JPH01278723A - Mask for x-ray aligner - Google Patents

Mask for x-ray aligner

Info

Publication number
JPH01278723A
JPH01278723A JP63108396A JP10839688A JPH01278723A JP H01278723 A JPH01278723 A JP H01278723A JP 63108396 A JP63108396 A JP 63108396A JP 10839688 A JP10839688 A JP 10839688A JP H01278723 A JPH01278723 A JP H01278723A
Authority
JP
Japan
Prior art keywords
ray
rays
layer
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63108396A
Other languages
Japanese (ja)
Inventor
Hiroshi Takenaka
浩 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP63108396A priority Critical patent/JPH01278723A/en
Publication of JPH01278723A publication Critical patent/JPH01278723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the deformation and deterioration in positional precision of an X-ray shielding pattern from occurring simultaneously enabling the thickness of a protective film to be thinned for augmenting the contrast in X-ray intensity on a substrate to be exposed by a method wherein an X-ray absorbing body comprising laminated X-ray reflecting films is used as a shielding body from X-rays. CONSTITUTION:100 pairs of W layers 4 and Be layers 5 comprising one period are laminated lastly depositing the W layer 4 to constitute an X-ray reflecting film and then a W layer 6 is deposited as an X-ray absorbing body on the surface of the last W layer 4. A part of X-rays is reflected by the X-ray reflecting film while the residual X-rays are absorbed into the X-ray absorbing body. Since around half of the X-rays are reflected by the laminated X-ray reflecting film, the temperature of a mask itself is restrained from rising. Furthermore, the levels of photoelectrons and Auger electrons generated in the X-ray shielding body are reduced to lessen the effect of these electrons for exposing the substrate to be exposed near the part below the X-ray shielding body enabling the thickness of a protective film to be made thinner than conventional film. Through these procedures, the change in shape and the deterioration in positional precision of an X-ray shielding pattern are reduced to augment the contrast in the X-ray intensity on the substrate to be exposed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はX線露光用マスクに関するものである。[Detailed description of the invention] Industrial applications The present invention relates to an X-ray exposure mask.

従来の技術 従来のX線露光用マスクは、第2図に示すように、X、
aX光用マスク基板11と、このマスク基板11の下面
に形成されたX線遮蔽体である遮蔽パターン12と、こ
れらの下面に形成された保護膜13とから構成されてい
る。上記マスク基板11は、窒化ケイ素らしくは窒化ホ
ウ素などの比較的軽い元素の数μm程度の膜厚の薄膜で
形成され、また遮蔽パターン12はタングステン(W)
、金(Au)、タンタル(’ra)などの重金属の0.
5μm程度の膜厚の薄膜で形成されている。 (ANw
A13はマスク基板11と同じ材料、もしくはスピン塗
布した1〜数μm程度の膜厚のポリイミドで形成されて
いる。
BACKGROUND OF THE INVENTION A conventional X-ray exposure mask, as shown in FIG.
It consists of a mask substrate 11 for aX light, a shielding pattern 12 which is an X-ray shield formed on the lower surface of this mask substrate 11, and a protective film 13 formed on the lower surfaces thereof. The mask substrate 11 is made of a thin film of a relatively light element such as boron nitride, which is similar to silicon nitride, and has a thickness of about several μm, and the shielding pattern 12 is made of tungsten (W).
0.0 of heavy metals such as gold (Au), tantalum ('ra), etc.
It is formed of a thin film with a thickness of about 5 μm. (ANw
A13 is formed of the same material as the mask substrate 11 or spin-coated polyimide having a thickness of about 1 to several μm.

上記構成において、X線が上方より入射して遮蔽パター
ン12の部分ではX線に対する吸収係数が大きいために
減衰し、遮蔽パターン12以外の部分ではX線に対する
吸収係数が小さいためにほとんど減衰を受けないで透過
する。このように、被露光基板14の上面に遮蔽パター
ン12に応じなX線強度のコントラストが得られる。
In the above configuration, X-rays are incident from above and are attenuated in the portion of the shielding pattern 12 because the absorption coefficient for the X-rays is large, and in the portion other than the shielding pattern 12, the absorption coefficient for the X-rays is small and therefore almost attenuated. Transparent without. In this way, a contrast in X-ray intensity corresponding to the shielding pattern 12 can be obtained on the upper surface of the substrate 14 to be exposed.

発明が解決しようとする課題 上記従来の構成によると、吸収されたX線のエネルギー
が熱エネルギーに変換されて、露光中にX線露光用マス
クの温度上昇が起り、X線露光用マスクが熱膨張を起す
、そのために、遮蔽パターン12の形状が変化し、また
遮蔽パターン12の位置精度が劣化するという間穎点が
ある。また、X線が吸収される過程において、遮蔽体内
で光電子およびオージェ電子aが発生して、これらの電
子が遮′X!i体下の近傍の被露光基板14を露光する
ので、これを軽減するために(LilllQ13が形成
されているのであるが、この保護11!113によるX
線の吸収のために被露光基板14上のX線強度のコント
ラストが低下するという問題点がある。
Problems to be Solved by the Invention According to the above conventional configuration, the energy of the absorbed X-rays is converted into thermal energy, and the temperature of the X-ray exposure mask increases during exposure. There is a point at which the expansion occurs, and as a result, the shape of the shielding pattern 12 changes and the positional accuracy of the shielding pattern 12 deteriorates. In addition, in the process of X-ray absorption, photoelectrons and Auger electrons a are generated within the shielding body, and these electrons are shielded by 'X! Since the substrate 14 to be exposed near the bottom of the body is exposed, in order to reduce this exposure (LillQ13 is formed,
There is a problem in that the contrast of the X-ray intensity on the exposed substrate 14 decreases due to radiation absorption.

そこで、本発明は上記問題点を解消し得るX線露光用マ
スクを提供することを目的とする。
Therefore, an object of the present invention is to provide an X-ray exposure mask that can solve the above problems.

課題を解決するための手段 上記問題点を解決するため、本発明のX線露光用マスク
は、X線に対する遮蔽体として、X線吸収体にX線反射
膜を積層したものを使用したものである。
Means for Solving the Problems In order to solve the above problems, the X-ray exposure mask of the present invention uses an X-ray absorber laminated with an X-ray reflective film as a shield against X-rays. be.

作用 上記構成によると、X線の一部がX線反射膜で反射され
、残りのX線がX線吸収体に吸収される。
Effect: According to the above configuration, a portion of the X-rays are reflected by the X-ray reflective film, and the remaining X-rays are absorbed by the X-ray absorber.

このため、マスクに吸収されるX線の凰が減少してマス
ク自体の温度上昇が抑制されるとともに光電子およびオ
ージェ電子の発生も抑制される。
Therefore, the amount of X-rays absorbed by the mask is reduced, and the temperature rise of the mask itself is suppressed, and the generation of photoelectrons and Auger electrons is also suppressed.

実施例 以下、本発明の一実施例を図面に基づき説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図(a)〜(e)に基づき、X線露光用マスクの製
造工程について説明する。まず、第1図(a)に示すよ
うに、シリコン基板1の表面に、膜171.5〜2.0
μmの窒化ケイ素薄膜2をプラズマ化学的気相成長法で
堆積する。次に、シリコン基板1の裏面に膜厚0.5〜
0.6μmの窒化ケイ素薄膜3をプラズマ化学的気相成
長法で堆積する。次に、IB¥厚10人のW層4と膜厚
25人のベリリウム(Be)層5を高速原子線スパッタ
法により堆積する。このWNJ4と88層5とを1周期
としてこれを100周期Wi層し、!&後にW層4を堆
積する。これらW層4と88層5とによりX線反射膜が
構成され、このX線反射膜はX線に対して大きな反射率
を有している。そして、上記最後のW層4の表面に、X
線吸収体としての膜厚0.4μmのW層6を高周波スパ
ッタ法で堆積する9次に、第1図(b)に示すように、
裏面側の窒化ケイ素膜3の表面にフォトレジストパター
ン7を形成し、これをマスクとしてSFs とCCQ4
の混合ガスを用いたRIE法で窒化ケイ素薄膜3を除去
する0次に、第1図(C)に示すように、フォトレジス
トパターン7を除去した後、窒化ケイ素薄膜3をマスク
として、シリコン基板1を25重量%、100″Cの水
酸化カリウム水溶液で除去する。次に、第1図(d)に
示すように、W層6の表面にレジストパターン8を光露
光法もくしは電子ビーム露光法で形成する。レジストと
してはクロロメチル化ポリスチレン(CMS)が使用さ
れる。そして、このレジストパターン8をマスクとして
、W層4.6および88層5の不要部分をSF6とCC
Ω4の混合カスを用いたRIE法で除去する。そして、
この後、第1図(e)に示すように、酸素プラズマによ
りレジストパターン8を除去する。
The manufacturing process of an X-ray exposure mask will be explained based on FIGS. 1(a) to 1(e). First, as shown in FIG. 1(a), a film 171.5 to 2.0
A .mu.m silicon nitride thin film 2 is deposited by plasma chemical vapor deposition. Next, on the back side of the silicon substrate 1, a film with a thickness of 0.5 to
A 0.6 μm silicon nitride thin film 3 is deposited by plasma chemical vapor deposition. Next, a W layer 4 with a thickness of 10 IB and a beryllium (Be) layer 5 with a thickness of 25 are deposited by high-speed atomic beam sputtering. With this WNJ4 and 88 layer 5 as one period, this is layered with Wi for 100 periods, and! & Later, a W layer 4 is deposited. These W layer 4 and 88 layer 5 constitute an X-ray reflective film, and this X-ray reflective film has a high reflectance for X-rays. Then, on the surface of the last W layer 4,
Next, as shown in FIG. 1(b), a W layer 6 with a thickness of 0.4 μm as a line absorber is deposited by high-frequency sputtering.
A photoresist pattern 7 is formed on the surface of the silicon nitride film 3 on the back side, and using this as a mask, SFs and CCQ4 are formed.
Next, as shown in FIG. 1(C), after removing the photoresist pattern 7, the silicon nitride thin film 3 is removed using the RIE method using a mixed gas of 1 is removed with a 25% by weight potassium hydroxide aqueous solution at 100''C.Next, as shown in FIG. 1(d), a resist pattern 8 is formed on the surface of the W layer 6 using a light exposure method or an electron beam. It is formed by an exposure method.Chloromethylated polystyrene (CMS) is used as the resist.Then, using this resist pattern 8 as a mask, unnecessary parts of the W layer 4.6 and the 88 layer 5 are coated with SF6 and CC.
It is removed by RIE method using mixed scum of Ω4. and,
Thereafter, as shown in FIG. 1(e), the resist pattern 8 is removed using oxygen plasma.

上記X線露光用マスクによると、X線の半分程度はW層
4と88層5とが多層に積層されてなるX線反射膜によ
り、反射されるため、マスク内でのX線の吸収量が減少
してマスク自体の温度上昇が抑制され、したがってX線
遮蔽パターンの形状の変化および位置精度の劣化が軽減
される。また、X線遮蔽体内で発生する光電子とオージ
ェ電子の量が減少して、これらの電子がX線遮蔽木下近
傍の被露光基板を露光する効果が軽減されて、保護膜の
膜厚を従来よりも薄くすることが可能となり、被露光基
板上でのX線強度のコントラストか大きくなる。
According to the above-mentioned X-ray exposure mask, about half of the X-rays are reflected by the X-ray reflective film formed by laminating the W layer 4 and the 88 layer 5 in multiple layers, so the amount of X-rays absorbed within the mask is This reduces the temperature rise of the mask itself, thereby reducing changes in the shape of the X-ray shielding pattern and deterioration in position accuracy. In addition, the amount of photoelectrons and Auger electrons generated inside the X-ray shield is reduced, and the effect of these electrons exposing the exposed substrate near the X-ray shield Kinoshita is reduced, allowing the thickness of the protective film to be made thinner than before. It also becomes possible to make the film thinner, and the contrast of the X-ray intensity on the exposed substrate increases.

ところで、上記実施例においては、X線反射膜としてW
層とBe層とを交互に繰り返して積層したものを使用し
たが、たとえばW層と炭素(C)層とを交互に繰り返し
て積層したものを使用してもよい。
By the way, in the above embodiment, W is used as the X-ray reflective film.
Although a structure in which layers and Be layers are alternately stacked is used, a structure in which W layers and carbon (C) layers are alternately stacked may also be used.

発明の効果 上記本発明の構成によると、X線の一部がX線反射膜に
より反射されるため、X線の吸収量が減少してマスク自
体の温度上昇が抑制され、したがって従来温度上昇によ
り生じていたX線遮蔽パターンの変形および位置精度の
劣化を防止することができるとともに、X線遮蔽体で発
生する光電子およびオージェ電子の量も減少するため、
保護膜の膜厚を従来よりも薄くすることか可能となり、
被露光基板上でのX線強度のコン)−ラストを大きくす
ることができる。
Effects of the Invention According to the above configuration of the present invention, a part of the X-rays is reflected by the X-ray reflective film, so the amount of X-rays absorbed is reduced and the temperature rise of the mask itself is suppressed. It is possible to prevent the deformation of the X-ray shielding pattern and the deterioration of positional accuracy that had occurred, and the amount of photoelectrons and Auger electrons generated in the X-ray shielding body is also reduced.
It is now possible to make the protective film thinner than before,
The contrast of X-ray intensity on the exposed substrate can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明の一実施例におけるX線
露光用マスクの製造工程を示す断面図、第2図は従来例
のX線露光用マスクの断面図である。 1・・・シリコン基板、2,3・・・窒化ケイ素膜、4
゜6・・・W層、5・・・Be層。 代理人   森  本  義  弘 第f図 (a)                (d)(bン
                         
(eン(Cン j−・−B8層
1A to 1E are cross-sectional views showing the manufacturing process of an X-ray exposure mask according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a conventional X-ray exposure mask. 1... Silicon substrate, 2, 3... Silicon nitride film, 4
゜6...W layer, 5...Be layer. Agent Yoshihiro Morimoto Figure F (a) (d) (b)
(en(Cnj-・-B8 layer

Claims (1)

【特許請求の範囲】 1、X線に対する遮蔽体として、X線吸収体にX線反射
膜を積層したものを使用したX線露光用マスク。 2、X線反射膜を、複数種類の原子層を交互に繰り返し
て積層した構造とした請求項1に記載のX線露光用マス
ク。
[Claims] 1. An X-ray exposure mask using an X-ray absorber laminated with an X-ray reflective film as a shield against X-rays. 2. The X-ray exposure mask according to claim 1, wherein the X-ray reflective film has a structure in which a plurality of types of atomic layers are alternately stacked.
JP63108396A 1988-04-30 1988-04-30 Mask for x-ray aligner Pending JPH01278723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63108396A JPH01278723A (en) 1988-04-30 1988-04-30 Mask for x-ray aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63108396A JPH01278723A (en) 1988-04-30 1988-04-30 Mask for x-ray aligner

Publications (1)

Publication Number Publication Date
JPH01278723A true JPH01278723A (en) 1989-11-09

Family

ID=14483698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63108396A Pending JPH01278723A (en) 1988-04-30 1988-04-30 Mask for x-ray aligner

Country Status (1)

Country Link
JP (1) JPH01278723A (en)

Similar Documents

Publication Publication Date Title
JP2023052147A (en) Extreme ultraviolet mask blank with multilayer absorber and method of manufacturing the same
JP3078163B2 (en) Lithographic reflective mask and reduction projection exposure apparatus
JP3047541B2 (en) Reflective mask and defect repair method
TW202104617A (en) Extreme ultraviolet mask absorber materials
JPH06138638A (en) Mask and manufacture thereof
TW202034062A (en) Extreme ultraviolet mask absorber materials
US6881965B2 (en) Multi-foil optic
TW202033828A (en) Extreme ultraviolet mask absorber materials
US4238706A (en) Soft x-ray source and method for manufacturing the same
TW202111420A (en) Extreme ultraviolet mask absorber materials
US6707123B2 (en) EUV reflection mask
JPH07333829A (en) Optical element and its production
JPH01278723A (en) Mask for x-ray aligner
JPS63237523A (en) X-ray mask and manufacture thereof
JPH01278722A (en) Mask for x-ray aligner
KR20240004892A (en) Extreme ultraviolet ray mask absorber materials
JPH05144710A (en) Optical element and fabrication thereof
JP7295260B2 (en) Extreme UV mask blank with multilayer absorber and manufacturing method
KR100211012B1 (en) Lithographic mask structure and method of producing the same and manufacturing device
TW202140857A (en) Extreme ultraviolet mask absorber materials
JPH10208998A (en) Laser plasma x-ray generator and method and device for transferring fine pattern using it
JP3341403B2 (en) Reflection mask and method of manufacturing the same
JPH0271198A (en) Half mirror for x-ray
JPH06338444A (en) Manufacture of mask
JP3219619B2 (en) X-ray mask, manufacturing method of the mask, and device manufacturing method using the mask