties of the materials. However, each of GF and CF has a large fiber diameter of 5 to 20 μm and a length of 100 μm to several mm, and has a drawback that the surface smoothness and surface design of a molded product are significantly reduced.
In addition, there is a disadvantage that the formability of the material is reduced by the fiber, and the use of a filler such as GF or CF is not preferable.
本発明は上記従来の問題点を解決し、従来の製造設備
を用いて製造することができ、HCFC−141bを発泡剤とし
たウレタン発泡断熱材と接触した場合であっても、強度
低下や破壊、外観不良をひき起こすことのない構造材を
提供することができるゴム補強スチレン系樹脂組成物を
提供することを目的とする。The present invention solves the above-mentioned conventional problems and can be manufactured using conventional manufacturing equipment, and even when it comes into contact with a urethane foam insulation material using HCFC-141b as a foaming agent, the strength is reduced and breakage is caused. Another object of the present invention is to provide a rubber-reinforced styrene resin composition that can provide a structural material that does not cause poor appearance.
[課題を解決するための手段] 本発明のゴム補強スチレン系樹脂組成物は、1,1−ジ
クロロ−1−フロロエタンを発泡剤とするウレタン発泡
断熱材に接する構造材料製造用ゴム補強スチレン系樹脂
組成物であって、粒子状に分散したゴム質重合体と、該
ゴム質重合体粒子に対してその一部が化学的に結合した
ガラス状重合体とで構成され、該ゴム質重合体の含有量
が23〜35重量%であることを特徴とする。[Means for Solving the Problems] The rubber-reinforced styrene-based resin composition of the present invention is a rubber-reinforced styrene-based resin for producing a structural material which is in contact with a urethane foam heat insulating material having 1,1-dichloro-1-fluoroethane as a foaming agent. A composition, comprising a rubbery polymer dispersed in particles, and a glassy polymer in which a part of the rubbery polymer particles is chemically bonded to the rubbery polymer particles. The content is 23 to 35% by weight.
以下に本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明のゴム補強スチレン系樹脂組成物において、ゴ
ム成分であるゴム質重合体としては、ポリブタジエン、
スチレン−ブタジエン共重合体、アクリロニトリル−ブ
タジエン共重合体などのブタジエン系ゴム質重合体、ポ
リアクリル酸エチルエステル、ポリアクリル酸ブチルエ
ステルなどのアクリル酸アルキルエステル系ゴム質重合
体、ポリイソプレン、ポリクロロプレン或いはエチレン
−プロピレン−ジエン系ゴム質共重合体等の1種又は2
種以上が挙げられる。In the rubber-reinforced styrene resin composition of the present invention, the rubbery polymer as the rubber component includes polybutadiene,
Butadiene rubbery polymers such as styrene-butadiene copolymer and acrylonitrile-butadiene copolymer, alkyl acrylate rubbery polymers such as polyacrylate ethyl ester and polyacrylate butyl ester, polyisoprene, polychloroprene Or one or two of ethylene-propylene-diene rubbery copolymer
Species or more.
本発明のゴム補強スチレン系樹脂組成物では、これら
のゴム質重合体は粒子状に分散し、かつ、これらのゴム
質重合体分散粒子に対して、ガラス状重合体の一部が化
学的に結合している。このガラス状重合体としては、ス
チレン、p−メチルスチレン、α−メチルスチレン、ア
クリロニトリル、アクリル酸アルキル系ビニルモノマ
ー、アクリル酸系ビニルモノマー、N−フェニルマレイ
ミド等の1種又は2種以上の単量体を重合して得られる
ものが挙げられる。即ち、本発明のゴム補強スチレン系
樹脂組成物は、前記ゴム質重合体が粒子状に分散し、こ
の分散粒子に対してその一部が化学的に結合した上記ガ
ラス状重合体の連続相で構成されている。In the rubber-reinforced styrenic resin composition of the present invention, these rubbery polymers are dispersed in particles, and a part of the glassy polymer is chemically Are combined. Examples of the glassy polymer include one or more monomers such as styrene, p-methylstyrene, α-methylstyrene, acrylonitrile, an alkyl acrylate vinyl monomer, an acrylate vinyl monomer, and N-phenylmaleimide. And those obtained by polymerizing the body. That is, the rubber-reinforced styrenic resin composition of the present invention is a continuous phase of the glassy polymer in which the rubbery polymer is dispersed in the form of particles and a part of which is chemically bonded to the dispersed particles. It is configured.
このような本発明のゴム補強スチレン系樹脂組成物と
しては、代表的にはABS樹脂が挙げられ、その他、アク
リル酸アルキルエステル系ゴム質重合体をゴム成分とす
る、いわゆるAAS樹脂、エチレン−プロピレン−ジエン
系ゴム質共重合体をゴム成分とするAESTR樹脂などが挙
げられ、実用上、ABS樹脂等に前記ガラス状重合体を添
加して、本発明のゴム成分量に調整して調製される。Such rubber-reinforced styrenic resin composition of the present invention is, for example, typically an ABS resin.In addition, a so-called AAS resin having an acrylic acid alkyl ester-based rubbery polymer as a rubber component, ethylene-propylene -AESR resin having a diene-based rubbery copolymer as a rubber component, and the like. In practice, the glassy polymer is added to an ABS resin or the like, and is adjusted to the rubber component amount of the present invention. .
本発明のゴム補強スチレン系樹脂組成物において、ゴ
ム質重合体含有量は23〜35重量%の範囲であり、更に好
ましくは25〜30重量%の範囲で用いられる。上記ゴム質
重合体含有量が23重量%未満の場合には、HCFC−141bな
どの発泡剤を用いて発泡したウレタン発泡断熱材と組み
合わせて促進劣化テストを行なった場合に、該ゴム補強
スチレン系樹脂組成物で形成された箱体にクラックなど
の劣化を生じ、35重量%を超える場合には樹脂の溶融粘
度が高すぎるために成形加工が困難になったり、箱体強
度が低下するなどの不都合を生じる。In the rubber-reinforced styrenic resin composition of the present invention, the rubbery polymer content is in the range of 23 to 35% by weight, more preferably 25 to 30% by weight. When the rubbery polymer content is less than 23% by weight, when the accelerated deterioration test is performed in combination with a urethane foam insulation foamed using a foaming agent such as HCFC-141b, the rubber-reinforced styrene-based Deterioration such as cracks occurs in the box formed of the resin composition, and if it exceeds 35% by weight, the melt viscosity of the resin is too high, so that molding processing becomes difficult, or the box strength is reduced. Causes inconvenience.
このような本発明のゴム補強スチレン系樹脂組成物の
製造方法には特に制限はないが、一般には、前述の如
く、ABS樹脂等のゴム強化スチレン系樹脂に更に前述の
ガラス状重合体を添加して所定のゴム成分含有量とした
後、必要に応じて、安定剤、滑剤等の各種添加剤を加え
て混合することにより容易に調製される。The method for producing the rubber-reinforced styrenic resin composition of the present invention is not particularly limited, but generally, as described above, the above-mentioned glassy polymer is further added to a rubber-reinforced styrenic resin such as an ABS resin. After a predetermined rubber component content is obtained, it is easily prepared by adding and mixing various additives such as a stabilizer and a lubricant as needed.
[作用] ゴム補強スチレン系樹脂の耐溶剤性は、構成成分のア
クリロニトリルの共重合比率によって大きく変化し、ス
チレン100重量部に対して、アクリロニトリルが40重量
部以下の場合にはHCFC−141bに対して膨潤する。このよ
うに、一般のゴム補強スチレン系樹脂は、HCFC−141bに
対する耐溶剤性は必ずしも好ましいものではないが、本
発明者らは請求の範囲に示したゴム質重合体を含有する
ゴム補強スチレン系樹脂を用いてシートを成形し、これ
とHCFC−141bを発泡剤とするウレタン発泡断熱材と接す
る状態で高温と低温条件に繰り返し保持する試験(ヒー
トサイクルテスト)を行なったところ、上記ウレタン発
泡断熱材と接する上記シートにクラック等の劣化が生じ
ないことを見出し、本発明に到ったものである。[Action] The solvent resistance of the rubber-reinforced styrenic resin varies greatly depending on the copolymerization ratio of acrylonitrile as a constituent component. Swell. As described above, general rubber-reinforced styrene-based resins are not necessarily preferable in terms of solvent resistance to HCFC-141b, but the present inventors have proposed a rubber-reinforced styrene-based resin containing the rubbery polymer shown in the claims. A sheet was formed using a resin, and a test (heat cycle test) for repeatedly maintaining the sheet at high and low temperature conditions in contact with the urethane foam insulation using HCFC-141b as a foaming agent was performed. The inventors have found that the sheet in contact with the material does not suffer from deterioration such as cracks, and have reached the present invention.
また、ゴム補強スチレン系樹脂の優れた加工性と、着
色性、衝撃強度、耐寒性などの特徴は本発明のゴム質重
合体含有量においては損なわれないために、本発明のゴ
ム補強スチレン系樹脂を箱体に用いることによりHCFC−
141bを発泡剤としたウレタ発泡断熱材と接する用途に対
して樹脂が劣化せず、成形加工性、外観意匠性に優れた
断熱用箱体を提供することができる。In addition, since the rubber-reinforced styrene-based resin has excellent processability, characteristics such as colorability, impact strength, and cold resistance are not impaired by the rubbery polymer content of the present invention, the rubber-reinforced styrene-based resin of the present invention HCFC-
It is possible to provide a heat-insulating box body which is not deteriorated for use in contact with a urethane foam heat insulating material using 141b as a foaming agent, and is excellent in moldability and appearance and design.
[実施例] 以下、本発明を実施例に基いてより具体的に説明す
る。EXAMPLES Hereinafter, the present invention will be described more specifically based on examples.
なお、実施例及び比較例におけるヒートサイクル性は
以下の方法で評価した。まず、所望のゴム補強スチレン
系樹脂を公知の方法である押出機或いはバンバリーミキ
サーを用いて混練した後、コートハンガーダイを有する
押出機によりシートを成形し、これを真空成形して厚み
約1mmの成形品を得た。この真空成形シートを適当な大
きさに切断した後、外枠が金属で作られた開口200mm×1
00mm、深さ20mmの弁当箱状容器の上面に固定した後、こ
の1面が樹脂製シート、他の5面が金属で形成されてい
る中空容器の中空部に発泡ポリウレタン原料を注入発泡
された。発泡操作後60℃で30分キュアリングを行なった
後、−10℃で12時間放置後+50℃に12時間放置する操作
を7回繰り返すヒートサイクル試験を行なって試験終了
後の樹脂製シートの表面状態を観察した。なお、発泡ポ
リウレタン原料は東洋ゴム(株)製「#1903−25」発泡
ポリウレタン原料を用いたが、この原料のうち、フロン
についてのみHCFC−141bに代替した。また、押出シート
の外観は色調と表面光沢を評価して断熱用箱体としての
外観意匠性から判断し、押出シートの強度はシートの引
張強度、曲げ弾性率、表面剛性を評価して断熱用箱体に
組み込んだ場合の断熱用箱体の強度及び樹脂製内箱表面
の傷つき易さを考慮して判定した。In addition, the heat cycle property in an Example and a comparative example was evaluated by the following method. First, after kneading a desired rubber-reinforced styrene resin using an extruder or a Banbury mixer, which is a known method, a sheet is formed by an extruder having a coat hanger die, and this is vacuum-formed to a thickness of about 1 mm. A molded product was obtained. After cutting this vacuum formed sheet to an appropriate size, the outer frame is made of metal with an opening of 200 mm × 1
After being fixed to the upper surface of a lunch box-shaped container having a thickness of 00 mm and a depth of 20 mm, a foamed polyurethane material was injected and foamed into a hollow portion of a hollow container having one surface formed of a resin sheet and the other five surfaces formed of metal. . After the foaming operation, cure at 60 ° C for 30 minutes, and then leave it at -10 ° C for 12 hours and then leave it at + 50 ° C for 12 hours. The condition was observed. As the foamed polyurethane raw material, “# 1903-25” foamed polyurethane raw material manufactured by Toyo Tire & Rubber Co., Ltd. was used. Of these raw materials, only CFCs were replaced with HCFC-141b. In addition, the appearance of the extruded sheet is evaluated by evaluating the color tone and surface gloss and the appearance design as a heat insulating box, and the strength of the extruded sheet is evaluated by evaluating the tensile strength, flexural modulus and surface rigidity of the sheet. Judgment was made in consideration of the strength of the heat-insulating box when incorporated in the box and the susceptibility of the surface of the resin inner box to be damaged.
実施例1 ポリブタジエン乳化ラテックス存在下でスチレン単量
体、アクリロニトリル単量体、重合開始剤及び分子量調
節剤を加えて乳化グラフト重合を行ない、約50重量%の
ポリブタジエンを含むゴム補強スチレン系樹脂:Aを得
た。この樹脂Aに、別に重合したスチレン−アクリロニ
トリル共重合体を樹脂中のゴム成分量が表1に示した割
合になるように混合し、更に安定剤、滑剤などを加えて
公知の方法である混練押出機を用いて溶融混合しペレッ
トとした。次に、このペレットを用いて前記した方法に
よりシートを成形した後、前記した評価を行なって、表
1の結果を得た。Example 1 In the presence of a polybutadiene emulsified latex, a styrene monomer, an acrylonitrile monomer, a polymerization initiator and a molecular weight regulator were added to carry out emulsion graft polymerization, and a rubber-reinforced styrene resin containing about 50% by weight of polybutadiene: A I got To this resin A, a separately polymerized styrene-acrylonitrile copolymer was mixed so that the rubber component amount in the resin became the ratio shown in Table 1, and further, a stabilizer, a lubricant and the like were added, and kneading was performed by a known method. The mixture was melt-mixed using an extruder to form pellets. Next, a sheet was formed by using the pellets by the method described above, and the above evaluation was performed. The results shown in Table 1 were obtained.
実施例2 ゴム成分としてアクリル酸ブチルエステルゴムの乳化
ラテックスを用い、実施例1と同様に乳化グラフト重合
を行なって約50重量%のアクリル酸エステルゴムを含む
樹脂:Bを得、以後の操作は実施例1と同様に行なって表
1の結果を得た。Example 2 Using an emulsion latex of butyl acrylate rubber as a rubber component, emulsion graft polymerization was carried out in the same manner as in Example 1 to obtain a resin B containing about 50% by weight of an acrylate rubber. The results were as shown in Table 1 in the same manner as in Example 1.
実施例3 ゴム成分としてエチレン−プロピレン−ジエン共重合
体ゴム乳化ラテックスを用い、実施例1と同様に乳化グ
ラフト重合を行なって約50重量%の前記ゴム成分を含む
樹脂:Cと得、以後の操作は実施例1と同様に行なって表
1の結果を得た。Example 3 Emulsion graft polymerization was carried out in the same manner as in Example 1 using an ethylene-propylene-diene copolymer rubber emulsified latex as a rubber component to obtain a resin containing about 50% by weight of the rubber component: C. The operation was performed in the same manner as in Example 1, and the results in Table 1 were obtained.
比較例1 比較のため、従来の押出成形用ABS樹脂であるGSM、GS
E、EX200、EX201、EX245(いずれも宇部サイコン(株)
製)ペレットを用いて実施例1と同様に評価し、表2の
結果を得た。 Comparative Example 1 For comparison, GSM and GS which are conventional ABS resins for extrusion molding are used.
E, EX200, EX201, EX245 (all of which are Ube Sicon)
The evaluation was performed in the same manner as in Example 1 by using pellets, and the results shown in Table 2 were obtained.
表2より、いずれのABS樹脂の場合もHCFC−141bを発
泡剤に用いたヒートサイクルテストにおいて樹脂にクラ
ックが発生し、断熱用箱体に用いる内箱用材料として不
適であることが明らかである。 From Table 2, it is clear that any of the ABS resins cracks in the heat cycle test using HCFC-141b as a foaming agent and is unsuitable as an inner box material used for a heat insulating box. .
比較例2〜4 実施例1〜3において、表3に示すゴム成分量に調整
したこと以外は、各々、実施例1〜3と同様に評価して
表3の結果を得た。Comparative Examples 2 to 4 Evaluations were performed in the same manner as in Examples 1 to 3 except that the amounts of the rubber components shown in Table 3 were adjusted in Examples 1 to 3, and the results in Table 3 were obtained.
以上の結果から明らかなように、本発明の実施例に使
用したゴム補強スチレン系樹脂組成物を用いることによ
り、所期目的を達成することができた。 As is clear from the above results, the intended purpose was able to be achieved by using the rubber-reinforced styrene-based resin composition used in Examples of the present invention.
なお、上記実施例において若干の白化現象が見られる
場合があるが、十分に実用に供し得る程度のものであ
る。Although a slight whitening phenomenon may be observed in the above embodiment, the whitening phenomenon is sufficiently practical.
[発明の効果] 以上説明した通り、本発明のゴム補強スチレン系樹脂
組成物によれば、HCFC−141bを発泡剤としたウレタン発
泡断熱材と接する箱体として、強度や外観意匠性に優れ
た断熱用箱体を製造することができる。しかも、本発明
のゴム補強スチレン系樹脂組成物による樹脂製箱体は、
いずれも従来の製造設備を用いて製造できるため工業的
に極めて有利である。[Effects of the Invention] As described above, according to the rubber-reinforced styrenic resin composition of the present invention, a box in contact with a urethane foam insulating material using HCFC-141b as a foaming agent is excellent in strength and appearance design. A heat insulating box can be manufactured. Moreover, the resin box made of the rubber-reinforced styrenic resin composition of the present invention,
Both can be manufactured using conventional manufacturing equipment, which is industrially extremely advantageous.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−126756(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08F 291/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-126756 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08F 291/02
Claims (1)
剤とするウレタン発泡断熱材に接する構造材料製造用ゴ
ム補強スチレン系樹脂組成物であって、粒子状に分散し
たゴム質重合体と、該ゴム質重合体粒子に対してその一
部が化学的に結合したガラス状重合体とで構成され、該
ゴム質重合体の含有量が23〜35重量%であることを特徴
とするゴム補強スチレン系樹脂組成物。1. A rubber-reinforced styrenic resin composition for producing a structural material, which is in contact with a urethane foam insulating material having 1,1-dichloro-1-fluoroethane as a foaming agent, comprising a rubbery polymer dispersed in particles. A rubber comprising a glassy polymer in which a part thereof is chemically bonded to the rubbery polymer particles, and the content of the rubbery polymer is 23 to 35% by weight. Reinforced styrenic resin composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2256596A JP3010715B2 (en) | 1990-09-26 | 1990-09-26 | Rubber reinforced styrenic resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2256596A JP3010715B2 (en) | 1990-09-26 | 1990-09-26 | Rubber reinforced styrenic resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04132712A JPH04132712A (en) | 1992-05-07 |
JP3010715B2 true JP3010715B2 (en) | 2000-02-21 |
Family
ID=17294829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2256596A Expired - Fee Related JP3010715B2 (en) | 1990-09-26 | 1990-09-26 | Rubber reinforced styrenic resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3010715B2 (en) |
-
1990
- 1990-09-26 JP JP2256596A patent/JP3010715B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04132712A (en) | 1992-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5075637B2 (en) | Thermoplastic resin composition for refrigerators with excellent environmental stress resistance | |
KR100262832B1 (en) | Thermoformable, chemical resistant polymer blends | |
US5532315A (en) | Thermoformable, chemical resistant polymer blends | |
US5180779A (en) | Thermoplastic resin compositions resistant to fluorinated/chlorinated hydrocarbons and the use thereof | |
JP2843799B2 (en) | Thermoplastic resin composition with excellent chemical resistance | |
US6008294A (en) | Thermoformable, chemical resistant polymer blends | |
JP3010715B2 (en) | Rubber reinforced styrenic resin composition | |
JP3520575B2 (en) | Rubber reinforced styrene resin composition and heat insulating structure | |
JP3018473B2 (en) | Rubber reinforced styrenic resin composition | |
JP3006073B2 (en) | Mixed resin composition | |
KR100541061B1 (en) | Multilayer Sheet with Metal Sense for Refrigerator Liner | |
JP3013431B2 (en) | Mixed resin composition | |
JP3063146B2 (en) | Mixed resin composition | |
JP2921075B2 (en) | Mixed resin composition | |
JPH0128056B2 (en) | ||
JP2596634B2 (en) | Insulation box | |
US5707700A (en) | Heat insulating box | |
JPH05310862A (en) | Chlorofluorocarbon-resistant resin composition and thermal insulation box | |
JP2593574B2 (en) | Insulation box | |
KR100580772B1 (en) | Thermoplastic resin composition having good crack resistance and gloss | |
JP2596634C (en) | ||
US5238719A (en) | Thermoplastic resin compositions resistant to fluorinated/chlorinated hydrocarbons and the use thereof | |
JPH05155949A (en) | Resin composition for inner box of refrigerator | |
JPH06313091A (en) | Molded product excellent in freon resistance | |
JPH05320462A (en) | Thermoplastic resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |