JPH01280347A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01280347A
JPH01280347A JP63110992A JP11099288A JPH01280347A JP H01280347 A JPH01280347 A JP H01280347A JP 63110992 A JP63110992 A JP 63110992A JP 11099288 A JP11099288 A JP 11099288A JP H01280347 A JPH01280347 A JP H01280347A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide film
film
electrode
conductive metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63110992A
Other languages
Japanese (ja)
Inventor
Yasuaki Hokari
穂苅 泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63110992A priority Critical patent/JPH01280347A/en
Publication of JPH01280347A publication Critical patent/JPH01280347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent a capacitance from being lowered due to formation of a transition layer such as SiOx by containing the following: a conductive metal oxide film formed on a silicon layer or on an electrode layer composed of a metal silicide; a dielectric film formed on it and composed of an insulating metal oxide; a capacitance formed of an electrode and formed additionally on it. CONSTITUTION:The following are contained: a conductive metal oxide film 4 formed on a silicon layer 3 or on an electrode layer composed of a metal silicide; a dielectric film 5 formed on the conductive metal oxide film 4 and composed of an insulating metal oxide; a capacitance constituted of an electrode 6 and formed on the dielectric film 5. For example, an insulating film 2 is formed selectively on the surface of a silicon substrate 1; then, a high- concentration impurity region 3 is formed. Then, a conductive metal oxide film 4 such as a TiO2 film, a mixed film of TiO2 and SnO2 or the like is formed; after that, the conductive metal oxide film 4 is etched selectively; the film is left in a desired region. Then, an insulating metal oxide film 5 of Ta2O5, ZrO2, HfO2 or BaTiO3 is formed; after that, an electrode 6 is formed in a desired region; a capacitance is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor device.

〔従来の技術〕[Conventional technology]

ダイナミック・ランダム・アクセス・メモリの如く構成
要素として容量を具備した半導体装置に於ては、容量部
の面積を極力小さくすることが上記半導体装置の高密度
化を進める上で重要である。
In a semiconductor device including a capacitor as a component, such as a dynamic random access memory, it is important to reduce the area of the capacitor part as much as possible in order to increase the density of the semiconductor device.

容量部の占める面積を小さくするためには、従来のSi
O□やSi3N4よりも大きな誘電率を持つ誘電体材料
を用いるのが有利であり、このためTa酸化物、Ti酸
化物、 Zr酸化物、 If酸化物などからなる金属酸
化膜、さらにはBaTiO3の如き強誘電体材料からな
る膜を用いることが試みられている。これら誘電体膜を
形成する方法としては、 (1)Ta、Ti、Zr、Hfなどの金属材料をターゲ
ットとしてスパッタ蒸着法により基板表面に金属膜を形
成した後にこれを酸化する方法、 (2)スパッタ蒸着を酸素雰囲気中で行い、基板上に金
属酸化物として堆積する手法、 (3)CVD法により基板上に金属酸化膜を堆積する方
法、 などが用いられる。
In order to reduce the area occupied by the capacitive part, conventional Si
It is advantageous to use a dielectric material with a larger dielectric constant than O□ or Si3N4, and for this reason metal oxide films made of Ta oxide, Ti oxide, Zr oxide, If oxide, etc., and even BaTiO3 Attempts have been made to use films made of ferroelectric materials such as ferroelectric materials. Methods for forming these dielectric films include: (1) a method of forming a metal film on the substrate surface by sputter deposition using a metal material such as Ta, Ti, Zr, Hf, etc. as a target, and then oxidizing it; (3) A method in which a metal oxide film is deposited on a substrate by sputter deposition in an oxygen atmosphere, and (3) a method in which a metal oxide film is deposited on a substrate by a CVD method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Ta酸化物、Ti酸化物などの金属酸化物からなる膜を
単結晶シリコン上あるいは多結晶シリコンの電極上に形
成すると、本来得られるべき高い容量値が低下してしま
うという欠点がある。この現象は、特に金属酸化膜の膜
厚が薄いはど順著となる。この原因は、金属酸化膜とシ
リコンまたは多結晶シリコン電極との間に5in)<の
如き誘電率の低い遷移層(比誘電率4程度)が形成され
ることによる。即ち、観察される容量値は金属酸化膜の
容量と遷移層の容量との直列接続された値になり、金属
酸化膜の膜厚が薄く等該膜の容量が大きい場合には、観
察される容量値は容量の小さな遷移層の容量に大きく支
配されるからである。
When a film made of a metal oxide such as Ta oxide or Ti oxide is formed on a single crystal silicon or polycrystalline silicon electrode, there is a drawback that the high capacitance that should originally be obtained is reduced. This phenomenon is particularly noticeable when the metal oxide film is thin. This is due to the formation of a low dielectric constant transition layer (relative dielectric constant of about 4) between the metal oxide film and the silicon or polycrystalline silicon electrode. In other words, the observed capacitance value is the series connection of the capacitance of the metal oxide film and the capacitance of the transition layer, and when the capacitance of the metal oxide film is large, such as when the thickness of the metal oxide film is thin, This is because the capacitance value is largely controlled by the capacitance of the transition layer, which has a small capacitance.

シリコンと金属酸化膜との界面に遷移層が形成される理
由は、金属酸化膜が酸素を放出し易い(還元され易い)
性質を持ち、シリコンの如き酸化され易い活性な物質に
接すると酸素を放出する結果、界面に5in)(層が形
成されるものである。この遷移層の膜厚は、透過型電子
頂微鏡による高解像度の断面観察によれば、20〜35
人と極めて薄い。しかし、例えば、比誘電率25、膜厚
100人の金属酸化膜を形成した場合には、観察される
容量値は遷移層の無い場合に比べ45%以下になってし
まう。従って、シリコン上に金属酸化膜を形成した場合
には、金属酸化膜が本来有する誘電率の高い膜としての
性質を生ずことは出来ないという問題がある。
The reason why a transition layer is formed at the interface between silicon and metal oxide film is that metal oxide film easily releases oxygen (easily reduced).
When it comes into contact with an active substance that is easily oxidized, such as silicon, it releases oxygen, resulting in the formation of a layer of 5 inches at the interface.The thickness of this transition layer is According to high-resolution cross-sectional observation by
Extremely thin compared to people. However, for example, if a metal oxide film with a dielectric constant of 25 and a thickness of 100% is formed, the observed capacitance value will be 45% or less compared to the case without a transition layer. Therefore, when a metal oxide film is formed on silicon, there is a problem in that the properties of a film with a high dielectric constant, which a metal oxide film originally has, cannot be achieved.

上記した遷移層の問題を改善する一つの手段として、酸
化され易いシリコンの代りに活性度のより低い電極材料
膜の上に金属酸化膜を設けることが行われている。即ち
、シリコン基板上に一旦WSi2.MoSi2.TiS
i2の如き金属珪化物膜を設けた後に、金属酸化膜を形
成するものである。しかし、金属珪化物は組成としてシ
リコンが含まれるため、金属酸化膜との反応を防止する
ためには膜形成後のプロセスを350℃以下の温度に抑
える必要がある。このような限定された条件では、半導
体装置を作る上で制約が大きく、応用が限定されてしま
う欠点を持っていた。
As one means to improve the above-mentioned problem of the transition layer, a metal oxide film is provided on an electrode material film with lower activity in place of silicon, which is easily oxidized. That is, WSi2. MoSi2. TiS
After a metal silicide film such as i2 is provided, a metal oxide film is formed. However, since metal silicide contains silicon as a composition, it is necessary to suppress the temperature of the process after film formation to 350° C. or lower in order to prevent reaction with the metal oxide film. Such limited conditions have the drawback of severely restricting the fabrication of semiconductor devices and limiting their applications.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、シリコン層上または金属珪化物
から成る電極層上に設けられた導電性金属酸化膜と、該
導電性金属酸化膜上に設けられた絶縁性金属酸化物から
成る誘電体膜と、該誘電体膜上に設けられた電極とで構
成される容量を含んで構成される。
The semiconductor device of the present invention includes a conductive metal oxide film provided on a silicon layer or an electrode layer made of metal silicide, and a dielectric material made of an insulating metal oxide provided on the conductive metal oxide film. It is configured to include a capacitor composed of a film and an electrode provided on the dielectric film.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例の断面図である。 FIG. 1 is a sectional view of a first embodiment of the invention.

シリコン基板1の表面に周知の技術を用いて選択的に絶
縁膜2を設け、次に熱拡散またはイオン打込みの技術を
用いて高濃度不純物領域3を形成する。次に、TiO2
膜またはTiO□と5n02の混合膜などの導電性を有
する金属酸化膜4を、スパッタ蒸着法あるいは気相成長
法などの手法を用いて形成する。この導電性金属酸化膜
4の好ましい膜厚は20〜1100nである0次に、周
知の技術を用いて導電性金属酸化膜4を選択的にエツチ
ングし、所望の領域に膜を残す。次に、Ta20q、Z
rO□。
An insulating film 2 is selectively provided on the surface of a silicon substrate 1 using a well-known technique, and then a high concentration impurity region 3 is formed using a thermal diffusion or ion implantation technique. Next, TiO2
A conductive metal oxide film 4 such as a film or a mixed film of TiO□ and 5n02 is formed using a technique such as sputter deposition or vapor phase growth. The preferred thickness of the conductive metal oxide film 4 is 20 to 1100 nm.Next, the conductive metal oxide film 4 is selectively etched using a well-known technique, leaving the film in desired areas. Next, Ta20q, Z
rO□.

)if02またはBaTiO3の如き絶縁性を有する金
属酸化膜5をスパッタ蒸着法あるいは気相成長法などの
手法を用いて形成する。次に、電極6を所望の領域に形
成し、本発明になる容量が形成される。
) A metal oxide film 5 having insulating properties such as if02 or BaTiO3 is formed using a method such as a sputter deposition method or a vapor phase growth method. Next, the electrode 6 is formed in a desired region, and the capacitor according to the present invention is formed.

なお、上記した構造の容量において、高濃度不純物領域
3の導電型はシリコン基板1と逆型であっても、あるい
は同型であっても良く、その選択は自由である。さらに
、高濃度不純物領域3を設けずに、直接シリコン基板1
に接触せしめても良い。
In the capacitance of the above-described structure, the conductivity type of the high concentration impurity region 3 may be the opposite type to the silicon substrate 1 or the same type, and the selection thereof is free. Furthermore, without providing the high concentration impurity region 3, directly on the silicon substrate 1.
may be brought into contact with.

第2図は本発明の第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the invention.

第1の実施例では、導電性金属酸化膜4を高濃度不純物
領域3の表面及び絶縁膜2の表面の一部に設けたが、第
2の実施例では高濃度不純物領域3の表面にのみ設けた
。このようにしても、シリコン基板との間に遷移層を形
成しないという点で第1の実施例と同じである。
In the first embodiment, the conductive metal oxide film 4 was provided on the surface of the high concentration impurity region 3 and a part of the surface of the insulating film 2, but in the second embodiment, the conductive metal oxide film 4 was provided only on the surface of the high concentration impurity region 3. Established. Even in this case, it is the same as the first embodiment in that no transition layer is formed between the silicon substrate and the silicon substrate.

第3図は本発明の第3の実施例の断面図である。FIG. 3 is a sectional view of a third embodiment of the invention.

この実施例は、高濃度不純物領域3と絶縁膜2の一部の
上に多結晶シリコンの電極7を設け、その上に導電性金
属酸化膜4、絶縁性金属酸化膜5、電極6を設けたもの
である。
In this embodiment, a polycrystalline silicon electrode 7 is provided on a high concentration impurity region 3 and a part of an insulating film 2, and a conductive metal oxide film 4, an insulating metal oxide film 5, and an electrode 6 are provided thereon. It is something that

導電性金属酸化膜4は多結晶シリコンの電極7に接触し
ているため、電極7に印加された電圧が導電性酸化膜4
にそのまま印加される。
Since the conductive metal oxide film 4 is in contact with the polycrystalline silicon electrode 7, the voltage applied to the electrode 7 is applied to the conductive metal oxide film 4.
is applied as is.

第4図は本発明の第4の実施例の断面図である。FIG. 4 is a sectional view of a fourth embodiment of the present invention.

この実施例は本発明をD RA M (Dynamic
 RandotrcAccess Memory)に適
用した例である。
This embodiment demonstrates the present invention in a DRAM (Dynamic
This is an example applied to (RandotrcAccess Memory).

高濃度不純物領域3a、3bをソース・ドレイン領域、
ワード線10をゲート電極とするFETに本発明にかか
る容量が接続される。容量は、導電性金属酸化膜4と絶
縁性金属酸化膜5と電極7とで構成される。導電性金属
酸化膜4は高濃度不純物領域3bに接しているので、高
濃度不純物領域3bに印加された電圧は導電性金属酸化
膜にそのまま印加される。
High concentration impurity regions 3a and 3b are source/drain regions,
A capacitor according to the present invention is connected to a FET having the word line 10 as a gate electrode. The capacitor is composed of a conductive metal oxide film 4, an insulating metal oxide film 5, and an electrode 7. Since the conductive metal oxide film 4 is in contact with the high concentration impurity region 3b, the voltage applied to the high concentration impurity region 3b is directly applied to the conductive metal oxide film.

第5図は本発明の第5の実施例の断面図である。FIG. 5 is a sectional view of a fifth embodiment of the present invention.

この実施例は、DRAMと第3の実施例とを組合せたも
ので、高濃度不純物領域3bと導電性金属酸化膜4との
間に多結晶シリコンの電8i!7を設けている。それ以
外は第4の実施例と同じである。
This embodiment is a combination of a DRAM and the third embodiment, and has a polycrystalline silicon electrode 8i! between a high concentration impurity region 3b and a conductive metal oxide film 4. 7 is provided. The rest is the same as the fourth embodiment.

第6図は本発明の第6の実施例の断面図である。FIG. 6 is a sectional view of a sixth embodiment of the present invention.

この実施例は、容量値を大きくするために溝を堀ってそ
こに容量を設けたDRAMに本発明を適用した例である
。溝の内壁に沿って高濃度不純物3cが形成され、その
上に導電性金属酸化膜4、絶縁性金属酸化膜5、電極6
が形成されて容量を構成する。それ以外は第4の実施例
と同じである。
This embodiment is an example in which the present invention is applied to a DRAM in which a groove is dug and a capacitance is provided therein in order to increase the capacitance value. A high concentration impurity 3c is formed along the inner wall of the groove, and a conductive metal oxide film 4, an insulating metal oxide film 5, and an electrode 6 are formed on it.
is formed and constitutes a capacity. The rest is the same as the fourth embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、酸°素に対して活性なシ
リコン基板、多結晶シリコンの電極及び珪化物の電極の
表面に一旦導電性を有する金属酸化膜を設けた後に絶縁
性を有する金属酸化膜を設ける構造にしたので、5in
Xの如き遷移層の形成による容量の低下が防止できる効
果がある。また、本発明にかかる容量は、誘電体として
の金属酸化膜および導電性を有する金属酸化膜とも酸化
物であるため、耐熱性にも優れており、600”Cでも
電気特性に変化は見られないという信頼性向上の効果も
ある。
As explained above, in the present invention, a conductive metal oxide film is once provided on the surface of a silicon substrate active against oxygen, a polycrystalline silicon electrode, and a silicide electrode, and then an insulating metal Since the structure is provided with an oxide film, the 5-in.
This has the effect of preventing a decrease in capacity due to the formation of a transition layer such as X. In addition, the capacitor according to the present invention has excellent heat resistance because both the metal oxide film as a dielectric material and the metal oxide film with conductivity are oxides, and there is no change in electrical characteristics even at 60"C. There is also the effect of improving reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図はそれぞれ本発明の第1乃至第6の実
施例の断面図である。 1・・・シリコン基板、2・・・絶縁膜、3.3a。 3b、3c・・・高濃度不純物領域、4・・・導電性金
属酸化膜、5・・・絶縁性金属酸化膜、6川電極、7・
・・電極、8・・・ゲート絶縁膜、9・・・絶縁膜、1
o・・・ワード線、1]・・・ビット線。 代理人 弁理士  内 原  音 第乙図
1 to 6 are sectional views of first to sixth embodiments of the present invention, respectively. 1... Silicon substrate, 2... Insulating film, 3.3a. 3b, 3c... High concentration impurity region, 4... Conductive metal oxide film, 5... Insulating metal oxide film, 6 River electrode, 7...
... Electrode, 8... Gate insulating film, 9... Insulating film, 1
o...word line, 1]...bit line. Agent Patent Attorney Uchihara Otoichi

Claims (1)

【特許請求の範囲】[Claims] シリコン層上または金属珪化物から成る電極層上に設け
られた導電性金属酸化膜と、該導電性金属酸化膜上に設
けられた絶縁性金属酸化物から成る誘電体膜と、該誘電
体膜上に設けられた電極とで構成される容量を含むこと
を特徴とする半導体装置。
A conductive metal oxide film provided on a silicon layer or an electrode layer made of metal silicide, a dielectric film made of an insulating metal oxide provided on the conductive metal oxide film, and the dielectric film What is claimed is: 1. A semiconductor device comprising a capacitor configured with an electrode provided above.
JP63110992A 1988-05-06 1988-05-06 Semiconductor device Pending JPH01280347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63110992A JPH01280347A (en) 1988-05-06 1988-05-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110992A JPH01280347A (en) 1988-05-06 1988-05-06 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01280347A true JPH01280347A (en) 1989-11-10

Family

ID=14549655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110992A Pending JPH01280347A (en) 1988-05-06 1988-05-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01280347A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192871A (en) * 1991-10-15 1993-03-09 Motorola, Inc. Voltage variable capacitor having amorphous dielectric film
JPH0766300A (en) * 1993-08-09 1995-03-10 Internatl Business Mach Corp <Ibm> Capacitor and its manufacture
KR100390849B1 (en) * 2001-06-30 2003-07-12 주식회사 하이닉스반도체 Method for fabricating capacitor having hafnium oxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222468A (en) * 1988-03-02 1989-09-05 Toshiba Corp Capacitor for semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222468A (en) * 1988-03-02 1989-09-05 Toshiba Corp Capacitor for semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192871A (en) * 1991-10-15 1993-03-09 Motorola, Inc. Voltage variable capacitor having amorphous dielectric film
WO1993008610A1 (en) * 1991-10-15 1993-04-29 Motorola, Inc. Voltage variable capacitor having amorphous dielectric film
JPH0766300A (en) * 1993-08-09 1995-03-10 Internatl Business Mach Corp <Ibm> Capacitor and its manufacture
KR100390849B1 (en) * 2001-06-30 2003-07-12 주식회사 하이닉스반도체 Method for fabricating capacitor having hafnium oxide

Similar Documents

Publication Publication Date Title
US6744093B2 (en) Multilayer electrode for a ferroelectric capacitor
JPS58220457A (en) Method of forming dielectric material
US20010021589A1 (en) Method to form silicates as high dielectric constant materials
JPS6349907B2 (en)
KR100319571B1 (en) Electronic Components With Doped Metal Oxide Dielectric Materials And A Process For Making Electronic Components With Doped Metal Oxide Dielectric Materials
TWI700714B (en) Ferroelectric assemblies and methods of forming ferroelectric assemblies
JPH02226754A (en) Capacitor for semiconductor integrated circuit
JP3504058B2 (en) Thin film capacitor and semiconductor storage device
EP0077200B1 (en) Producing insulating layers in semiconductor devices
JPH06151751A (en) Semiconductor integrated circuit device and manufacture thereof
JP2002353422A (en) Mfmos capacitor having high dielectric constant material and manufacturing method therefor
JPH01280347A (en) Semiconductor device
US20030207528A1 (en) Method of making a memory cell capacitor with Ta2O5 dielectric
JP3182889B2 (en) Ferroelectric device
JPH0260157A (en) Semiconductor device
KR100275113B1 (en) A method for fabricating ferroelectric capacitor in semiconductor device
JP2721157B2 (en) Semiconductor device
JPH0513676A (en) Semiconductor device
JPH0553069B2 (en)
JP3106620B2 (en) Method of manufacturing dielectric thin film and method of manufacturing capacitive element
JPS62219659A (en) Mos type semiconductor memory
JP2000208742A (en) Integrated circuit device having composite oxide dielectric substance
JP3468200B2 (en) Semiconductor device
JPS61198665A (en) Semiconductor device
JP2000068465A (en) Semiconductor device and method for forming the same