JPH01280017A - Multifilament yarn for formed product matrix resin - Google Patents

Multifilament yarn for formed product matrix resin

Info

Publication number
JPH01280017A
JPH01280017A JP10383888A JP10383888A JPH01280017A JP H01280017 A JPH01280017 A JP H01280017A JP 10383888 A JP10383888 A JP 10383888A JP 10383888 A JP10383888 A JP 10383888A JP H01280017 A JPH01280017 A JP H01280017A
Authority
JP
Japan
Prior art keywords
yarn
reinforcing fibers
multifilament yarn
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10383888A
Other languages
Japanese (ja)
Inventor
Toshimasa Kuroda
黒田 俊正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP10383888A priority Critical patent/JPH01280017A/en
Publication of JPH01280017A publication Critical patent/JPH01280017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain the title multifilament yarn with each specified primary yield stress and elongation at break, excellent in kandleability until a formed product is obtained therefrom, by melt spinning of a thermoplastic polymer followed by drawing and not imparting substances other than water during the above fiber-forming process. CONSTITUTION:The objective multifilament yarn >=0.8g/d in primary yield stress and 45-100% in elongation at break, suitable for obtaining formed products reinforced with reinforcing fiber, obtained by melt spinning of a thermoplastic polymer such as polyarylene ether ketone or polyetherimide followed by, if needed, drawing in a warm water both, and not imparting substances other than water during this fiber-forming process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マトリックス樹脂すなわち母材樹脂が強化繊
維を包埋しているような成形品を得るために、強化繊維
と共に用いられるような母材樹脂用マルチフィラメント
糸に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a matrix resin that is used together with reinforcing fibers to obtain a molded article in which the matrix resin embeds reinforcing fibers. Regarding multifilament yarn for material resin.

〔従来の技術〕[Conventional technology]

母材樹脂が強化繊維を包埋しているような成形品は、−
a的には、ガラス繊維、グラファイト繊維、アラミド繊
維等の強化繊維の短繊維を熱可塑性ポリマーに分散含有
させた所謂コンパウンド樹脂の溶融押し出し成形によっ
て作られている。この成形方法では、強化繊維を長さの
短いものにしなくてはならず、また強化繊維の方向がラ
ンダムになるから、強化繊維による母材樹脂の補強が不
充分であると言う問題がある。
Molded products in which the base material resin embeds reinforcing fibers are -
Generally speaking, it is made by melt extrusion molding of a so-called compound resin in which short reinforcing fibers such as glass fibers, graphite fibers, aramid fibers, etc. are dispersed in a thermoplastic polymer. In this molding method, the length of the reinforcing fibers must be short, and the direction of the reinforcing fibers is random, so there is a problem that the reinforcement of the base resin by the reinforcing fibers is insufficient.

そこで、上述の問題を解消する成形方法として、強化繊
維の織物のような布帛と熱可塑性ポリマーのフィルムと
を重ねて型板等により挟圧、加熱して成形する方法、強
化繊維布帛と熱可塑性フィルムとを重ねる代わりに、強
化繊維の引き揃えに対して溶融ポリマーを含浸させて得
られるICI社製^pc−nのようなプレブレーグを用
いる特開昭59−47233号公報に記載されているよ
うな方法、また強化繊維と熱可塑性繊維とから成る織物
を用いる米国特許筒4.479.999号明細書に記載
されているような方法、あるいは前記熱可塑性フィルム
の代わりに熱可塑性繊維布帛を用いる方法が知られてい
る。これらの方法のうち、プレブレーグを用いる方法は
、プレブレーグが剛性の大きいドレープ性の乏しいもの
となるから、プレプレーグから成形品にする際の変形量
を大きくすることができないと言う問題がある。また、
熱可塑性フィルム織物等繊維布帛を用いる方法に比較す
ると変形量が制限されるし、プレプレーグや混繊織物を
用いる方法に比較すると母材樹脂が強化繊維間に侵入し
にくいと言う問題がある。なお、これらの方法は、比較
的肉厚の薄い成形品や肉厚が均一な成形品に好適に用い
られる方法である。
Therefore, as a molding method to solve the above-mentioned problems, a method in which a fabric such as a reinforcing fiber fabric and a thermoplastic polymer film are layered, pressed and heated using a template, etc., and a reinforcing fiber fabric and a thermoplastic As described in Japanese Patent Application Laid-Open No. 59-47233, a prebrag such as PC-N manufactured by ICI Co., Ltd., which is obtained by impregnating a molten polymer on the alignment of reinforcing fibers, is used instead of overlapping with a film. 4,479,999 using a fabric made of reinforcing fibers and thermoplastic fibers, or using a thermoplastic fiber fabric instead of the thermoplastic film. method is known. Among these methods, the method using pre-brag has a problem in that the amount of deformation cannot be increased when making a molded product from the pre-brag because the pre-brag has high rigidity and poor drapability. Also,
Compared to methods using fiber fabrics such as thermoplastic film fabrics, the amount of deformation is limited, and compared to methods using prepreg or mixed fiber fabrics, there is a problem in that the base resin is less likely to penetrate between reinforcing fibers. Note that these methods are suitable for use in molded products with relatively thin walls or molded products with uniform wall thickness.

また、コーン形状等の成形品については、熱可塑性繊維
糸と強化繊維糸または両繊維の混繊糸を型に巻き付けて
加圧、加熱するフィラメントワインディング法も知られ
ている。
Furthermore, for molded products such as cone shapes, a filament winding method is also known in which a thermoplastic fiber yarn, a reinforcing fiber yarn, or a mixed fiber yarn of both fibers is wound around a mold and then pressurized and heated.

そして、フィラメントワインディング法の巻き付は糸や
強化繊維と熱可塑性繊維とから成る織物の経緯糸等とし
て好適に用いられる強化繊維と熱可塑性繊維とが緊密に
混合した混合繊維トウが特開昭60−209034号公
報によって知られている。このトウの製造には従来公知
の混繊技術が用いられる。すなわち、絶縁性の熱可塑性
繊維とアラミド繊維やガラス繊維のような絶縁性の強化
繊維との混繊ば、一般にそれら繊維には、溶融紡糸や延
伸と言った製糸工程で、制電剤と油脂類の潤滑剤あるい
は乳化を必要とする場合はさらにポリオキシエチレンの
オレイルエーテルのような乳化剤とを含む油剤が付与さ
れていて、その油剤中の制電剤。
In the filament winding method, a mixed fiber tow in which reinforcing fibers and thermoplastic fibers are intimately mixed, which is suitably used as yarn or warp yarns of textiles made of reinforcing fibers and thermoplastic fibers, is used in JP-A-60. It is known from the publication No.-209034. Conventionally known mixed fiber technology is used to manufacture this tow. In other words, when insulating thermoplastic fibers are mixed with insulating reinforcing fibers such as aramid fibers and glass fibers, these fibers are generally treated with antistatic agents and oils during the spinning process such as melt spinning and drawing. If emulsification is required, an oil agent containing a similar lubricant or an emulsifier such as polyoxyethylene oleyl ether is added, and an antistatic agent in the oil agent.

乳化剤が界面活性を有し吸水して繊維表面に導電性を与
えるから、それぞれのマルチフィラメント糸を高圧電極
に接触させてそれぞれの糸のフィラメントをクーロン力
による反発で開繊させ、その開繊した状態で両糸を重ね
てから一本に纏める方法、あるいはさらに纏めた糸を流
体(一般的には空気)噴射ノズル等の交絡処理ノズルに
通して混繊を一層促進させる方法によって行われる。ま
た、熱可塑性繊維と炭素繊維やステンレス鋼繊維のよう
な導電性の強化繊維との混繊は、導電性のマルチフィラ
メント糸を電気開繊させることはできないから、それら
のマルチフィラメント糸を一緒に交絡処理ノズルに通し
て混繊交絡させる方法によって行われる。
Since the emulsifier has surface activity and absorbs water, giving conductivity to the fiber surface, each multifilament yarn is brought into contact with a high-voltage electrode and the filaments of each yarn are opened by repulsion due to Coulomb force. This is done by either stacking both yarns in a state that they are still in place and then combining them into a single yarn, or by passing the combined yarn through an entangling treatment nozzle such as a fluid (generally air) jetting nozzle to further promote the mixing. In addition, when mixing thermoplastic fibers with conductive reinforcing fibers such as carbon fibers or stainless steel fibers, conductive multifilament yarns cannot be electrospread, so these multifilament yarns cannot be mixed together. This is carried out by passing the fibers through an entangling treatment nozzle to mix and entangle the fibers.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

成形品にする際の変形量が制限されず、母材樹脂が強化
繊維間によく入り込んで母材樹脂と強化繊維とがよく密
着し、強化繊維による母材樹脂の補強が十分行われる成
形品の成形方法は、母材樹脂用に熱可塑性繊維を用いる
方法であり、特に混繊織物や混繊糸等を作るのも簡単な
熱可塑性マルチフィラメント糸を用いる方法である。し
かし、従来の熱可塑性マルチフィラメント糸は、前述の
ように製糸工程で油剤が付与されていた。油剤が付与さ
れている熱可塑性マルチフィラメント糸を母材樹脂用に
用いると、油剤が母材樹脂の性能を劣化させると共に、
母材樹脂と強化繊維との接着力を低下させるから、強度
に優れた成形品を得難いと言う問題がある。したがって
、従来の熱可塑性マルチフィラメント糸を用いて強度に
優れた成形品を得るには、少なくとも成形の前までに油
剤除去処理を必要とすると言う問題がある。また、従来
の熱可塑性マルチフィラメント糸は、最終的に織扁物等
として繊維形態のま\使うことを目的とし、その目的に
合った繊維強度、破断伸度を有するように作られている
から、母材樹脂用繊維として用いた場合には成形品に反
りや歪が生じたり、溶融しても強化繊維間に入り込みに
くくて強化繊維と母材樹脂との十分な密着が得られず、
そのために強度に優れた成形品が得られなかったりし易
いと言う問題がある。
A molded product in which the amount of deformation when making a molded product is not limited, the base resin penetrates well between the reinforcing fibers, the base resin and the reinforcing fibers adhere well, and the base resin is sufficiently reinforced by the reinforcing fibers. The molding method uses thermoplastic fibers for the base material resin, and in particular, it uses thermoplastic multifilament yarns, which are easy to make mixed fiber fabrics, mixed fiber yarns, etc. However, conventional thermoplastic multifilament yarns are coated with oil during the spinning process, as described above. If a thermoplastic multifilament yarn to which an oil agent has been applied is used for the base resin, the oil agent will deteriorate the performance of the base resin, and
Since it reduces the adhesive strength between the base resin and the reinforcing fibers, there is a problem in that it is difficult to obtain a molded product with excellent strength. Therefore, in order to obtain a molded article with excellent strength using conventional thermoplastic multifilament yarn, there is a problem in that an oil removal treatment is required at least before molding. Furthermore, conventional thermoplastic multifilament yarns are intended to be used in the form of fibers, such as as woven materials, and are made to have fiber strength and elongation at break that suit that purpose. When used as fibers for the matrix resin, the molded product may warp or distort, and even when melted, it is difficult to penetrate between the reinforcing fibers, making it impossible to achieve sufficient adhesion between the reinforcing fibers and the matrix resin.
Therefore, there is a problem in that a molded product with excellent strength may not be obtained easily.

本発明は、上述の問題を解消するためになされたもので
あり、油剤除去処理を必要とせず、成形品を得るまでの
取り扱い性に優れ、強化繊維との混繊糸を作るのに開繊
させる場合も高圧電極を用いずに摩擦帯電で開繊させる
ことができ、溶融すると強化繊維間に入り込み易(て、
強化繊維との接着性に優れ、強度の優れた成形品を得る
ことができる成形品母材樹脂用マルチフィラメント系の
提供を目的とする。
The present invention has been made to solve the above-mentioned problems, does not require oil removal treatment, is easy to handle until molded products are obtained, and is easy to spread to make a mixed yarn with reinforcing fibers. Even when reinforcing fibers are used, the fibers can be opened by frictional charging without using a high-voltage electrode, and when melted, they easily enter between the reinforcing fibers.
The purpose of the present invention is to provide a multifilament system for a molded product base material resin that has excellent adhesion to reinforcing fibers and can yield molded products with excellent strength.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、熱可塑性ポリマーを溶融紡糸またはさらに延
伸して得られたマルチフィラメント系であって、その製
糸工程で実質的に木取外の付与は行われておらず、一次
降伏応力が0.8 g/de以上で破断伸度が45%以
上100%以下であることを特徴とする成形品母材樹脂
用マルチフィラメント糸にあり、この構成によって前記
目的を達成する。
The present invention is a multifilament system obtained by melt-spinning or further drawing a thermoplastic polymer, in which substantially no wood removal is applied during the spinning process, and the primary yield stress is 0. The present invention is a multifilament yarn for molded product base material resin, characterized in that the elongation at break is 45% or more and 100% or less at 8 g/de or more, and this structure achieves the above object.

本発明において、熱可塑性ポリマーには鎖状高分子で溶
融紡糸し得るものは殆ど用いられるが、耐熱性、N燃性
および強度に優れた成形品を得る上で、ポリアリーレン
エーテルケトン(ポリエーテルケトン、ポリエーテルエ
ーテルケトン、ポリエーテルケトンケトン、ポリエーテ
ルエーテルケトンケトン等)、ポリエーテルイミド、ポ
リフェニレンサルファイド、ポリアリーレンスルフィド
が好ましく用いられる。これらのポリマーは、ガラス転
移点Tg’Cがは780〜220 ’Cの範囲、融点T
m°Cがは一345〜400°Cの範囲にあり、結晶性
で耐衝撃性、耐疲労性、耐薬品性等に優れて吸湿性がな
く、成形品の母材樹脂として好ましい。
In the present invention, most chain polymers that can be melt-spun are used as thermoplastic polymers, but polyarylene ether ketone (polyether Ketone, polyetheretherketone, polyetherketoneketone, polyetheretherketoneketone, etc.), polyetherimide, polyphenylene sulfide, and polyarylene sulfide are preferably used. These polymers have a glass transition point Tg'C in the range of 780-220'C and a melting point Tg'C in the range 780-220'C.
It has a m°C in the range of -345 to 400°C, is crystalline, has excellent impact resistance, fatigue resistance, chemical resistance, etc., and is not hygroscopic, and is preferred as a base material resin for molded products.

熱可塑性ポリマーの溶融紡糸は、通常、Tm+20〜8
0°Cの紡糸温度と断糸の生じない範囲で高い生産性が
得られる紡糸速度で巻き取ることにより行われる。特に
曳糸性の悪いポリマーの場合は、できるだけ熱分解やゲ
ル化を生じさせないように紡糸温度を下げ、紡糸速度も
多少生産性を犠牲にしても断糸を生じさせないように下
げるのがよい。
Melt spinning of thermoplastic polymers is usually performed at Tm+20 to 8
This is carried out by winding at a spinning temperature of 0°C and at a spinning speed that provides high productivity within a range where yarn breakage does not occur. In particular, in the case of polymers with poor spinnability, the spinning temperature should be lowered to avoid thermal decomposition and gelation as much as possible, and the spinning speed should be lowered to avoid yarn breakage, even at the cost of some productivity.

紡糸性を良くするために、以上のような紡糸工程で糸条
に水を付与してもよいが、従来の紡糸工程で行われてい
るような油剤の付与は行わない。紡糸工程によって得ら
れる糸条は、−m的に未延伸糸(UDY)と言われ、一
次降伏応力が0.8 g/deより低くて破断伸度が1
00%よりも大きい分子配向度の低いものが多い、この
ような糸条は、次に延伸して一次降伏応力を0.8 g
/de以上とし、破断伸度を45〜100%の範囲にす
る必要がある。しかし、ポリマーの種類や紡糸条件によ
っては、一次降伏応力が0.8 g/de以上で破断伸
度が45〜100%の紡出糸条を得ることができる。こ
のような配向性の向上した紡出糸条を得る紡糸方法とし
て、ポリエチレンテレフタレートの高速紡糸等で知られ
ている紡糸温度と紡糸速度によって紡出糸条の配向性を
上げる紡糸方法を用いてもよい、−船釣に紡出糸条の配
向性を上げるのは、鎖状高分子の分子量を上げることで
同一紡糸条件でも可能であるし、紡糸温度を工程調子が
悪くならない範囲で下げることによって可能であるし、
紡糸速度を上げることでも可能である。したがって、高
い生産性で配向性の向上した紡出糸条を得るには紡糸速
度を上げる方法が有利である。このような紡糸方法が採
用できて、前述の条件を満足する紡出糸条が得られれば
、必ずしも延伸は行わなくてもよい。
In order to improve spinnability, water may be applied to the yarn in the spinning process as described above, but an oil agent is not applied as is done in the conventional spinning process. The yarn obtained by the spinning process is called undrawn yarn (UDY), and has a primary yield stress lower than 0.8 g/de and a breaking elongation of 1.
Such yarns, which often have a low degree of molecular orientation greater than 0.00%, are then drawn to a primary yield stress of 0.8 g.
/de or more, and the elongation at break must be in the range of 45 to 100%. However, depending on the type of polymer and spinning conditions, it is possible to obtain a spun yarn having a primary yield stress of 0.8 g/de or more and a breaking elongation of 45 to 100%. As a spinning method for obtaining such a spun yarn with improved orientation, it is possible to use a spinning method that increases the orientation of the spun yarn by changing the spinning temperature and spinning speed, which is known for high-speed spinning of polyethylene terephthalate. Good, - Increasing the orientation of the spun yarn can be done under the same spinning conditions by increasing the molecular weight of the chain polymer, or by lowering the spinning temperature within a range that does not worsen the process condition. It is possible and
This can also be achieved by increasing the spinning speed. Therefore, in order to obtain spun yarn with high productivity and improved orientation, it is advantageous to increase the spinning speed. If such a spinning method can be employed and a spun yarn satisfying the above-mentioned conditions can be obtained, stretching may not necessarily be performed.

紡出糸条の延伸は、糸条を温水バスやスチームチャンバ
ー中で加熱し乍ら適当な延伸倍率で引き伸ばすことによ
って、0.8 g/de以上の一次降伏応力と45〜1
00%の破断伸度が得られるように行えばよい、この糸
条を加熱する延伸温度としては、従来−m的な延伸温度
として知られているポリマーのTg’Cよりも高(Tm
”(よりも低い範囲から適当に選択してもよいが、それ
に限らず、例えばポリフェニレンサルファイド(PPS
)のTg’Cは80〜85°Cであるが、このポリマー
のIJDYはTg’C以下も含む70〜90℃の範囲の
温度で十分に延伸できて前述の条件を満足する糸条を得
ることができるし、ポリエーテルエーテルケトン(PI
!EX)はTg’Cがはゾ145°Cであるが、これも
90〜98°Cの温水中で十分延伸を行うことができ、
さらにポリエーテルイミド(PEI)はTg″Cがは一
′217℃であるが、これも95〜98°Cの温水中で
十分延伸できる。延伸は以上のように温水又は蒸気によ
る加熱下で行うのが好ましいが、これに限らず空気中で
行ってもよい、しかし、紡糸工程と同様、延伸工程でも
油剤の付与を行ってはならない。
The spun yarn is drawn by heating the yarn in a hot water bath or a steam chamber and stretching it at an appropriate stretching ratio to achieve a primary yield stress of 0.8 g/de or more and 45 to 1
The stretching temperature at which the yarn is heated is higher than the Tg'C of the polymer, which is conventionally known as the -m stretching temperature.
(Although it may be selected appropriately from a lower range than
) has a Tg'C of 80 to 85°C, but the IJDY of this polymer can be sufficiently drawn at a temperature in the range of 70 to 90°C, including temperatures below Tg'C, yielding yarn that satisfies the above conditions. and polyetheretherketone (PI
! EX) has a Tg'C of 145°C, but it can also be fully stretched in warm water at 90 to 98°C.
Furthermore, polyetherimide (PEI) has a Tg''C of 1'217°C, which can also be fully stretched in hot water at 95 to 98°C.Stretching is performed under heating with hot water or steam as described above. Although this is preferred, the process is not limited to this and may be carried out in air. However, like the spinning process, an oil agent must not be applied in the drawing process.

以上のように紡糸あるいはさらに延伸によって得られる
本発明のマルチフィラメント糸は、単繊維デニールを1
〜40de、好ましくは1〜15deの範囲にして、糸
デニールを強化繊維の糸デニールに適当に合わせるよう
にすればよい、単繊維デニールがlde未満では、紡糸
、延伸あるいはその後の工程で毛羽や単繊維切れが発生
し易かったり、成形溶融時の気泡抜けが悪くなったりす
るし、40deを超えると、布帛にした場合のドレープ
性がなくなったり、強化繊維との混繊糸を得る場合に均
一な混繊糸が得にくくなったり、成形溶融時の強化繊維
間への侵入性が悪くなったりする。また、糸デニールに
ついては、成形品における強化繊維の体積分率すなわち
、成形品の体積(重量を密度で割った値)に対する強化
繊維の体積(重量を密度で割った値)の比率が40〜7
0%の範囲が好ましいので、このような体積分率が得易
いように強化繊維の糸デニールに対して決定すればよい
The multifilament yarn of the present invention obtained by spinning or further drawing as described above has a single fiber denier of 1
~40de, preferably 1~15de, to suitably match the yarn denier to the yarn denier of the reinforcing fibers.If the single fiber denier is less than lde, fuzz or single fibers will form during spinning, drawing, or subsequent processes. Fiber breakage is likely to occur, and air bubbles are difficult to escape during molding and melting. It becomes difficult to obtain a mixed fiber yarn, and the ability to penetrate between reinforcing fibers during molding and melting becomes poor. Regarding yarn denier, the volume fraction of reinforcing fibers in the molded product, that is, the ratio of the volume of reinforcing fibers (value divided by weight by density) to the volume of molded product (value divided by weight by density) is 40~ 7
Since a range of 0% is preferable, it may be determined based on the yarn denier of the reinforcing fibers so that such a volume fraction can be easily obtained.

〔作 用〕[For production]

以上のような本発明のマルチフィラメント糸は油剤の付
着がないから、強化繊維のマルチフィラメント糸と開繊
混合する場合、高圧電極を用いずに摩擦帯電で開繊させ
ることができ、そのために混繊糸製造設備を安価にでき
て、作業の安全性も高まると言う効果を奏する。なお、
この場合、絶縁性強化繊維のマルチフィラメント糸も油
剤等の付着していないものにする。
Since the multifilament yarn of the present invention as described above does not have any oil attached, when it is spread and mixed with the multifilament yarn of reinforcing fibers, it can be opened by frictional charging without using a high voltage electrode, and therefore This has the effect of making yarn manufacturing equipment cheaper and improving work safety. In addition,
In this case, the multifilament yarn of the insulating reinforcing fiber should also be free from oil or the like.

さらに、本発明のマルチフィラメント糸は、油剤の付着
がないから、強化繊維と共に用いられて成形品の母材樹
脂となる際、加熱によって油剤が熱分解してガスが発生
したり、油剤によって母材樹脂が劣化したり母材樹脂の
強化繊維への接着力が低下したりすることがないと言う
効果を奏する。
Furthermore, since the multifilament yarn of the present invention does not have oil attached to it, when it is used together with reinforcing fibers to become the base resin of molded products, the oil will thermally decompose due to heating and gas will be generated. This has the effect that the material resin does not deteriorate or the adhesive strength of the base material resin to the reinforcing fibers does not decrease.

また、本発明のマルチフィラメント糸は、0.8g/d
e以上の一次降伏応力と45%以上の破断伸度とを示す
配向度のものであるから、交絡処理ノズルで強化繊維の
マルチフィラメント糸と共に混繊糸にする場合、単独で
織編物等の布帛にする場合、強化繊維と交織で織物にす
る場合、フィラメントワインディング法で強化繊維のマ
ルチフィラメント糸と共に型に巻き付ける場合等におけ
る取り扱い性がサイジング等を行わなくても良好で、均
一な混繊糸、布帛2巻き付は状態等が得られると言う効
果を奏する。これについて、一次降伏応力が0.8 g
/de以上より低いと、混繊、製」1巻き付は等の工程
で掛かる張力によってマルチフィラメント糸が引き伸ば
され易く、そのために張力斑が糸足差を与えてループや
引き吊りが生じ均一な混繊糸、布帛1巻き付は状態が得
られなくなる。
Moreover, the multifilament yarn of the present invention has a weight of 0.8 g/d.
Since it has a degree of orientation that shows a primary yield stress of e or more and a breaking elongation of 45% or more, when it is made into a mixed fiber yarn with a multifilament yarn of reinforcing fibers using an entangling treatment nozzle, it can be used alone to form a fabric such as a woven or knitted fabric. It is easy to handle without the need for sizing, etc. when making a fabric by interweaving with reinforcing fibers, when winding it around a mold with multifilament yarn of reinforcing fibers using the filament winding method, etc., and it is a uniform mixed yarn. Wrapping the fabric twice has the effect that the condition etc. can be obtained. For this, the primary yield stress is 0.8 g
If it is lower than /de, the multifilament yarn is likely to be stretched due to the tension applied in the process of blending, manufacturing, etc., and as a result, uneven tension causes differences in yarn length, resulting in loops and hanging, resulting in an uneven yarn. The condition cannot be obtained with mixed fiber yarn or one wrap of fabric.

一方、破断伸度が45%より低いと、それは鎖状高分子
の繊維軸方向の配向度が高いと言うことであり、そのよ
うな高配向の繊維は強度が大きいから、破断伸度が数%
以下と言ったように極端に低い場合は別として、前述の
各工程における取り扱い性は良好であるが、成形品の母
材樹脂とすべく加熱溶融した際、収縮が大きくて流れ性
も悪く、そのために強化繊維間に空隙を生ぜしめたり、
成形品に反りや歪を生ぜしめたりし易い。
On the other hand, if the elongation at break is lower than 45%, it means that the degree of orientation of the chain polymer in the fiber axis direction is high, and since such highly oriented fibers have high strength, the elongation at break is several times higher. %
Except for cases where the temperature is extremely low as mentioned below, the ease of handling in each of the above-mentioned processes is good, but when heated and melted to form the base resin of a molded product, there is large shrinkage and poor flowability. For this reason, voids are created between the reinforcing fibers,
It is easy to cause warping or distortion in the molded product.

そして、本発明のマルチフィラメント糸は破断伸度が4
5%以上100%以下であるから、母材樹脂とするため
に溶融したとき収縮することが少なくて、流れ性がよく
、強化繊維間に侵入して強化繊維との接着力が強く、優
れた成形品を得ることができると言う効果を奏する。こ
れに対して、破断伸度が100%を超すものは、配向度
が低くて溶融時の収縮が少なく流れ性や強化繊維間への
侵入性もよいが、強化繊維に炭素繊維やセラミックス繊
維等が用いられている場合、強化繊維との接着力か弱く
て強化繊維による母材樹脂の補強が十分には行われなく
なることが起こる。この理由は不明であるが、熱可塑性
繊維が結晶性ポリマーの場合特にこの傾向が大であるこ
とからすると、繊維状態での配向は溶融時にも残って、
それが強化繊維表面での結晶化を良(するように作用し
、その結果強化繊維との接着強度が向上するのに対して
、破断伸度が100%を超すような低配向のものでは強
化繊維表面での結晶化が良くならないからと考えられる
The multifilament yarn of the present invention has a breaking elongation of 4.
Since it is 5% or more and 100% or less, it does not shrink when melted to make the base material resin, has good flowability, penetrates between reinforcing fibers and has strong adhesive strength with reinforcing fibers, and has excellent This has the effect that a molded product can be obtained. On the other hand, those with a breaking elongation of more than 100% have a low degree of orientation and less shrinkage during melting and have good flowability and penetration between reinforcing fibers. If the reinforcing fibers are used, the adhesive force with the reinforcing fibers may be weak, and the reinforcing fibers may not sufficiently reinforce the base resin. The reason for this is unknown, but considering that this tendency is particularly strong when the thermoplastic fiber is a crystalline polymer, the orientation in the fiber state remains even when melted,
This acts to improve crystallization on the surface of the reinforcing fibers, and as a result, the adhesive strength with the reinforcing fibers improves. However, in the case of low-orientation materials with a breaking elongation exceeding 100%, This is thought to be because crystallization on the fiber surface does not improve.

なお、以上の本発明マルチフィラメント糸による効果を
十分発揮させるためには、強化繊維も少なくとも本発明
マルチフィラメント糸と共に用いる前に油剤、サイズ等
が付着していないことが必要である0強化繊維に油剤や
サイズ等が用いられている場合は、洗浄や熱分解で除去
すればよい。
In addition, in order to fully exhibit the effects of the multifilament yarn of the present invention as described above, it is necessary that the reinforcing fibers be free from oil, size, etc., at least before being used together with the multifilament yarn of the present invention. If oil, size, etc. are used, they can be removed by cleaning or thermal decomposition.

また、強化繊維が本発明マルチフィラメント糸の溶融紡
糸温度と同程度の成形温度で熱分解や強度劣化を起こさ
ないものであることも重要である。
It is also important that the reinforcing fibers do not undergo thermal decomposition or strength deterioration at a forming temperature comparable to the melt spinning temperature of the multifilament yarn of the present invention.

したがって、本発明マルチフィラメント糸が高い成形温
度を必要とするPEEKやPEIがら成る場合、強化繊
維には炭素繊維やセラミックス繊維が好ましく用いられ
る。 PEEKの本発明マルチフィラメント糸を母材樹
脂に用いて上述のような強化繊維で補強した成形品は、
PEEKの耐熱性、難燃性、低吸湿性、力学特性の曲げ
強度、圧縮強度、耐疲労性が熱硬化性複合成形品に比較
して格段に優れるので、航空機関係の一次構造材料とし
て用いることができる。また、PEIの本発明マルチフ
ィラメント糸を母材樹脂に用いた成形品も、PEIの特
に酸素限界指数が45〜47と大で、耐熱性もTg’C
が210°Cと高いように現在一般に使用されている熱
硬化型樹脂よりも良好であるため、防炎、難燃性を要求
される航空機の内装材等に好適に用いられる。
Therefore, when the multifilament yarn of the present invention is made of PEEK or PEI, which require a high molding temperature, carbon fiber or ceramic fiber is preferably used as the reinforcing fiber. A molded product made by using the PEEK multifilament yarn of the present invention as the base resin and reinforced with the above-mentioned reinforcing fibers,
PEEK's heat resistance, flame retardance, low moisture absorption, and mechanical properties such as bending strength, compressive strength, and fatigue resistance are much superior to those of thermosetting composite molded products, so it is used as a primary structural material for aircraft-related products. I can do it. In addition, molded products using PEI's multifilament yarn of the present invention as the base resin also have a high oxygen limit index of 45 to 47 and heat resistance of Tg'C.
It has a high temperature of 210°C, which is better than thermosetting resins currently in general use, so it is suitable for use in aircraft interior materials that require flameproofing and flame retardancy.

〔実施例〕〔Example〕

以下、さらに本発明を実施例によって説明する。 The present invention will be further explained below with reference to Examples.

実施例1 フローテスターにより温度320’C,剪断速度100
0/secで測定した熔融粘度が1050ボイズのPP
Sを溶融温度330℃9口金温度318’C,紡糸速度
600+n/minで水を付与して巻き取り、1800
de/100fil (7)未延伸糸(uoy)を得た
。 コノuoyを75’C(7)温水バス中で延伸倍率
2倍に延伸して、無撚で200 m+/sinの速度で
チーズ状に巻き取った。得られた延伸糸を50°Cの乾
燥機で十分に乾燥した。このマルチフィラメント糸は、
900de/100 ft1、一次降伏応力0.98g
/de 、破断伸度55%であった。
Example 1 Using a flow tester, the temperature was 320'C and the shear rate was 100.
PP whose melt viscosity measured at 0/sec is 1050 voids
S was applied with water at a melting temperature of 330°C, a spindle temperature of 318'C, and a spinning speed of 600+n/min, and wound up at 1800°C.
de/100fil (7) Undrawn yarn (uoy) was obtained. Kono uoy was stretched at a stretching ratio of 2 times in a 75'C (7) hot water bath and wound into a cheese shape at a speed of 200 m+/sin without twisting. The obtained drawn yarn was thoroughly dried in a dryer at 50°C. This multifilament yarn is
900de/100ft1, primary yield stress 0.98g
/de, and the elongation at break was 55%.

この糸と、3000フイラメントの炭素繊維のマルチフ
ィラメント糸である東し■製トレカ7”−300を35
0℃で20分間加熱してサイジング剤等の付着物を熱分
解で除去した糸とを、それぞれ無撚で取り出してフィー
ドローラ上で重ね、フィードローラと送り速度を同一に
したデリベリローラとの間で10mmφのアルミナ製丸
棒に120′の接触角度で接触させて、PPS糸を摩擦
帯電により開繊させた。このときPPS糸の開繊につら
れて、炭素系も若干開繊した。デリベリローラを出た糸
は巻取機で巻き取った0巻き取られた糸は炭素繊維の間
にかなりPPS繊維が入り込んでいる混繊糸になってい
た。
This yarn and Toshi ■ trading card 7"-300, which is a 3000 filament carbon fiber multifilament yarn, were used for 35 minutes.
The threads were heated at 0°C for 20 minutes to remove deposits such as sizing agents by thermal decomposition, and then each thread was taken out without twisting, stacked on a feed roller, and then passed between the feed roller and a delivery roller with the same feeding speed. The PPS yarn was brought into contact with a 10 mmφ alumina round rod at a contact angle of 120' and opened by frictional charging. At this time, along with the opening of the PPS yarn, the carbon-based yarn also opened slightly. The yarn that came out of the delivery roller was wound up by a winding machine, and the yarn that was taken up was a mixed fiber yarn with a considerable amount of PPS fibers interwoven between the carbon fibers.

この混繊糸をサイジングすることなく経、緯糸に用いて
、目付が300 g/mtの平織物を作った。この平織
物の10枚を同一方向に揃えて積層し、15 kg/c
11”の圧力で挟圧して、室温から320 ’Cまで1
5分で昇温し、320°Cに5分間保った後、50°C
まで20分で冷却して平板成形品を得た。この成形品は
反りや歪がな(、表面が平滑で、内部に空孔は認められ
ず、JIS K 6911の測定法による3点曲げ強度
が経方向で130kg/w” 、緯方向で125kg/
am”と良好な結果を示した。この成形品の炭素繊維の
体積分率は約59%であった。
A plain woven fabric with a basis weight of 300 g/mt was made by using this mixed yarn for the warp and weft without sizing. 10 pieces of this plain woven fabric were stacked in the same direction and weighed 15 kg/c.
11" pressure from room temperature to 320'C.
Raise the temperature in 5 minutes, hold at 320°C for 5 minutes, then lower to 50°C
The mixture was cooled for 20 minutes to obtain a flat plate molded product. This molded product has no warping or distortion (the surface is smooth, no holes are observed inside, and the three-point bending strength according to the measurement method of JIS K 6911 is 130 kg/w in the warp direction and 125 kg/w in the weft direction.
The molded product had a carbon fiber volume fraction of about 59%.

実施例2 IC1社製ルεに150GのPEEKを溶融温度395
°C2口金温度384°C1巻取速度400 m/mi
nで水を付着させながら巻き取った。得られたU[lY
を97°Cの温水バス中で1.8倍に延伸して、無撚の
状態で巻き取った。この延伸糸を60°Cの乾燥機で1
0分間乾燥した。この糸は、860 de/300fi
l 、一次降伏応力1.4g/de 、破断強度2.7
g/de 、破断伸度64%であった。
Example 2 PEEK of 150G was melted at a melting temperature of 395 to ε manufactured by IC1.
°C 2 Base temperature 384 °C 1 Winding speed 400 m/mi
It was wound up while applying water with n. The obtained U[lY
was stretched 1.8 times in a hot water bath at 97°C and wound without twisting. This drawn yarn is dried in a dryer at 60°C.
Dry for 0 minutes. This thread is 860 de/300fi
l, primary yield stress 1.4g/de, breaking strength 2.7
g/de, and elongation at break was 64%.

この糸を実施例1のPPS糸の代わりに用いた以外は実
施例1と同様に目付が295 g/vr”の平織物を作
った。この平織物を同一方向に10枚積層して、15 
kg/cm”の圧力で挟圧した状態で室温から390°
Cまで25分で昇温し、圧力を25 kg/cm”に増
圧して6分間390℃に保持し、その後120°Cまで
25分かけて冷却して成形板を取り出した。この成形板
も反りや歪がなく、表面平滑で内部に気泡の存在は認め
られなかった。この成形板は、JIS K 6911法
の3点曲げ強度が経142kg/ffIm” 、 緯1
38kg/mm”であり、優れた力学特性を有するもの
であった。
A plain woven fabric with a basis weight of 295 g/vr" was made in the same manner as in Example 1, except that this yarn was used in place of the PPS yarn in Example 1. Ten pieces of this plain woven fabric were laminated in the same direction, and 15
390° from room temperature when compressed with a pressure of "kg/cm"
The temperature was raised to C in 25 minutes, the pressure was increased to 25 kg/cm'', and the temperature was held at 390°C for 6 minutes, and then the molded plate was taken out after being cooled to 120°C over 25 minutes. There was no warping or distortion, the surface was smooth, and no air bubbles were observed inside.This molded plate had a three-point bending strength of 142 kg/ffIm" (warp), 1 latitude (width 1) according to JIS K 6911 method.
38 kg/mm'' and had excellent mechanical properties.

〔発明の効果〕〔Effect of the invention〕

本発明のマルチフィラメント糸は、強化繊維によって補
強された成形品を得るのに好適に用いられ、反りや歪の
ない、内部に気泡もない、強度に優れた成形品を比較的
安価に作ることができると言った効果を奏する。
The multifilament yarn of the present invention can be suitably used to obtain molded products reinforced with reinforcing fibers, and can produce molded products with excellent strength without warping or distortion, without internal air bubbles, and at a relatively low cost. It produces the effect that can be achieved.

なお、本発明のマルチフィラメント糸は、強化繊維と共
に用いる例に限らず、単独に成形品の形成に用いてもよ
い。
Note that the multifilament yarn of the present invention is not limited to the example in which it is used together with reinforcing fibers, but may be used alone in forming a molded article.

Claims (1)

【特許請求の範囲】[Claims] 熱可塑性ポリマーを溶融紡糸またはさらに延伸して得ら
れたマルチフィラメント糸であって、その製糸工程で実
質的に水以外の付与は行われておらず、一次降伏応力が
0.8g/de以上で破断伸度が45%以上100%以
下であることを特徴とする成形品母材樹脂用マルチフィ
ラメント糸。
A multifilament yarn obtained by melt spinning or further drawing a thermoplastic polymer, in which substantially nothing other than water is added during the spinning process, and the primary yield stress is 0.8 g/de or more. A multifilament yarn for a molded product base material resin, characterized in that the elongation at break is 45% or more and 100% or less.
JP10383888A 1988-04-28 1988-04-28 Multifilament yarn for formed product matrix resin Pending JPH01280017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10383888A JPH01280017A (en) 1988-04-28 1988-04-28 Multifilament yarn for formed product matrix resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10383888A JPH01280017A (en) 1988-04-28 1988-04-28 Multifilament yarn for formed product matrix resin

Publications (1)

Publication Number Publication Date
JPH01280017A true JPH01280017A (en) 1989-11-10

Family

ID=14364564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10383888A Pending JPH01280017A (en) 1988-04-28 1988-04-28 Multifilament yarn for formed product matrix resin

Country Status (1)

Country Link
JP (1) JPH01280017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230729A1 (en) * 2018-05-31 2019-12-05 リンテック株式会社 Method for producing carbon resin composite material and composite structure for production of carbon resin composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230729A1 (en) * 2018-05-31 2019-12-05 リンテック株式会社 Method for producing carbon resin composite material and composite structure for production of carbon resin composite material
CN112203819A (en) * 2018-05-31 2021-01-08 琳得科株式会社 Method for producing carbon resin composite material and composite structure for producing carbon resin composite material
JPWO2019230729A1 (en) * 2018-05-31 2021-08-19 リンテック株式会社 Method for manufacturing carbon resin composite material, and composite structure for manufacturing carbon resin composite material

Similar Documents

Publication Publication Date Title
EP0207422A2 (en) Woven fabric made from unsized carbon fiber multifilamentary yarn bundles
JPS62135537A (en) Flexible composite material and production thereof
JP5919755B2 (en) Manufacturing method of fiber material
US5989710A (en) Molding material for thermoplastic composites
US4825635A (en) Carbon fiber yarn
JPH0253923A (en) Unshrinkable hybrid yarn
JP2009191425A (en) Method for producing carbon fiber
CN110281550A (en) A kind of preparation method that weaving continuous fiber reinforced thermoplastic prepreg tape and product
US5879800A (en) Low -shrinkage hybrid yarns production thereof and use thereof
JP4365502B2 (en) Continuous production method of carbon fiber chopped strands
KR950010291B1 (en) Stitching thread of carbon fiber
JP6083239B2 (en) Fiber-reinforced plastic and method for producing the same
JPH04146210A (en) Polycarbonate multifilament yarn for matrix resin of molded article
JPH01280017A (en) Multifilament yarn for formed product matrix resin
JPH04183729A (en) Molding material for thermoplastic composite
JPH01190733A (en) Production of fiber composite material
JPS59130309A (en) Production of yarn mix of different shrinkage
JPH02308824A (en) Material for thermoplastic composite
Hasselbrack et al. Evaluation of carbon‐fiber‐reinforced thermoplastic matrices in a flat braid process
JPH10195718A (en) Carbon yarn and its production
JPH0359038A (en) Precursor of thermoplastic composite material and its production
JP3539577B2 (en) Fiber reinforced composite material
JP2000248432A (en) Production of chopped carbon fiber strand and chopped carbon fiber strand
WO2010021045A1 (en) Woven fabric of isotropic pitch carbon fiber and process for producing the same
US3926228A (en) Carbonaceous tapes