JPH01278026A - Semiconductor dry etching method - Google Patents

Semiconductor dry etching method

Info

Publication number
JPH01278026A
JPH01278026A JP63108667A JP10866788A JPH01278026A JP H01278026 A JPH01278026 A JP H01278026A JP 63108667 A JP63108667 A JP 63108667A JP 10866788 A JP10866788 A JP 10866788A JP H01278026 A JPH01278026 A JP H01278026A
Authority
JP
Japan
Prior art keywords
etching
gas
electrode
etched
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63108667A
Other languages
Japanese (ja)
Other versions
JP2654455B2 (en
Inventor
Masahiro Kotaki
正宏 小滝
Masafumi Hashimoto
雅文 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Research Development Corp of Japan
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Toyoda Gosei Co Ltd, Toyota Central R&D Labs Inc filed Critical Research Development Corp of Japan
Priority to JP10866788A priority Critical patent/JP2654455B2/en
Priority to US07/338,855 priority patent/US4946548A/en
Priority to DE3914182A priority patent/DE3914182A1/en
Publication of JPH01278026A publication Critical patent/JPH01278026A/en
Application granted granted Critical
Publication of JP2654455B2 publication Critical patent/JP2654455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To contrive improvement in etching speed by a method wherein plasma etching is conducted on an AlxGa1-xN(10<=X<=1) semiconductor using carbon dichloride difluoride gas. CONSTITUTION:A sample 30 is formed by laminating an AlN buffer layer 2, a GaN layer 3 and a mask 4 consisting of sapphire on a sapphire substrate 1. When plasma etching is conducted, samples 30 and 32 are placed on an electrode 24, the residual gas in a reaction chamber 20 is exhausted, and after the reaction chamber has been evacuated to 5X10<-6>Torr, CCl2F2 gas is introduced at the flow speed of 10cc/min. Then, when high frequency power is supplied between the electrode 24 and an electrode 22, glow discharge is started between the electrodes, the introduced CCl2F2 gas is turned into a plasma state, and the etching is started on the samples 30 and 32. As a result of the etching conducted for the prescribed period, the part of the GaN layer 3 of the sample 30 covered by the mask 4 is not etched, and exposed GaN layers 3 only is etched. As a result, the speed of etching can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、AムGap−xN (0≦X≦1)半導体の
ドライエツチング方法に関する。
The present invention relates to a method for dry etching an Am Gap-xN (0≦X≦1) semiconductor.

【従来技術】[Prior art]

従来、AlxGa1−xN (0≦X≦l)半導体は青
色の発光ダイオードや短波長領域の発光素子の材料とし
て注目されてあり、係る素子を作成する場合には、他の
化合物半導体と同様にメサ、リセス等のエツチング技術
を確立することが必要となっている。 A1.Ga+−J半導体は化学的に非常に安定な物質で
あり、他の■−■族化合物半導体のエツチング液として
通常使用される塩酸、硫酸、フッ化水素(HF)等の酸
又はこれらの混合液には溶解しない。 このため、AlxGa1−J半導体に関するエツチング
技術は次の数少ない方法しか知られていない。 第1の方法は、苛性ソーダ、苛性カリ又はピロ硫酸カリ
ウムを800℃以上に加熱した溶液を用いるウェットエ
ツチングである。又、第2の方法は、0、 IN苛性ソ
ーダ溶液を用いた電解ジェットエツチングである。そし
て、第3の方法はリン酸と硫酸の混合比l:2〜1:5
の混合液を用いて、温度180℃〜250℃においてウ
ェットエツチングする方法である。
Conventionally, AlxGa1-xN (0≦X≦l) semiconductors have attracted attention as materials for blue light-emitting diodes and light-emitting devices in the short wavelength region. It is necessary to establish etching techniques such as , recess, etc. A1. Ga+-J semiconductors are chemically very stable substances, and acids such as hydrochloric acid, sulfuric acid, hydrogen fluoride (HF), etc., which are commonly used as etching solutions for other ■-■ group compound semiconductors, or mixtures thereof. It does not dissolve in For this reason, only the following few methods are known as etching techniques for AlxGa1-J semiconductors. The first method is wet etching using a solution of caustic soda, caustic potash, or potassium pyrosulfate heated to 800° C. or higher. A second method is electrolytic jet etching using a 0.1 IN caustic soda solution. And the third method is the mixing ratio of phosphoric acid and sulfuric acid l:2 to 1:5.
In this method, wet etching is performed at a temperature of 180°C to 250°C using a mixed solution of .

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところが、上記第1及び第2の方法は、高温の腐食性物
質を用いること等から、実用面での困難性がある。又、
第3の方法は、微妙な温度変化によりエツチング速度が
大きく変化する等の問題があり、上記何れの方法も実用
されるに至っていない。 又、上記の方法はいずれもウェットエツチングであるた
め、アンダーカットが発生すること等のウエットエッチ
ッグ特有の欠点を解消することができない。 一方、AlxGa1−XN半導体に関するドライエツチ
ング方法については、全く知られた方法が存在しない。 プラズマエツチングおいて如何なる反応性のガスを選択
すれば良いかは、反応機構がエツチングされる化合物半
導体の原子の組合せや結晶構造に影響されるため、予測
が出来ない。従って、既存の反応性ガスがAlxGa1
−xN半導体にとってエツチングに効果があるか否かも
予測することができない。 そこで、本発明者等はAL+Ga+−xN半導体のプラ
ズマエツチングにおいて、エツチング速度と使用される
反応ガスの種類やその他の条件について鋭意実験研究を
行った結果、本発明を完成したものである。
However, the first and second methods described above have practical difficulties because they use high-temperature corrosive substances. or,
The third method has problems such as the etching rate changing greatly due to subtle temperature changes, and none of the above methods has been put into practical use. Furthermore, since all of the above methods involve wet etching, they cannot eliminate the disadvantages peculiar to wet etching, such as the occurrence of undercuts. On the other hand, there is no known dry etching method for AlxGa1-XN semiconductors. It is impossible to predict which reactive gas should be selected for plasma etching because the reaction mechanism is influenced by the combination of atoms and crystal structure of the compound semiconductor to be etched. Therefore, the existing reactive gas is AlxGa1
It is also impossible to predict whether etching will be effective for -xN semiconductors. Therefore, the present inventors have completed the present invention as a result of extensive experimental research regarding the etching rate, the type of reactive gas used, and other conditions in plasma etching of AL+Ga+-xN semiconductors.

【課題を解決するための手段】[Means to solve the problem]

即ち本発明者等は2フッ化2塩化炭素(CC1zh)ガ
スを用いたプラズマエツチングがAUGa+−J(0≦
X≦1)半導体のドライエツチングに効果的であること
を発見した。 従って、上記課題を解決するための発明の構成は、2フ
ッ化2塩化炭素(CCIlaFa)ガスのプラズマによ
りA1.Ga1−J (0≦X≦1)半導体をエツチン
グするようにしたことである。 上記のプラズマエツチングは、通常、高周波電力を印加
する電極を平行に配置し、その電極に被エツチング物体
を配置した平行電極型装置や、高周波電力を印加する電
極を円筒状に配置し、その円筒の断面に平行に被エツチ
ング物体を配置した円筒電極型装置、その他の構成の装
置を用いて行われる。又、2フッ化2塩化炭素(CC1
2F2)ガスをプラズマ状態にするには、上記平行電極
型装置や円筒電極型装置では、電極間に高周波電力を印
加することにより行われる。
That is, the present inventors have found that plasma etching using carbon difluoride dichloride (CC1zh) gas is effective for achieving AUGa+-J (0≦
X≦1) It was discovered that it is effective for dry etching of semiconductors. Therefore, the structure of the invention for solving the above problem is that A1. Ga1-J (0≦X≦1) semiconductor is etched. The plasma etching described above is usually performed using a parallel electrode type device in which electrodes for applying high frequency power are arranged in parallel and the object to be etched is placed on the electrodes, or a parallel electrode type device in which the electrodes for applying high frequency power are arranged in a cylindrical shape and the cylindrical This is carried out using a cylindrical electrode type device in which the object to be etched is placed parallel to the cross section of the etched object, or other devices having other configurations. In addition, carbon difluoride dichloride (CC1
2F2) In the above parallel electrode type device or cylindrical electrode type device, the gas is brought into a plasma state by applying high frequency power between the electrodes.

【発明の効果】【Effect of the invention】

後述の実施例で明らかにされるように、2フッ化2塩化
炭素([:C1−Pi)ガスのプラズマによりAI、G
a1−xN (0≦X≦1)半導体を効率良くエツチン
グすることができた。又、上記プラズマエツチングを行
っても、上記半導体に結晶欠陥を生じないことも判明さ
れた。 従って、本発明を用いることによりAムGat−J(0
≦X≦1)半導体を用いた素子、IC等の製造において
、それらの生産性を大きく改善することができる。
As will be clarified in the examples below, AI, G
a1-xN (0≦X≦1) The semiconductor could be etched efficiently. It has also been found that the plasma etching does not cause crystal defects in the semiconductor. Therefore, by using the present invention, Am Gat-J(0
≦X≦1) In manufacturing elements, ICs, etc. using semiconductors, the productivity thereof can be greatly improved.

【実施例】【Example】

以下、本発明を具体的な実施例に基づいて説明する。 本実施例方法で使用された半導体は、有機金属化合物気
相成長法(以下rMOVP8 Jと記す)による気相成
長により第2図に示す構造に作成された。 用いられたガスは、NH,とキャリアガスH,,N。 とトリメチルガリウム(Ga(CH*)s) (以下r
TMG Jと記す)とトリメチルアルミニウム(AI(
CH,)、)(以下rTMAJと記す)である。 まず、有機洗浄及び熱処理により洗浄した0面を主面と
する単結晶のサファイア基板1をMOVPII!装置の
反応室に載置されたサセプタに装着する。 次に、反応室内の圧力を5Torrに減圧し、H2を流
速0.317分で反応室に流しながら温度1100℃で
サファイア基板1を気相エツチングした。 次に、温度を800℃まで低下させて、■、を流速31
/分、NHsを流速21/分、TMAを7X 10−”
モル7分で供給して1分間熱処理した。この熱処理によ
りAINのバッファ層2が約500人の厚さに形成され
た。 次に、1分経過した時にTMAの供給を停止して、サフ
ァイア基板1の温度を600℃に保持し、H2を2.5
17分、NHaを1.517分、TMGを1.7810
−5モル/分で60分間供給し、膜厚約3虜のGaN層
3を形成した。 次に、このようにして形成されたGaN層3の上面にサ
ファイアから成るマスク4を第3図のように載置して試
料30を作成し、第1図に示す平行平板電極型のプラズ
マエツチング装置により、露出したGaN層3をエツチ
ングした。 第1図に示す平行電極型電極装置において、反応室20
を形成するステンレス製の真空容器10の側壁には、エ
ツチング用のガスを導入する導入管12が連設されてお
り、その導入管12はガス流速を可変できるマスフロー
コントローラ14を介してccl、p、ガスを貯蔵した
タンク16に接続されている。そして、CCA’2F!
ガスがそのタンク16からマスフローコントローラ14
を介して反応室20に導入される。 又、反応室20は拡散ポンプ19により排気されており
、反応室20の真空度は反応室20と拡散ポンプ19と
の間に介在するコンダクタンスバルブ18により調整さ
れる。 一方、反応室20内には上下方向に対向して、フッ化樹
脂により真空容器10から絶縁された電極22と電極2
4とが配設されている。そして、電極22は接地され、
電極24には高周波電力が供給される。その高周波電力
は周波数13.56MHzの高周波電源28から整合器
26を介して供給される。 又、電極24の上には、第3図に示す構成の試料30.
32が載置される。 係る構成の装置において、プラズマエツチングを行う場
合には、まず、電極24の上に試料30.32を載置し
た後、拡散ポンプ19により反応室   −20内の残
留ガスを十分に排気して、反応室20の真空度を5x 
10−’Torrにする。その後、CCC2Fガスがマ
スフローコントローラ14により流速10 cc/分に
制御されて反応室20に導入され、コンダクタンスバル
ブ18により反応室20の真空度は精確に0.04To
rrに調整された。そして、電極24と電極22間に2
00W (0,411/ci)高周波電力を供給すると
、電極間でグロー放電が開始され、導入されたCC1z
P*ガスはプラズマ状態となり、試料30.32のエツ
チングが開始された。 所定の時間エツチングを行った結果、試料30は第4図
に示す構造にエツチングされた。即ち、マスク4で覆わ
れたGa8層3の部分はエツチングされず、露出したG
a8層3のみが図示する形状にエツチングされた。 エツチング時間を変化させて同様にエツチングを行い、
エツチングにより生じた段差Δを段差針で測定してエツ
チング時間との関係を測定した。 その結果を第5図の直線Aで示す。その測定結果より、
エツチング速度は625人/分であった。 比較のためエツチングガスをCC1,に換えて同様な条
件にてエツチングを行い、エツチング速度を測定したと
ころ、第5図の直線Bで示す特性が得られ、CCl4ガ
スによるエツチング速度は430A/分であった。 又、比較のためエツチングガスをCF4に換えて同様な
条件にてエツチングを行い、エツチング速度を測定した
ところ、第5図の直線Cで示す特性が得られ、CF、ガ
スによるエツチング速度は170人7分であった。 従って、ccl、p*ガスを用いたドライエツチングは
CCl4ガスに比べて約1.5倍、CF、ガスに比べて
約3.7倍のエツチング速度であることが判明した。 また、上記のエツチングの前後において試料を4.2K
に冷却し、3250人のヘリウムカドミウムレーザを照
射して、フォトルミネッセンス強度を測定した。その結
果を第6図、第7図に示す。第6図はエツチング前の特
性であり、第7図はエツチング後の特性である。その特
性図において、波形ピーク波長及び半値幅に変化が見ら
れなかった。このことから、上記のエツチングによりG
a8層3の結晶性に変化がないことが分った。 又、このエツチングを十分行うと下層のAjFN層がエ
ツチングされることがわかり、x=0以外のAI!*G
at−Jのエツチングにも適用できることが判明した。
The present invention will be described below based on specific examples. The semiconductor used in the method of this example was formed into the structure shown in FIG. 2 by vapor phase growth using an organometallic compound vapor phase growth method (hereinafter referred to as rMOVP8 J). The gases used were NH, and carrier gas H,,N. and trimethyl gallium (Ga(CH*)s) (r
TMG J) and trimethylaluminum (AI(
CH, ), ) (hereinafter referred to as rTMAJ). First, a single-crystal sapphire substrate 1 whose principal surface is the 0-plane, which has been cleaned by organic cleaning and heat treatment, is prepared using MOVPII! It is attached to the susceptor placed in the reaction chamber of the device. Next, the pressure inside the reaction chamber was reduced to 5 Torr, and the sapphire substrate 1 was vapor-phase etched at a temperature of 1100° C. while flowing H2 into the reaction chamber at a flow rate of 0.317 minutes. Next, the temperature was lowered to 800℃, and the flow rate was 31.
/min, NHs flow rate 21/min, TMA 7X 10-”
It was supplied at a molar rate of 7 minutes and heat-treated for 1 minute. Through this heat treatment, the buffer layer 2 of AIN was formed to a thickness of approximately 500 nm. Next, when 1 minute has elapsed, the supply of TMA is stopped, the temperature of the sapphire substrate 1 is maintained at 600°C, and H2 is increased to 2.5°C.
17 minutes, NHa 1.517 minutes, TMG 1.7810
-5 mol/min for 60 minutes to form a GaN layer 3 with a thickness of about 3 mm. Next, a mask 4 made of sapphire was placed on the upper surface of the GaN layer 3 thus formed as shown in FIG. 3 to prepare a sample 30, and a parallel plate electrode type plasma etching process was performed as shown in FIG. The exposed GaN layer 3 was etched using the device. In the parallel electrode type electrode device shown in FIG.
An introduction pipe 12 for introducing etching gas is connected to the side wall of a stainless steel vacuum vessel 10 forming the etching process. , is connected to a tank 16 storing gas. And CCA'2F!
Gas flows from the tank 16 to the mass flow controller 14
is introduced into the reaction chamber 20 via. Further, the reaction chamber 20 is evacuated by a diffusion pump 19, and the degree of vacuum in the reaction chamber 20 is adjusted by a conductance valve 18 interposed between the reaction chamber 20 and the diffusion pump 19. On the other hand, inside the reaction chamber 20, an electrode 22 and an electrode 2 are insulated from the vacuum vessel 10 by a fluorinated resin, facing each other in the vertical direction.
4 are arranged. Then, the electrode 22 is grounded,
High frequency power is supplied to the electrode 24. The high frequency power is supplied from a high frequency power supply 28 with a frequency of 13.56 MHz via a matching box 26. Further, on the electrode 24 is a sample 30. having the configuration shown in FIG.
32 is placed. When performing plasma etching in an apparatus having such a configuration, first, the sample 30, 32 is placed on the electrode 24, and then the residual gas in the reaction chamber 20 is sufficiently exhausted by the diffusion pump 19. The degree of vacuum in the reaction chamber 20 is 5x.
Set to 10-'Torr. Thereafter, the CCC2F gas is introduced into the reaction chamber 20 at a flow rate of 10 cc/min by the mass flow controller 14, and the vacuum degree of the reaction chamber 20 is adjusted to 0.04To precisely by the conductance valve 18.
Adjusted to rr. Then, between the electrode 24 and the electrode 22, 2
When 00W (0,411/ci) high frequency power is supplied, glow discharge starts between the electrodes, and the introduced CC1z
The P* gas became a plasma state, and etching of sample 30.32 was started. As a result of etching for a predetermined period of time, sample 30 was etched into the structure shown in FIG. That is, the portion of the Ga8 layer 3 covered by the mask 4 is not etched, and the exposed G
Only the a8 layer 3 was etched into the shape shown. Perform etching in the same way by changing the etching time,
The step difference Δ caused by etching was measured with a step needle to determine its relationship with the etching time. The results are shown by straight line A in FIG. From the measurement results,
The etching rate was 625 people/min. For comparison, etching was performed under the same conditions by changing the etching gas to CC1, and the etching rate was measured. The characteristics shown by straight line B in Figure 5 were obtained, and the etching rate with CCl4 gas was 430 A/min. there were. For comparison, etching was performed under the same conditions with CF4 as the etching gas, and the etching speed was measured. The characteristics shown by straight line C in Figure 5 were obtained, and the etching speed with CF and gas was 170 people. It was 7 minutes. Therefore, it was found that the dry etching rate using CCl, p* gas was about 1.5 times faster than CCl4 gas, and about 3.7 times faster than CF, gas. In addition, the sample was etched at 4.2K before and after the above etching.
The photoluminescence intensity was measured by irradiating with 3250 helium cadmium lasers. The results are shown in FIGS. 6 and 7. FIG. 6 shows the characteristics before etching, and FIG. 7 shows the characteristics after etching. In the characteristic diagram, no change was observed in the waveform peak wavelength and half-value width. Therefore, by the above etching, G
It was found that there was no change in the crystallinity of the a8 layer 3. Also, it was found that if this etching is performed sufficiently, the underlying AjFN layer is etched, and AI for x=0 other than AI! *G
It has been found that this method can also be applied to etching of at-J.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の具体的な一実施例に係るエツチング方
法を実現するための装置を示した構成図。 第2図はエツチング試料の構成を示した断面図。 第3図はエツチング試料とマスクとの関係を示した断面
図。第4図はエツチング後の試料の断面図。 第5図はエツチング速度を示す測定図。第6図はエツチ
ング前における試料のフォトルミネッセンス強度の周波
数時d第7図はエツチング後にお1 サファイア基板 
2−バッファ層 3・・GaN層 4・・・・マスク IO“°゛真空容
器12・−導入管 14°”°マスフローコントローラ
16°°・タンク 19°パ拡散ポンプ18・・°°コ
ンダクタンスバルブ 22.24・電極28・・・高周
波電源
FIG. 1 is a block diagram showing an apparatus for implementing an etching method according to a specific embodiment of the present invention. FIG. 2 is a sectional view showing the structure of an etched sample. FIG. 3 is a sectional view showing the relationship between the etching sample and the mask. FIG. 4 is a cross-sectional view of the sample after etching. FIG. 5 is a measurement diagram showing the etching speed. Figure 6 shows the frequency and frequency of the photoluminescence intensity of the sample before etching, and Figure 7 shows the photoluminescence intensity of the sample after etching.
2-Buffer layer 3...GaN layer 4...Mask IO "°" Vacuum vessel 12--Introduction tube 14°"° Mass flow controller 16°° Tank 19° Diffusion pump 18...°° Conductance valve 22 .24・Electrode 28...High frequency power supply

Claims (1)

【特許請求の範囲】[Claims]  2フッ化2塩化炭素(CCl_2F_2)ガスのプラ
ズマによりAl_xGa_1_−_xN(0≦X≦1)
半導体をエッチングするドライエッチング方法。
Al_xGa_1_-_xN (0≦X≦1) by carbon difluoride dichloride (CCl_2F_2) gas plasma
A dry etching method for etching semiconductors.
JP10866788A 1988-04-29 1988-04-29 Dry etching method for semiconductor Expired - Fee Related JP2654455B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10866788A JP2654455B2 (en) 1988-04-29 1988-04-29 Dry etching method for semiconductor
US07/338,855 US4946548A (en) 1988-04-29 1989-04-17 Dry etching method for semiconductor
DE3914182A DE3914182A1 (en) 1988-04-29 1989-04-28 DRY WETTING PROCESS FOR SEMICONDUCTORS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10866788A JP2654455B2 (en) 1988-04-29 1988-04-29 Dry etching method for semiconductor

Publications (2)

Publication Number Publication Date
JPH01278026A true JPH01278026A (en) 1989-11-08
JP2654455B2 JP2654455B2 (en) 1997-09-17

Family

ID=14490627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10866788A Expired - Fee Related JP2654455B2 (en) 1988-04-29 1988-04-29 Dry etching method for semiconductor

Country Status (1)

Country Link
JP (1) JP2654455B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192987A (en) * 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
US5205905A (en) * 1990-05-30 1993-04-27 Toyoda Gosei Co., Ltd. Dry etching method for semiconductor
US5789265A (en) * 1995-08-31 1998-08-04 Kabushiki Kaisha Toshiba Method of manufacturing blue light-emitting device by using BCL3 and CL2

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228776A (en) * 1983-06-10 1984-12-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor hetero-junction element
JPS60117631A (en) * 1983-11-30 1985-06-25 Toshiba Corp Dry etching method of compound semiconductor
JPS6156474A (en) * 1984-08-28 1986-03-22 Matsushita Electric Ind Co Ltd Manufacture of gallium nitride semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228776A (en) * 1983-06-10 1984-12-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor hetero-junction element
JPS60117631A (en) * 1983-11-30 1985-06-25 Toshiba Corp Dry etching method of compound semiconductor
JPS6156474A (en) * 1984-08-28 1986-03-22 Matsushita Electric Ind Co Ltd Manufacture of gallium nitride semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205905A (en) * 1990-05-30 1993-04-27 Toyoda Gosei Co., Ltd. Dry etching method for semiconductor
US5192987A (en) * 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
US5296395A (en) * 1991-05-17 1994-03-22 Apa Optics, Inc. Method of making a high electron mobility transistor
US5789265A (en) * 1995-08-31 1998-08-04 Kabushiki Kaisha Toshiba Method of manufacturing blue light-emitting device by using BCL3 and CL2

Also Published As

Publication number Publication date
JP2654455B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
US4946548A (en) Dry etching method for semiconductor
JP3078821B2 (en) Dry etching method for semiconductor
JPH0945670A (en) Vapor phase etching method of group iiinitrogen crystal and re-deposition process method
US20030192569A1 (en) Fluorine process for cleaning semiconductor process chamber
JPH08293489A (en) Method of dry etching gallium nitride based compound semiconductor
JPH04191379A (en) Plasma treating device
JP2654454B2 (en) Dry etching method for semiconductor
JPH01278026A (en) Semiconductor dry etching method
JP2623463B2 (en) Gallium nitride based compound semiconductor electrode forming method
JP3002205B2 (en) Surface processing method of gallium nitride based compound semiconductor
JP2613414B2 (en) Dry etching method of Al-xGa-bottom-xN
JP3610397B2 (en) Method for forming electrode of group 3 nitride semiconductor
JPS6114726A (en) Treatment of semiconductor substrate
JP3639144B2 (en) Semiconductor dry etching method
JP3254436B2 (en) A method of manufacturing an etching mask for a gallium nitride-based compound semiconductor.
JP2613414C (en)
JPH03252174A (en) Surface processing of gallium nitride compound semiconductor
JP2729227B2 (en) Dry etching method of sapphire
JP2706660B2 (en) Gallium nitride based compound semiconductor electrode forming method
JPH01136970A (en) Method for cleaning plasma cvd apparatus
JPH11354496A (en) Dry etching method for semiconductor
JPH089518B2 (en) Method for producing compound semiconductor single crystal
JPS60140726A (en) Plasma vapor growth device
JP2682896B2 (en) Method for manufacturing semiconductor laser device
JP2000031538A (en) Manufacture of light emitting element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees