JPH01279572A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPH01279572A JPH01279572A JP63107610A JP10761088A JPH01279572A JP H01279572 A JPH01279572 A JP H01279572A JP 63107610 A JP63107610 A JP 63107610A JP 10761088 A JP10761088 A JP 10761088A JP H01279572 A JPH01279572 A JP H01279572A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- corrugated plate
- groove
- divided
- corrugated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims description 11
- 239000007789 gas Substances 0.000 claims abstract description 70
- 239000002737 fuel gas Substances 0.000 claims abstract description 11
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 238000009826 distribution Methods 0.000 abstract description 9
- 230000000873 masking effect Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 241000272517 Anseriformes Species 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
- H01M8/0254—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は燃料の有する化学エネルギーを直接電気エネル
ギーに変換させるエネルギ一部門で用いる燃FiN池に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fuel-fired FiN battery used in the energy sector for directly converting the chemical energy of fuel into electrical energy.
[従来の技術]
現在までに提案されている燃料電池のうち、溶融炭酸塩
型の燃料電池としては、たとえば、第4図に示す如く、
電解質として溶融炭酸塩を多孔質物質にしみ込ませてな
るタイル(電解質板)1を、カソード(酸素極)2とア
ノード(燃料極)3の画電極で両面から挟み、カソード
2側に酸化ガスOGを供給すると共にアノード3側に燃
料ガスFGを供給することによりカソード2とアノード
3との間で発生する電位差により発電が行われるように
したものを1セル■とし、各セル■をセパレータ4を介
して多層に積層させ、その上部と下部にホルダを配して
全体を適当な締付力で締め付けて固定させるようにした
ものがある。そのうち、内部マニホールド型のものにあ
っては、図示の如く、タイル1とセパレータ4の周辺部
の一側に酸化ガスの供給用流路孔5と燃料ガスの供給用
流路孔6を設けると共に、周辺部の他側に酸化ガスの排
出用流路孔7と燃料ガスの排出用流路孔8を設け、上記
酸化ガスと燃料ガスの各供給用流路孔5と6を通して供
給される酸化ガスOGと燃料ガスFGがセパレータ4を
挾んでカソード2側とアノード3側へ供給されるように
しである。[Prior Art] Among the fuel cells proposed to date, the molten carbonate type fuel cell is, for example, as shown in FIG.
A tile (electrolyte plate) 1 made of porous material impregnated with molten carbonate as an electrolyte is sandwiched between a cathode (oxygen electrode) 2 and an anode (fuel electrode) 3, and oxidizing gas OG is placed on the cathode 2 side. One cell (■) is one in which electricity is generated by the potential difference generated between the cathode 2 and anode 3 by supplying fuel gas FG to the anode 3 side, and each cell (■) is connected to a separator 4. There is a structure in which multiple layers are laminated via a holder, and holders are placed at the top and bottom of the layer, and the entire structure is tightened and fixed with an appropriate tightening force. Among these, the internal manifold type has an oxidizing gas supply passage hole 5 and a fuel gas supply passage hole 6 provided on one side of the periphery of the tile 1 and the separator 4, as shown in the figure. , an oxidizing gas discharge passage hole 7 and a fuel gas discharge passage hole 8 are provided on the other side of the peripheral portion, and the oxidation gas supplied through the oxidation gas and fuel gas supply passage holes 5 and 6 is provided. Gas OG and fuel gas FG are supplied to the cathode 2 side and the anode 3 side with the separator 4 in between.
上述の如き燃料電池に用いられているセパレータの表裏
両面や上下のホルダのガス接触面には、凹凸を形成する
ことによってガス流路が形成されているが、従来、上記
セパレータ4やホルダのガス流路は、機械加工やエツチ
ング加工により製作されている。Gas flow paths are formed by forming unevenness on both the front and back surfaces of the separator used in the above-mentioned fuel cells and on the gas contact surfaces of the upper and lower holders. The flow path is manufactured by machining or etching.
しかし、ガス流路を機械加工により製作する場合は、セ
パレータやホルダが小型のものであれば加工も比較的容
易であるが、大型のものになると加工が大変になると共
に精度良く製作することが困難であり、又、エツチング
により製作する場合は、セパレータやホルダが大型のも
のではそれだけ設備が大型となって設備費、加工費が高
価となり、いずれの加工方式もセルの大型化には不向き
である。However, when manufacturing a gas flow path by machining, it is relatively easy to process if the separator or holder is small, but if the separator or holder is large, it becomes difficult to process and it is difficult to manufacture with high precision. Moreover, when manufacturing by etching, if the separator or holder is large, the equipment will be large and the equipment and processing costs will be high, and neither processing method is suitable for increasing the size of the cell. be.
そのため、近年、ガス流路を機械加工やエツチング加工
により製作することに代えて、薄板をプレス加工により
波板状に加工してなるコルゲート板10を第5図の如く
センタプレート11の表裏両面にはり合わせてセパレー
タ9を製作してセル■の仕切りとするようにしたり、ホ
ルダにコルゲート板をはり合わせるようにすることが提
案されている。Therefore, in recent years, instead of manufacturing gas flow paths by machining or etching, a corrugated plate 10 made by pressing a thin plate into a corrugated plate shape is used on both the front and back sides of the center plate 11 as shown in FIG. It has been proposed that the separators 9 be made by gluing them together to serve as a partition for the cell (2), or that a corrugated plate be laminated to the holder.
[発明が解決しようとする課題]
ところが、コルゲート板10はプレス成形できるので、
ガス流路となる溝を機械加工したり、エツチング加工し
たりするものに比して製作容易ではあるが、長くなると
上面と下面の精度が出なくなる。そのため、セパレータ
、ホルダともに電極面に正確にタッチさせるための精度
が必要とされるのに対し、上記のように長くなると精度
が出なくなるため、長物の加工には不向きである。又、
コルゲート板10を用いた場合、ガスが出来るだけ電極
と接する側を流れるようにするために、第5図に示す如
くコルゲート板10のセンタプレート11側あるいはホ
ルダ側のガス流路に丸棒を入れたり、アロンセラミック
の如き充填物12を詰めて塞ぐようにしている。しかし
、ガスの流路が長くなって来ると、ガスの入口側と出口
側のガス濃度が変って来るおそれがあると共に、発電に
関しては温度分布が均一であること、機械的強度がおる
こと、等が要求されるが、コルゲート板の片面のみにガ
スが流れるようにしたものでは流れるガスは初めから反
応するためガス温度は入口側から出口側にかけて高くな
って温度分布の均一化が図れず、又、コルゲート板をセ
パレータに用いた場合はセルを積層するときにコルゲー
ト板も積層させるが、ガスの流れ方向に一連の溝として
ガス流路が形成される構成のコルゲート板であるために
、歪を生じ易い、という問題がある。[Problem to be solved by the invention] However, since the corrugated board 10 can be press-formed,
Although it is easier to manufacture than those in which grooves that serve as gas flow paths are machined or etched, the longer they become, the less accurate the top and bottom surfaces become. Therefore, both the separator and the holder require precision in order to accurately touch the electrode surface, but if they are too long as described above, the precision will not be achieved, making them unsuitable for processing long objects. or,
When using the corrugated plate 10, in order to allow the gas to flow as much as possible on the side in contact with the electrode, insert a round rod into the gas flow path on the center plate 11 side or the holder side of the corrugated plate 10, as shown in Fig. 5. Or, it is filled with a filler 12 such as aron ceramic to seal it. However, as the gas flow path becomes longer, there is a risk that the gas concentration on the gas inlet and outlet sides will change, and in terms of power generation, it is necessary to have uniform temperature distribution and mechanical strength. However, if the gas flows only on one side of the corrugated plate, the flowing gas reacts from the beginning, so the gas temperature increases from the inlet side to the outlet side, making it impossible to achieve a uniform temperature distribution. In addition, when a corrugated plate is used as a separator, the corrugated plate is also laminated when stacking cells, but since the corrugated plate has a structure in which the gas flow path is formed as a series of grooves in the gas flow direction, distortion may occur. There is a problem in that it is easy to cause
そこで、本発明は、セパレータやホルダにコルゲート板
を用いた場合にも長物にしても温度分布が不均一になっ
たり、機械的強度が低下したりすることがないようにし
て、従来のコルゲート板のガスを流したくない側に丸棒
を入れたり、充填物を詰める必要性をなくすことを目的
とするものである。Therefore, the present invention aims to prevent the temperature distribution from becoming uneven or the mechanical strength from decreasing even when a corrugated board is used as a separator or a holder, even if it is made into a long piece, so that it can be used as a separator or a holder. The purpose of this is to eliminate the need to insert a round rod or fill in the side where you do not want gas to flow.
[課題を解決するための手段]
本発明は、上記目的を達成するために、ガス入口側から
ガス出口側までの間でコルゲート板を複数に分割し、且
つ該分割した各コルゲート板を互に1山又は半山ずらし
て配胃し、上記コルゲート板の表裏に同じガスを流すよ
うにしたセパレータ、ホルダを有する燃料電池とする。[Means for Solving the Problems] In order to achieve the above object, the present invention divides a corrugated plate into a plurality of parts between the gas inlet side and the gas outlet side, and each of the divided corrugated plates is connected to each other. The fuel cell has a separator and a holder arranged so that the same gas flows on the front and back sides of the corrugated plate by distributing gases by shifting one peak or half a peak.
[作 用]
ガスの流れ方向に分割されたコルゲート板同士の合わせ
部は互に1山又は半山ずらされているため、表面(電極
側の面)を流れたガスは、分割された次のコルゲート板
との合わせ部でコルゲート板の裏面に入り、一方、ガス
入口側でコルゲート板の裏側に入ったガスは未反応のま
ま流れ、分割されたコルゲート板の合わせ部で表面に出
て、はじめて反応されることになる。[Function] Since the joining parts of the corrugated plates divided in the gas flow direction are shifted by one peak or half a peak, the gas flowing on the surface (electrode side surface) is transferred to the next divided corrugated plate. The gas that enters the back side of the corrugated plate at the joint with the plate, and on the other hand, the gas that enters the back side of the corrugated plate at the gas inlet side flows unreacted and comes out to the surface at the joint of the divided corrugated plate, where it reacts for the first time. will be done.
したがって、ガスの流れ方向において反応熱を均−化さ
せることができ、温度分布を均一化できる。又、コルゲ
ート板は継ぎ合わせ部でガス流れ方向と直角方向へずら
されていることから積層時に歪を生じさせることを少な
くできる。Therefore, the reaction heat can be equalized in the gas flow direction, and the temperature distribution can be made uniform. In addition, since the corrugated plates are shifted in the direction perpendicular to the gas flow direction at the joint portion, distortion during stacking can be reduced.
[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.
第1図及び第2図は本発明の一実施例を示すもので、セ
パレータに適用した場合を示す。1 and 2 show an embodiment of the present invention, in which the present invention is applied to a separator.
第4図に示しである燃料電池と同様に、タイル1の両面
をカンード2とアノード3で挟み、カソード2側へ酸化
ガスを、アノード3側へ燃料ガスをそれぞれ流すように
しておるセル■をセパレータを介して積層させるように
し、且つ上記セパレータに、センタプレート11の両面
にコルゲート板10を配して一体にしてなるセパレータ
9を用いた構成において、上記コルゲート板10をガス
流路となる溝の長平方向に2分割した形式として、各分
割コルゲート板部10A、 10Bの長さを短かくし、
且つ分割コルゲート板部1〇八と108の接合部を溝1
0C,10Dの幅のピッチだけ横方向にずらし、一方の
分割コルグー1〜板部10Aの上面の溝10Cが他方の
分割コルゲート板部10Bの下面の溝100と合致する
ように組み合わせてセットする。Similar to the fuel cell shown in Fig. 4, a cell ■ is constructed in which both sides of a tile 1 are sandwiched between a canard 2 and an anode 3, and the oxidizing gas is allowed to flow to the cathode 2 side, and the fuel gas is allowed to flow to the anode 3 side. In a configuration in which the separator 9 is laminated with a separator in between and is integrated with the separator by disposing corrugated plates 10 on both sides of a center plate 11, the corrugated plate 10 is placed in a groove that becomes a gas flow path. The length of each divided corrugated plate part 10A, 10B is shortened as a format in which it is divided into two in the longitudinal direction.
In addition, the joint part of the divided corrugated plate parts 108 and 108 is made into the groove 1.
They are shifted in the lateral direction by a width pitch of 0C and 10D, and set in combination so that the groove 10C on the upper surface of one of the divided corrugated corrugated plate parts 1 to 10A matches the groove 100 on the lower surface of the other divided corrugated plate part 10B.
13はセンタプレート11に設けた燃料ガスの給排用流
路孔6と8をセンタプレート11表面側のフルゲート板
10によるガス流路に連通させるためのり欠14を有す
るマスク板、15はセンタプレート11の裏面側で酸化
ガスの給排用流路孔5と7を裏面側のコルゲート板によ
るガス流路に連通させるために用いられる同じく切欠を
有するマスク板である。Reference numeral 13 denotes a mask plate having a notch 14 for connecting the fuel gas supply/discharge passage holes 6 and 8 provided in the center plate 11 to the gas flow passage formed by the full gate plate 10 on the front side of the center plate 11, and 15 denotes a center plate. This mask plate also has a notch and is used to connect the oxidizing gas supply/discharge passage holes 5 and 7 on the back side of 11 to the gas flow path formed by the corrugated plate on the back side.
第1図の状態において、燃料ガス供給用流路孔6に導か
れている燃料ガスは、該流路孔6からマスク板13の切
欠14から先ず分割コルゲート板部10Aの上面(電極
側の面)と下面(センタプレート側の而)の各110c
、100内に流入する。In the state shown in FIG. 1, the fuel gas guided to the fuel gas supply passage hole 6 first flows from the flow passage hole 6 through the notch 14 of the mask plate 13 to the upper surface (electrode side surface) of the divided corrugated plate portion 10A. ) and bottom surface (center plate side) each 110c
, 100.
上面の溝10Cに入ったガスは、該溝10Cを流れると
きに反応し、排出側の分割コルゲート板部10Bとの接
合部で下面の溝100内に入る。一方、ガス入口側の分
割コルゲート板部10Aで下面に溝10Dに入ったガス
はガス流れ方向下流側の分割コルゲート板部10Bの上
面の溝10C内に入って流されることになる。この際、
分割コルゲート板部10Aの下面の溝10Dを流れたガ
スは、反応されていないので、分割コルゲート板部10
Aの下面から分割コルゲート板部10Bの上面に未反応
ガスを出すことができ、この時点から未反応ガスを使用
できることになる。これにより反応熱を均一にすること
が可能となると共に、温度分布を均一にできる。The gas that has entered the groove 10C on the upper surface reacts as it flows through the groove 10C, and enters the groove 100 on the lower surface at the joint with the divided corrugated plate section 10B on the discharge side. On the other hand, the gas that has entered the groove 10D on the lower surface of the divided corrugated plate section 10A on the gas inlet side enters into the groove 10C on the upper surface of the divided corrugated plate section 10B on the downstream side in the gas flow direction and is caused to flow therethrough. On this occasion,
The gas that has flowed through the grooves 10D on the lower surface of the divided corrugated plate part 10A has not been reacted with, so the divided corrugated plate part 10
Unreacted gas can be discharged from the lower surface of A to the upper surface of the divided corrugated plate section 10B, and from this point on, the unreacted gas can be used. This makes it possible to make the reaction heat uniform and also to make the temperature distribution uniform.
次に、第3図は本発明の他の実施例を示すもので、セン
タプレート11の片面に3つの分割コルゲート板部10
A、 10B、 IOEをガス流れ方向に配置し、且つ
分割コルゲート板部10Aと108 。Next, FIG. 3 shows another embodiment of the present invention, in which three divided corrugated plate parts 10 are provided on one side of the center plate 11.
A, 10B, the IOE is arranged in the gas flow direction, and the divided corrugated plate parts 10A and 108.
108と10Eを溝10C,IODの1ピツチ、又は半
ピツチ、すなわち、溝の1山又は早出ずらして組み合わ
せ、更に、分割コルゲート板部の長さを変えた例を示す
ものである。This shows an example in which the grooves 108 and 10E are combined by shifting the grooves 10C and IOD by one pitch or a half pitch, that is, by shifting one groove or the early opening of the grooves, and further changing the length of the divided corrugated plate portion.
このように分割したコルゲート板部を組み合わせること
と、長さを変えることにより電極面に濃度の均一なガス
を供給できて、発電分布が均一になり、タイル反応熱も
均一にすることができることになる。By combining the corrugated plate parts divided in this way and changing the length, it is possible to supply gas with a uniform concentration to the electrode surface, resulting in a uniform power generation distribution and even tile reaction heat. Become.
なお、上記実施例では、セパレータに適用した場合を例
示したが、上下のホルダに形成するガス流路にも同様に
適用できることは勿論である。In the above embodiment, the case where the present invention is applied to a separator is exemplified, but it goes without saying that the present invention can be similarly applied to gas channels formed in upper and lower holders.
[発明の効果]
以上述べた如く、本発明の燃料電池によれば、セパレー
タ、ホルダのガス流路をコルゲート板により形成すると
共に、コルゲート板を長さを短かくして複数枚を溝の1
山又は早出ずらして組み合わせ、且つコルゲート板の表
面と裏面の名湯にガスが流れるようにしであるので、次
の如き優れた効果を奏し得る。[Effects of the Invention] As described above, according to the fuel cell of the present invention, the gas flow paths of the separator and holder are formed by corrugated plates, and the length of the corrugated plates is shortened so that a plurality of corrugated plates are placed in one part of the groove.
Since they are arranged in a staggered manner, and the gas flows through the hot springs on the front and back sides of the corrugated board, the following excellent effects can be achieved.
(1)ガス流路を形成するとき短かいコルゲート板を複
数枚組み合わせて使用するので、製作が容易であると共
に製作上の精度も満足させることかできる。(1) Since a plurality of short corrugated plates are used in combination when forming the gas flow path, manufacturing is easy and manufacturing accuracy can be satisfied.
(ii) 分割されている各コルゲート板の接合部か
ら未反応のガスを出すことができるので、ガス入口側か
ら供給されたガス濃度と同じ濃度のガスを途中から使用
できて電極面にm度の均一なガスが供給できることから
発電分布が均一になる。(ii) Since unreacted gas can be released from the joints of each divided corrugated plate, gas with the same concentration as that supplied from the gas inlet side can be used from the middle, and the electrode surface can be Since a uniform amount of gas can be supplied, the power generation distribution will be uniform.
(iii) 又、上記(11)によりタイルの反応熱
も均一にでき、上記(1:)と相俟って発電効率の向上
が図れる。(iii) Moreover, the reaction heat of the tiles can be made uniform by the above (11), and together with the above (1:), the power generation efficiency can be improved.
仮)上記したコルゲート板の途中から新鮭なガスを供給
できるようにしてあって、ガス′a度の均一化、温度分
布の均−化等が図れて装置の大型化が容易に実現できる
と共に、コルゲー1〜は長さを短かくして複数用いるこ
とにより積層したときの機械的強度を保持できる。Provisional) By making it possible to supply fresh gas from the middle of the corrugated plate mentioned above, it is possible to make the gas temperature uniform, the temperature distribution, etc., and easily realize a larger device. By shortening the length and using a plurality of corrugations 1 to 1, the mechanical strength can be maintained when stacked.
第1図は本発明におけるセパレータの一例を示す斜視図
、第2図はセパレータを介してセルを積層した状態を示
す断面図、第3図は本発明におけるセパレータの他の例
を示す斜視図、第4図は従来の燃お1電池の一例を示す
断面図、第5図は従来のコルゲート式のセパレータの使
用状態の一例を示す断面図である。
1・・・タイル、2・・・カソード、3・・・アノード
、4.9・・・セパレータ、10・・・コルゲート板、
IOA。
108、10E・・・分割コルゲート板部、10C,I
OD・・・溝。FIG. 1 is a perspective view showing an example of a separator according to the present invention, FIG. 2 is a cross-sectional view showing a state in which cells are stacked via separators, and FIG. 3 is a perspective view showing another example of a separator according to the present invention. FIG. 4 is a sectional view showing an example of a conventional combustion cell, and FIG. 5 is a sectional view showing an example of a conventional corrugated separator in use. DESCRIPTION OF SYMBOLS 1... Tile, 2... Cathode, 3... Anode, 4.9... Separator, 10... Corrugated board,
IOA. 108, 10E... Split corrugated plate section, 10C, I
OD...groove.
Claims (1)
ソード側に酸化ガスを流すと共にアノード側に燃料ガス
を流すようにしてあるセルをセパレータを介して積層し
、上下にホルダを配して全体を締め付けてなる燃料電池
において、ガスの入口側からガス出口側へガスを流すた
めのガス流路をコルゲート板により形成し、且つ上記コ
ルゲート板をガスの流れ方向に複数に分割すると共に、
各分割した短かいコルゲート板の接合部を溝の1山又は
半山ずらして組み合わせてなるセパレータ、ホルダを有
することを特徴とする燃料電池。(1) Both sides of the tile are sandwiched between a cathode and an anode, and cells are stacked with a separator in between so that oxidizing gas flows to the cathode side and fuel gas flows to the anode side, and holders are placed above and below to complete the entire structure. In the fuel cell, a gas flow path for flowing gas from the gas inlet side to the gas outlet side is formed by a corrugated plate, and the corrugated plate is divided into a plurality of parts in the gas flow direction,
A fuel cell characterized by having a separator and a holder in which the joint parts of each divided short corrugated plate are combined by shifting one groove or half the groove.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63107610A JPH01279572A (en) | 1988-05-02 | 1988-05-02 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63107610A JPH01279572A (en) | 1988-05-02 | 1988-05-02 | Fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01279572A true JPH01279572A (en) | 1989-11-09 |
Family
ID=14463537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63107610A Pending JPH01279572A (en) | 1988-05-02 | 1988-05-02 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01279572A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002007243A1 (en) * | 2000-07-18 | 2002-01-24 | Sofco L.P. | Internal fuel staging for improved fuel cell performance |
JP2009277390A (en) * | 2008-05-12 | 2009-11-26 | Central Res Inst Of Electric Power Ind | Flow passage plate for fuel cell, and fuel cell using the same |
WO2011059087A1 (en) * | 2009-11-13 | 2011-05-19 | 日産自動車株式会社 | Fuel cell and vehicle equipped with fuel cell |
-
1988
- 1988-05-02 JP JP63107610A patent/JPH01279572A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002007243A1 (en) * | 2000-07-18 | 2002-01-24 | Sofco L.P. | Internal fuel staging for improved fuel cell performance |
JP2009277390A (en) * | 2008-05-12 | 2009-11-26 | Central Res Inst Of Electric Power Ind | Flow passage plate for fuel cell, and fuel cell using the same |
WO2011059087A1 (en) * | 2009-11-13 | 2011-05-19 | 日産自動車株式会社 | Fuel cell and vehicle equipped with fuel cell |
JP5541291B2 (en) * | 2009-11-13 | 2014-07-09 | 日産自動車株式会社 | Fuel cell and vehicle equipped with fuel cell |
US9281534B2 (en) | 2009-11-13 | 2016-03-08 | Nissan Motor Co., Ltd. | Fuel cell and vehicle including the fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4761349A (en) | Solid oxide fuel cell with monolithic core | |
US5268241A (en) | Multiple manifold fuel cell | |
US5045413A (en) | Fully internal mainfolded fuel cell stack | |
JP4728467B2 (en) | Fuel cell battery and method of using the same | |
KR20020095017A (en) | Improved design for solid oxide fuel cell stacks | |
JPH04355061A (en) | Fuel cell | |
US9166244B2 (en) | Fuel cell | |
JP4887285B2 (en) | Fuel cell reactant flow area to maximize utilization of planar graphics | |
JPH01279572A (en) | Fuel cell | |
JP3257757B2 (en) | Fuel cell separator | |
JP2621240B2 (en) | Fuel cell | |
JPH01251562A (en) | Flat plate type solid electrolyte fuel cell | |
CN110832686B (en) | Selective rotating flow field for thermal management in a fuel cell stack | |
JPH04322062A (en) | Separator of fuel cell and fuel cell using separator | |
JPH0660901A (en) | Gas feeding structure for fuel cell | |
JPH01151163A (en) | Fuel cell | |
JPH10154519A (en) | Fuel cell separator | |
JP3385781B2 (en) | Fuel cell separator | |
JPS6255873A (en) | Fuel cell | |
JPH09115531A (en) | Fuel cell | |
JPS6210868A (en) | Separator for fuel cell | |
JPH0646573B2 (en) | Fuel cell | |
JPS6276259A (en) | Separator for fuel cell | |
JPS5996670A (en) | Fused-carbonate fuel cell | |
JP2000067885A (en) | Fuel cell |