JPH01280358A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH01280358A
JPH01280358A JP10901488A JP10901488A JPH01280358A JP H01280358 A JPH01280358 A JP H01280358A JP 10901488 A JP10901488 A JP 10901488A JP 10901488 A JP10901488 A JP 10901488A JP H01280358 A JPH01280358 A JP H01280358A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor region
conductivity type
drain
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10901488A
Other languages
Japanese (ja)
Other versions
JP2635096B2 (en
Inventor
Akihiro Shimizu
昭博 清水
Yoshio Sakai
芳男 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP10901488A priority Critical patent/JP2635096B2/en
Publication of JPH01280358A publication Critical patent/JPH01280358A/en
Application granted granted Critical
Publication of JP2635096B2 publication Critical patent/JP2635096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To suppress a short channel effect without lowering the operation reliability due to a drop in the breakdown strength of a drain, an increase in a hot carrier effect or the like by forming a first semiconductor region and a second semiconductor region whose conductivity type is identical to that of a substrate, whose concentration is higher than that of the substrate and which are specified individually inside the substrate of a MIS type field-effect transistor. CONSTITUTION:In a MIS type field-effect transistor formed on a semiconductor substrate 1 of a first conductivity type the following are formed: a first semiconductor region 7, of a first conductivity type, which is adjacent to at least one out of a source and a drain 4, 4 of the transistor and whose concentration is higher than that of the substrate 1; a second semiconductor region 8, of the first conductivity type, which is adjacent to the first semiconductor region 7, which is inner to the substrate from the first semiconductor region 7 and whose concentration is higher than that of the first semiconductor region 7. When the MIS type field-effect transistor is manufactured, an impurity whose conductivity type is identical to that of the substrate 1 is ion-implanted into the substrate 1; the first semiconductor region 7 is formed; the second semiconductor region 8, of the first conductivity type, is formed on the substrate 1 which is inner from the first semiconductor region 7 by an ion implantation method at energy and in an implantation quantity which are higher than those for the first semiconductor region 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に係り、特にMIS型電界効果効ト
ランジスタの短チヤネル効果抑制に好適で、ソース・ド
レイン間耐圧向上にすぐれたMIS型電界効果トランジ
スタに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device, and is particularly suitable for suppressing the short channel effect of an MIS field effect transistor and is excellent in improving source-drain breakdown voltage. Regarding effect transistors.

〔従来の技術〕[Conventional technology]

従来のMIS型トランジスタの短チヤネル効果防止策と
しては、基板内部にパンチスルーストッパ層を設けるも
のとして、特願昭58−124713号に記載されてい
る高濃度層を全面に形成する、あるいは、アイ・イー・
デイ−・エム、テクニカル・ダイジェスト(1985年
)第230頁から第233項(IEDM、Techni
cal Digest pp230〜233(1985
))において論じられているようにソース。
As a measure to prevent the short channel effect of conventional MIS transistors, a punch-through stopper layer is provided inside the substrate, and a high concentration layer is formed on the entire surface as described in Japanese Patent Application No. 58-124713, or an eye-concentration layer is formed on the entire surface.・E・
DM, Technical Digest (1985), pages 230 to 233 (IEDM, Techni
cal Digest pp230-233 (1985
Source as discussed in )).

ドレインの周囲に高濃度層を形成するものがあげられる
。前者を第2図に示す。
Examples include those that form a highly concentrated layer around the drain. The former is shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術において、後者はソース、ドレイン周囲に
パンチスルーストッパ用高濃度層があるため、確かに短
チヤネル効果抑制には効果があるが、ドレイン耐圧の低
下、あるいは、ホットキャリア効果の増大等動作信頼性
の低下を招く。
In the above-mentioned conventional technology, the latter has a high concentration layer for punch-through stopper around the source and drain, so it is certainly effective in suppressing the short channel effect, but it also reduces the drain breakdown voltage or increases the hot carrier effect. This results in decreased reliability.

また、第2図に示したような高濃度層8を埋め込む方法
では、基板表面近傍の不純物濃度が変わらぬためホット
キャリア効果への影響は小さいが、短チヤネル効果抑制
には、高濃度埋め込み層を浅くせねばならず、これもド
レイン耐圧の低下を招く事になる。これを、シングルド
レイン構造nチャネルMO8FETの場合について説明
する。第3図aに示したのは深さ方向の基板不純物濃度
分布30a〜34aと、ソース、ドレイン拡散層の分布
34である。318〜33aは高濃度埋め込み層を有す
る分布で、そのピーク位置を変えてあり、30aは埋め
込み層のない通常の分布である。これらの基板不純物分
布をもつ素子の短チヤネル効果の度合を示す閾値電圧V
TR対実効チャネル長Le1□1(VTR−L。0)特
性を第3図すに、最小ドレイン耐圧BVos、stn対
しezn (BVos、+++n  Lezz)特性を
第3図Cに示す。VTHLszz特性は、埋め込み層を
設けることにより改善され、その度合は、埋め込み層の
ピーク位置が浅い程良い。ここで30b〜33bはそれ
ぞれ30a 〜33aの分布をもつ素子に対応している
。これに対し、 BVos、atnは、基板内に低抵抗
層ができるため寄生バイポーラが起こりにくくなり向上
する機構と、寄生バイポーラ効果の種である基板電流の
増大により低下する機構のかね合いにより定まる。この
ため、埋め込み層が浅い程、第3図Cの如く後者が支配
的となり耐圧が低下する。ここで30c〜33cは30
a〜33aの分布をもつ素子に対応している。
In addition, in the method of burying the highly doped layer 8 as shown in FIG. 2, the impurity concentration near the substrate surface does not change, so the influence on the hot carrier effect is small; however, in order to suppress the short channel effect, it is necessary to must be made shallow, which also causes a decrease in drain breakdown voltage. This will be explained in the case of a single drain structure n-channel MO8FET. FIG. 3a shows the substrate impurity concentration distributions 30a to 34a in the depth direction and the distribution 34 of the source and drain diffusion layers. 318 to 33a are distributions having a high concentration buried layer, the peak positions of which have been changed, and 30a is a normal distribution without a buried layer. Threshold voltage V indicating the degree of short channel effect of devices with these substrate impurity distributions
The TR vs. effective channel length Le1□1 (VTR-L.0) characteristic is shown in FIG. 3, and the minimum drain breakdown voltage BVos, stn vs. ezn (BVos, +++n Lezz) characteristic is shown in FIG. 3C. The VTHLszz characteristic is improved by providing a buried layer, and the degree of improvement is better as the peak position of the buried layer is shallower. Here, 30b to 33b correspond to elements having a distribution of 30a to 33a, respectively. On the other hand, BVos and atn are determined by a balance between a mechanism in which parasitic bipolar is less likely to occur due to the formation of a low resistance layer in the substrate, which improves it, and a mechanism in which it decreases due to an increase in substrate current, which is the source of the parasitic bipolar effect. Therefore, the shallower the buried layer, the more the latter becomes dominant and the withstand voltage decreases, as shown in FIG. 3C. Here, 30c to 33c is 30
This corresponds to an element having a distribution of a to 33a.

故に、上記埋め込み層方式では短チヤネル効果抑制の度
合を向上させると、逆にドレイン耐圧が低下することに
なる。
Therefore, in the buried layer method, if the degree of suppression of the short channel effect is improved, the drain breakdown voltage will be reduced.

本発明の目的は、上記ドレイン耐圧の低下、ホットキャ
リア効果増大等の動作信頼性を損うことなく短チヤネル
効果を抑制することにある。
An object of the present invention is to suppress the short channel effect without impairing operational reliability such as a decrease in the drain breakdown voltage or an increase in the hot carrier effect.

【課題を屏決するための手段〕[Means for deciding issues]

上記目的は、MIS型電界効果トランジスタの基板内部
に、パンチスルーストッパ用の基板と同導電型の浅い第
1の基板より高濃度の不純物領域と、第1の不純物領域
より基板深部で第1の不純物領域に接するように、第1
不純物領域以上に高濃度で基板と同じ導電型の第2の不
純物領域を設けることにより達成される。
The above purpose is to form an impurity region with a higher concentration than the shallow first substrate of the same conductivity type as the substrate for the punch-through stopper inside the substrate of the MIS field effect transistor, and a first impurity region deeper in the substrate than the first impurity region. The first
This is achieved by providing a second impurity region that has a higher concentration than the impurity region and has the same conductivity type as the substrate.

〔作用〕[Effect]

第1の高濃度不純物領域は、前述の如くパンチスルース
トッパ等短チヤネル効果抑制のためのものである。基板
表面濃度自体は変化しないため、ホットキャリア効果の
増大は少ない。
The first high concentration impurity region is for suppressing the short channel effect, such as a punch-through stopper, as described above. Since the substrate surface concentration itself does not change, the increase in the hot carrier effect is small.

また、第2の高濃度不純物領域は、第1の高濃度不純物
領域より基板深部にあるため、パンチスルーストッパ等
短チヤネル効果改善には寄与しないが、基板内部に低抵
抗層ができるため、基板電流の効率良いコレクタとなり
寄生バイパーラ効果がより一層生じにくくなる。この結
果、ドレイン耐圧は一層向上する。
In addition, since the second high concentration impurity region is located deeper in the substrate than the first high concentration impurity region, it does not contribute to improving the short channel effect such as a punch-through stopper, but it forms a low resistance layer inside the substrate. It becomes an efficient current collector, making parasitic bipolar effects even less likely to occur. As a result, the drain breakdown voltage is further improved.

〔実施例〕〔Example〕

〈実施例1〉 以下に、本発明の第1の実施例を第1.3.4図を用い
て説明する。
<Example 1> A first example of the present invention will be described below with reference to FIGS. 1.3.4.

第1図及び第4図すに示したのは1本発明の代表的な第
1.第2の高濃度埋め込み層をシングルドレイン構造n
チャネルMOSトランジスタに形成したものである。a
は深さ方向の不純物分布で、34がソース・ドレイン拡
散層、40aが本発明による基板内の不純物分布である
。比較として、第1の高濃度層7が同じ濃度である従来
の不純物分布を32aに示す。
1 and 4 show one typical example of the present invention. The second high-concentration buried layer has a single drain structure n
This is formed in a channel MOS transistor. a
is the impurity distribution in the depth direction, 34 is the source/drain diffusion layer, and 40a is the impurity distribution in the substrate according to the present invention. For comparison, a conventional impurity distribution in which the first high concentration layer 7 has the same concentration is shown in 32a.

2つの基板不純物分布をそれぞれ有する素子のVTII
  Lett特性、及び、最小ドレイン耐圧B Vos
+mtn  Lets特性を第3図a、bに示す。
VTII of devices each having two substrate impurity distributions
Lett characteristics and minimum drain breakdown voltage B Vos
+mtn Lets characteristics are shown in FIGS. 3a and 3b.

V T RL e t i特性におイテは、32 b 
ト40 bとにほとんど差はない。これはパンチスルー
ストツパとして働いている第1の高濃度埋め込み層7が
同じためであり、本発明の第2の高′aJ!1埋め込み
層8の影響は小さい、これに対し、最小ドレイン耐圧は
、32cから40cへと1v以上向上している。これは
、第1の埋め込み層7で増加した基板電流が、より低抵
抗である第2の埋め込み層8に吸収され寄生バイポーラ
効果を生じに<<シている事による。
V TRL e ti characteristics are 32 b
There is almost no difference between the two. This is because the first high concentration buried layer 7 working as a punch-through stopper is the same, and the second high concentration 'aJ! The influence of the 1-buried layer 8 is small, whereas the minimum drain breakdown voltage is improved by more than 1 V from 32c to 40c. This is because the substrate current increased in the first buried layer 7 is absorbed by the second buried layer 8, which has a lower resistance, causing a parasitic bipolar effect.

これにより、短チヤネル効果の抑制とドレイン耐圧の向
上を同時に実現でき、サブミクロン、特に0.5μm以
下のゲート長を有するMOSFETに非常に有効である
This makes it possible to suppress the short channel effect and improve the drain breakdown voltage at the same time, and is very effective for submicron MOSFETs, particularly MOSFETs with gate lengths of 0.5 μm or less.

〈実施例2〉 次に第5図、及び第6図を用いて本発明の構造における
他の実施例を示す。
<Example 2> Next, another example of the structure of the present invention will be shown using FIGS. 5 and 6.

第5図(a)に示したのは、第1の実施例と同じ埋め込
み層7,8を有し、かつ、ソース・ドレイン構造を低濃
度ドレイン(LDD、Lightly dopedDr
ain )にしたものである、これにより、第1の実施
例と同様に短チヤネル効果抑制、ドレイン耐圧向上を実
現し、さらに、ホラ1−キャリア効果にみられる最期的
動作信頼性を向上することができる。また、第5図(b
)に示した構造は上記LDD掃造において、低濃度のソ
ース、ドレイン上部が全てゲート?tt極でおおわれて
いるもので、信頼性は上記LDDよりもさらに向上する
The one shown in FIG. 5(a) has the same buried layers 7 and 8 as in the first embodiment, and the source/drain structure is a lightly doped drain (LDD).
ain), thereby achieving suppression of the short channel effect and improvement of the drain breakdown voltage as in the first embodiment, and further improving the ultimate operational reliability seen in the Hola 1-carrier effect. I can do it. In addition, Fig. 5 (b
) In the above LDD sweep, the upper portions of the low-concentration source and drain are all gates? Since it is covered with tt poles, the reliability is further improved than the above-mentioned LDD.

また、第6図(a)、(b)、(c)に示した実施例は
、パンチスルーストッパ用第1の高濃度不純物領域7の
形状を変えたものである。(a)は、第1の実施例と基
本的な特性は変わらないが。
Further, in the embodiments shown in FIGS. 6(a), (b), and (c), the shape of the first high concentration impurity region 7 for the punch-through stopper is changed. (a) has the same basic characteristics as the first embodiment.

ソース、ドレイン下部が直接高濃度層と接していないた
め、接合容量が低減できる。(b)は、チャネル下部に
高濃度不純物層がないため、パンチスルー抑制等の短チ
ヤネル効果低減効果は第1の実施例より多少劣るが、チ
ャネル下基板の浅い所に高濃度層がないため閾値電圧の
基板効果による変動が小さい。
Since the lower portions of the source and drain are not in direct contact with the high concentration layer, the junction capacitance can be reduced. In (b), since there is no high concentration impurity layer at the bottom of the channel, the effect of reducing short channel effects such as punch-through suppression is somewhat inferior to that of the first embodiment, but because there is no high concentration layer at the shallow part of the substrate below the channel. Fluctuations in threshold voltage due to substrate effects are small.

そして、(c)はLDD構造の低濃度層の周囲にパンチ
スルーストッパ用第1の高濃度層7を設け、その下部に
第2の高濃度層8を設けたものである。本構造はドレイ
ン耐圧が低下しやすいが、高濃度層8によりそれを防い
でいる。
3(c) shows a structure in which a first high concentration layer 7 for a punch-through stopper is provided around the low concentration layer of the LDD structure, and a second high concentration layer 8 is provided below the first high concentration layer 7. In this structure, the drain breakdown voltage tends to decrease, but the high concentration layer 8 prevents this.

以上の如く、本発明では、短チャネル効果抑制用第1の
高濃度埋め込み層の形状は、素子の目的に応じて任意で
よく、その第1の高濃度層よりも基板内部に第2の高濃
度埋め込み層が少なくともドレイン近傍チャネル下部し
こ存在する事が必要である。
As described above, in the present invention, the shape of the first high-concentration buried layer for short channel effect suppression may be arbitrary depending on the purpose of the device, and the second high-concentration buried layer for suppressing short channel effects may be formed inside the substrate rather than the first high-concentration layer. It is necessary that the concentration buried layer exists at least in the vicinity of the drain and below the channel.

〈実施例3〉 次に本発明の代表的な構造を製造する製造方法の実施例
を、第7図を用いて説明する。
<Example 3> Next, an example of a manufacturing method for manufacturing a typical structure of the present invention will be described using FIG. 7.

まず、第7図(a)のように、p型シリコン(比抵抗1
0Ω)基板1に、熱酸化膜11を20〜30nm形成後
選択的に素子分離用の500〜700nmのシリコン酸
化膜1oを形成する。次に、第7図(b)のように、ボ
ロンをまず打ち込みエネルギー300〜500 K e
 V、打ち込み量I X 10 ”〜3 X 1018
cm−2テ全面に打ち込み、第2の高濃度不純物領域8
を続いて、打ち込みエネルギー100〜200KeV、
打ち込み量1×1012〜I X 10 ”Ql−2で
全面に打ち込み、第1の高濃度不純物領域7を形成する
。ここで、第1の高濃度不純物領域7が短チヤネル効果
抑制用パンチスルーストッパであり、第2の高濃度不純
物領域8がドレイン耐圧向上用の低抵抗層である。
First, as shown in Figure 7(a), p-type silicon (specific resistance 1
0Ω) After forming a thermal oxide film 11 of 20 to 30 nm on the substrate 1, a silicon oxide film 1o of 500 to 700 nm for element isolation is selectively formed. Next, as shown in FIG. 7(b), boron is first implanted with an energy of 300 to 500 K e
V, implantation amount I x 10” ~ 3 x 1018
The second high concentration impurity region 8 is implanted into the entire surface.
followed by implantation energy of 100 to 200 KeV,
A first high concentration impurity region 7 is formed by implanting into the entire surface with an implantation amount of 1×10 12 to I X 10 ”Ql−2. Here, the first high concentration impurity region 7 serves as a punch-through stopper for suppressing the short channel effect. The second high concentration impurity region 8 is a low resistance layer for improving drain breakdown voltage.

その後、第7図(c)のようにゲート酸化膜2を10〜
25nm形成し、閾値電圧設定用のボロン9を1011
〜1013m−2程度打ち込む。続いて、リンドープの
多結晶シリコンを200〜300nm形成し、フォトエ
ツチングによりパターニングしてゲート電極3を形成す
る。最後に、ゲート電極3をマスクにヒ素を5X10”
δGW−2打ち込み高濃度のソース、ドレイン4を形成
する。これにより、マスクの増大なしに2度のイオン打
ち込み工程を加えるだけで第4図すに示した第1の実施
例の構造を実現できる。また、本実施例では、高濃度埋
め込み層7,8を全面に形成しているため。
After that, as shown in FIG. 7(c), the gate oxide film 2 is
25 nm thick and 1011 boron 9 for threshold voltage setting.
Drive approximately 1013m-2. Subsequently, phosphorus-doped polycrystalline silicon is formed to a thickness of 200 to 300 nm and patterned by photoetching to form the gate electrode 3. Finally, using the gate electrode 3 as a mask, add 5x10" arsenic.
High concentration source and drain 4 are formed by δGW-2 implantation. As a result, the structure of the first embodiment shown in FIG. 4 can be realized by adding two ion implantation steps without increasing the number of masks. Further, in this embodiment, the high concentration buried layers 7 and 8 are formed over the entire surface.

素子分離用酸化膜10下のチャネルストッパは、特別に
形成しなくても埋め込み層7,8でかねることができる
The channel stopper under the element isolation oxide film 10 can be formed by the buried layers 7 and 8 without being specially formed.

〈実施例4〉 最後に、第8,9図を用いて本発明の構造を形成する製
造方法の他の実施例を示す。
<Example 4> Finally, another example of the manufacturing method for forming the structure of the present invention will be shown using FIGS. 8 and 9.

第8図(a)〜(C)に示した実施例は、高濃度埋め込
み層7,8をゲート電極3を形成した後に、全面にイオ
ン打ち込みで形成している。この場合、埋め込層7,8
が、ゲート下基板内部に形成されるように、前記第3の
実施例よりも高エネルギーのイオン打ち込みを用いてい
る。これにより、ソース、ドレイン拡散層4下部は、高
濃度埋め込み層7,8が直接、接しておらず寄生容量の
増大を防ぐことができる。
In the embodiment shown in FIGS. 8(a) to 8(C), the high concentration buried layers 7 and 8 are formed by ion implantation over the entire surface after the gate electrode 3 is formed. In this case, the buried layers 7, 8
is formed inside the substrate under the gate, using higher energy ion implantation than in the third embodiment. As a result, the heavily doped buried layers 7 and 8 are not in direct contact with the lower part of the source/drain diffusion layer 4, thereby preventing an increase in parasitic capacitance.

さらに、第9図に示した実施例は、第7図と第8図の製
造方法を組み合わせたものである。つまり1本発明の製
造方法は、パンチスルーストッパ用第1の高濃度埋め込
み層7、及び、第2の高濃度埋め込み層8は、通常のM
IS型電界効果トランジスタを形成する製造過程の中で
いつ形成してもよい。また、本発明の構造、及びその製
造方法は、近年LSIの主流となりつつあるCMOSプ
ロセスにおいても容易に応用可能である。
Further, the embodiment shown in FIG. 9 is a combination of the manufacturing methods shown in FIGS. 7 and 8. In other words, in the manufacturing method of the present invention, the first high-concentration buried layer 7 and the second high-concentration buried layer 8 for the punch-through stopper are
It may be formed at any time during the manufacturing process of forming an IS type field effect transistor. Further, the structure of the present invention and its manufacturing method can be easily applied to the CMOS process that has become mainstream in LSI in recent years.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の埋め込み層型パンチスルースト
ッパ層を有するMIS型電界効果1−ランジスタにおい
て生じるドレイン耐圧の低下を防ぎ、同時に短チヤネル
効果をも抑制できる。このため、ゲート長0.5pm 
以下のU L S I (UltraLarge 5c
ale Integration)の基本デバイスとし
て有効である。
According to the present invention, it is possible to prevent a decrease in drain breakdown voltage that occurs in a conventional MIS type field effect transistor having a buried layer type punch-through stopper layer, and at the same time, it is possible to suppress short channel effects. Therefore, the gate length is 0.5pm.
The following U L S I (UltraLarge 5c
It is effective as a basic device for Ale Integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の代表例を示す構造の断面図、第2図は
従来構造の断面図、第3図は従来構造の主な電気的特性
を示した図、第4図は本発明の代表例とその不純物プロ
ファイルを示した図、第5゜6図は本発明の他の実施例
を示す構造の断面図、第7.8.9図は本発明の代表的
な製造方法を示した断面図である。 1・・・半導体基板、2・・・ゲート絶縁膜、3・・・
ゲート電極、4・・・高濃度ソース、ドレイン、5・・
・低濃度ソース、ドレイン、6・・・サイドウオールス
ペーサ、7・・・第1の高濃度埋めこみ層、8・・・第
2の高濃度埋め込み層。 二\ ■3図 (b) (C) Leaf (pyす 築 4 図 (え) (b) 7.8埋4Q婁V 32L ft1J/lt里ハ込J14ブりhイル4θ6
;オjど8月の   な 第 5 図 (欠) (bン 3  j−)+を極 3第2 ・ 第 z 口 6纂2つり 嘉 7 図 3  ケート胃り掻 7   %tt)と里、ハ、込槁釣)9ジ8′  第2
り    ・ /θ  11菩七チで1り召S1θ2,3獲“6二0 二二 二]鵠 二1里 多 ’? +’9 平¥舌 一/θ /θ 一/ρ 一ノθ 4 幕切JソーズkL(シ フ葛IQ埋〜、舗q媚眉 3第Z/l   り
Fig. 1 is a cross-sectional view of a structure showing a typical example of the present invention, Fig. 2 is a cross-sectional view of a conventional structure, Fig. 3 is a view showing the main electrical characteristics of the conventional structure, and Fig. 4 is a cross-sectional view of a structure of the present invention. Figures showing representative examples and their impurity profiles; Figure 5.6 is a sectional view of a structure showing another embodiment of the present invention; Figure 7.8.9 shows a typical manufacturing method of the present invention. FIG. 1... Semiconductor substrate, 2... Gate insulating film, 3...
Gate electrode, 4...high concentration source, drain, 5...
-Low concentration source, drain, 6... side wall spacer, 7... first high concentration buried layer, 8... second high concentration buried layer. 2\ ■3 Fig. (b) (C) Leaf (pysu construction 4 Fig. (e) (b) 7.8 buried 4Q 婁V 32L ft1J/lt riha-komi J14 Burihiru 4θ6
5th figure (missing) (bn3 j-)+ in August Ha, Komi fishing) 9ji 8' 2nd
ri ・ /θ 11 Bodhisattva seven chi de one call S1θ2,3 capture “620 222] Kuji 21 Rita '? Kiri J Swords kL

Claims (1)

【特許請求の範囲】 1、第1導電型半導体基板上に形成されたMIS型電界
効果トランジスタにおいて、該トランジスタのソース、
ドレインの少なくとも一方に接し、基板より高濃度で第
1導電型の第1半導体領域と、該第1半導体領域に接し
、かつ、第1半導体領域より基板内部に該第1半導体領
域以上に高濃度で第1導電型の第2半導体領域を有する
ことを特徴とする半導体装置。 2、特許請求の範囲第1項記載の半導体装置において、
該第1半導体領域、及び、該第2半導体領域の少なくと
も一方が、該トランジスタのチャネル部下部全面に存在
することを特徴とする半導体装置。 3、MIS型電界効果トランジスタの製造方法において
、基板内部に基板と同一導電型の不純物をイオン打ち込
みで該第1の半導体領域を形成する工程と、該第1半導
体領域よりも高エネルギー、高打ち込み量のイオン打ち
込みで、第1半導体領域よりも基板内部に第1導電型の
該第2の半導体領域を形成する工程とを具備する特許請
求の範囲第1項記載の半導体装置の製造方法。
[Claims] 1. In a MIS field effect transistor formed on a first conductivity type semiconductor substrate, the source of the transistor;
a first semiconductor region that is in contact with at least one of the drains and has a higher concentration than the substrate and has a first conductivity type; A semiconductor device comprising a second semiconductor region of a first conductivity type. 2. In the semiconductor device according to claim 1,
A semiconductor device, wherein at least one of the first semiconductor region and the second semiconductor region is present on the entire lower part of the channel portion of the transistor. 3. In the method for manufacturing an MIS field effect transistor, the first semiconductor region is formed by ion implanting impurities of the same conductivity type as the substrate into the substrate, and the first semiconductor region is implanted at a higher energy and higher level than the first semiconductor region. 2. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of forming the second semiconductor region of the first conductivity type inside the substrate rather than the first semiconductor region by ion implantation of a large amount.
JP10901488A 1988-05-06 1988-05-06 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2635096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10901488A JP2635096B2 (en) 1988-05-06 1988-05-06 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10901488A JP2635096B2 (en) 1988-05-06 1988-05-06 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01280358A true JPH01280358A (en) 1989-11-10
JP2635096B2 JP2635096B2 (en) 1997-07-30

Family

ID=14499387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10901488A Expired - Lifetime JP2635096B2 (en) 1988-05-06 1988-05-06 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2635096B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029174A (en) * 1988-06-28 1990-01-12 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPH03171672A (en) * 1989-11-29 1991-07-25 Mitsubishi Electric Corp Manufacture of misfet
US5208473A (en) * 1989-11-29 1993-05-04 Mitsubishi Denki Kabushiki Kaisha Lightly doped MISFET with reduced latchup and punchthrough
JPH0637305A (en) * 1992-07-15 1994-02-10 Toshiba Corp Semiconductor device having ldd structure and fabrication of the same
US5359221A (en) * 1992-07-10 1994-10-25 Hitachi, Ltd. Semiconductor device
US6153910A (en) * 1994-06-22 2000-11-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with nitrogen implanted channel region
KR100325287B1 (en) * 1994-01-25 2002-07-06 박종섭 Semiconductor device and fabricating method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029174A (en) * 1988-06-28 1990-01-12 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPH03171672A (en) * 1989-11-29 1991-07-25 Mitsubishi Electric Corp Manufacture of misfet
US5208473A (en) * 1989-11-29 1993-05-04 Mitsubishi Denki Kabushiki Kaisha Lightly doped MISFET with reduced latchup and punchthrough
US5359221A (en) * 1992-07-10 1994-10-25 Hitachi, Ltd. Semiconductor device
JPH0637305A (en) * 1992-07-15 1994-02-10 Toshiba Corp Semiconductor device having ldd structure and fabrication of the same
KR100325287B1 (en) * 1994-01-25 2002-07-06 박종섭 Semiconductor device and fabricating method thereof
US6153910A (en) * 1994-06-22 2000-11-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with nitrogen implanted channel region
US6380036B1 (en) 1994-06-22 2002-04-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2635096B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US6825531B1 (en) Lateral DMOS transistor with a self-aligned drain region
US5248627A (en) Threshold adjustment in fabricating vertical dmos devices
US7187033B2 (en) Drain-extended MOS transistors with diode clamp and methods for making the same
US7977715B2 (en) LDMOS devices with improved architectures
US6277675B1 (en) Method of fabricating high voltage MOS device
US7745294B2 (en) Methods of manufacturing trench isolated drain extended MOS (demos) transistors and integrated circuits therefrom
US7649234B2 (en) Semiconductor devices
US6376315B1 (en) Method of forming a trench DMOS having reduced threshold voltage
US6897525B1 (en) Semiconductor device and method of manufacturing the same
US6284581B1 (en) Integration of bipolar and CMOS devices for sub-0.1 micrometer transistors
US20090283823A1 (en) Semiconductor device and method of manufacturing semiconductor device
US6091111A (en) High voltage mos device having an extended drain region with different dopant species
US7986004B2 (en) Semiconductor device and method of manufacture thereof
JPH07176640A (en) Fabrication of semiconductor device
US5846866A (en) Drain extension regions in low voltage lateral DMOS devices
US7998849B2 (en) Semiconductor device used as high-speed switching device and power device
US7087961B2 (en) Semiconductor device with reduced on-state resistance
US8269274B2 (en) Semiconductor device and method for fabricating the same
JP2001308321A (en) Semiconductor device and its manufacturing method
JPH01280358A (en) Semiconductor device and its manufacture
JPH01120067A (en) Semiconductor device and its manufacture
US6683349B1 (en) Semiconductor device and method of manufacturing the same
JPS63217664A (en) Misfet and manufacture thereof
JP3344078B2 (en) Insulated gate field effect transistor
US20050116298A1 (en) MOS field effect transistor with small miller capacitance

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12