JPH0127775B2 - - Google Patents

Info

Publication number
JPH0127775B2
JPH0127775B2 JP57021660A JP2166082A JPH0127775B2 JP H0127775 B2 JPH0127775 B2 JP H0127775B2 JP 57021660 A JP57021660 A JP 57021660A JP 2166082 A JP2166082 A JP 2166082A JP H0127775 B2 JPH0127775 B2 JP H0127775B2
Authority
JP
Japan
Prior art keywords
catalyst
nickel metal
methane
reaction
conversion rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57021660A
Other languages
Japanese (ja)
Other versions
JPS58139743A (en
Inventor
Kazumasa Takahashi
Kenji Toyoda
Seiji Sato
Takashi Oonami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP57021660A priority Critical patent/JPS58139743A/en
Publication of JPS58139743A publication Critical patent/JPS58139743A/en
Publication of JPH0127775B2 publication Critical patent/JPH0127775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は新規なニツケル金属触媒の製造法に係
り、特にメタンの水蒸気改質反応などに対して高
い触媒活性と長い触媒寿命(即ち炭素析出に強
い)とを兼ね備えたメタンの水蒸気改質用ニツケ
ル金属触媒を製造することができる製造法に関す
る。 [従来の技術] 一般に、ナフサ分解工程などの工業的に利用さ
れているニツケル系の触媒としてはアルミナ
(Al2O3)あるいはシリカ(SiO2)等の担体にニ
ツケルを担持させたものや、ニツケル、アルミニ
ウムなどの合金を展開したものが知られている。 ところで、ニツケル系の金属触媒にあつては次
のごとき問題点があつた。 (1) 工業的に利用されている金属触媒は、粒状の
ものが一般的に多く、これら粒状の触媒を任意
の形状に加工することは困難であり、装置設計
上の制約条件となる。 (2) また、アルミナ等の担体を用いた触媒は、破
砕などによる粉体の飛散が見られ、使用条件に
よつては飛散した粉体を除去するためにフイル
タなどの装置を設ける必要がある。 (3) ニツケル合金を展開して製作した金属触媒に
あつては、これを炭化水素などを取扱う機器に
採用する場合、触媒表面での炭素析出性が強
く、触媒劣化を起しやすい。 ところで、上記問題点を解決するために本発
明者らは任意な形状に成型加工できるニツケル
鋼板で金属触媒を製造する方法(特開昭57−
1444)を先に提案した。 例えばニツケル鋼板(Ni>99%、比表面積
0.05m2/m3)でねじり状のテープを加工し、
このテープを酢酸マグネシウムのエチルアルコ
ール溶液中に浸漬し、これを乾燥して活性化さ
れた金属触媒を製造した。 表−1はこのように先に提案された方法によ
り製造した触媒を反応温度750℃、反応圧力
1atm、空筒速度5000hr-1水蒸気/メタン=3
の反応条件下でメタンの水蒸気改質反応を行つ
た場合の実験結果である。 また、表−2は上記実験と比較するために発
泡ニツケル金属板(孔径2mm、比表面積
1000m2/m3、多孔率95%)により円柱状の触
媒を作り、これを650℃下の水素気流中で約1
時間還元処理を施して活性化し、それを反応温
度860℃、反応圧力1atm、空筒速度5000hr-1
水蒸気/メタン=3の反応条件下で同上の実験
を行つた結果である。
[Field of Industrial Application] The present invention relates to a method for producing a new nickel metal catalyst, which has both high catalytic activity and long catalytic life (i.e., is resistant to carbon precipitation), particularly for methane steam reforming reactions. The present invention relates to a production method capable of producing a nickel metal catalyst for steam reforming of methane. [Prior Art] In general, nickel-based catalysts used industrially in naphtha decomposition processes include those in which nickel is supported on a carrier such as alumina (Al 2 O 3 ) or silica (SiO 2 ); Products made of alloys such as nickel and aluminum are known. By the way, nickel-based metal catalysts have the following problems. (1) Metal catalysts used industrially are generally granular, and it is difficult to process these granular catalysts into arbitrary shapes, which is a constraint on equipment design. (2) In addition, catalysts using carriers such as alumina are prone to scattering of powder due to crushing, etc., and depending on the usage conditions, it may be necessary to install a device such as a filter to remove the scattered powder. . (3) When a metal catalyst manufactured by developing a nickel alloy is used in equipment that handles hydrocarbons, carbon is likely to be deposited on the surface of the catalyst, and catalyst deterioration is likely to occur. By the way, in order to solve the above-mentioned problems, the present inventors developed a method for manufacturing a metal catalyst using a nickel steel plate that can be formed into any shape (Japanese Unexamined Patent Publication No. 57-1999).
1444) was proposed first. For example, nickel steel plate (Ni>99%, specific surface area
0.05m 2 /m 3 ) to create a twisted tape.
This tape was immersed in an ethyl alcohol solution of magnesium acetate and dried to produce an activated metal catalyst. Table 1 shows the catalysts produced by the previously proposed method at a reaction temperature of 750°C and a reaction pressure of
1atm, cylinder velocity 5000hr -1 water vapor/methane = 3
These are the experimental results when a steam reforming reaction of methane was carried out under the following reaction conditions. In addition, Table 2 shows a foamed nickel metal plate (pore diameter 2 mm, specific surface area) for comparison with the above experiment.
1000m 2 /m 3 , porosity 95%) to make a cylindrical catalyst, which was heated for about 1 hour in a hydrogen stream at 650°C.
Activate it by subjecting it to a time-reducing treatment, and then apply it at a reaction temperature of 860°C, a reaction pressure of 1 atm, a cylinder velocity of 5000 hr -1 ,
This is the result of conducting the same experiment as above under the reaction condition of water vapor/methane = 3.

【表】【table】

【表】 [発明が解決しようとする課題] しかしながら前記実験結果を比較すると以下の
ごとき問題点があつた。 (4) 表−1に示すごとく前者はメタン転化率があ
る程度高いにもかかわらず後者に比較して比表
面積が低くて効率的でない。一方、表−2に示
すごとく多孔性金属である後者は比表面積が前
者に比較して圧倒的に高いにもかかわらずその
メタン転化率は低く、多孔性金属そのままでは
活性が低く触媒として利用価値が小さい。 (5) ニツケル板表面に特殊処理を行い高活性な触
媒を得る方法は触媒層単位体積当りの触媒表面
積(比表面積)が小さく、従つて反応塔容積が
増大するという不都合がある。 そこで、本発明は従来の金属触媒における上記
問題点を有効に解決すべく創案されたものであ
る。 本発明は、比表面積が高い多孔性ニツケル金属
体を触媒担体として利用して、触媒活性が高く、
しかも炭化水素などを取扱う際に触媒表面におけ
る炭素析出性を低くおさえ、その触媒劣化が少な
いメタンの水蒸気改質用ニツケル金属触媒の製造
法を提供することを目的とする。 [課題を解決するための手段及び作用] 本発明は、上記目的を達成するために、多孔性
ニツケル金属の表面にアルミニウムを含む化合物
とマグネシウムを含む化合物の被膜を形成し、こ
れを高温下で酸化処理した後、還元気流中で還元
処理してメタンの水蒸気改質用ニツケル金属触媒
を製造するようにしたものである。 先ず、アルミニウムを含む化合物とマグネシウ
ムを含む化合物を水や有機溶剤に溶かしあるいは
懸濁させた溶液を作る。 次に、多孔性ニツケル金属体を任意の形状に加
工し、この金属体に脱脂、酸洗処理を施し表面を
洗浄する。 このように洗浄した金属体を上記溶液中に浸漬
して孔内にも充分溶液を浸透させるか、または金
属体表面に溶液を塗布することにより、化合物の
薄膜を多孔性ニツケル金属体の表面に形成する。 このように化合物の薄膜を形成したニツケル金
属体を乾燥させた後、1000℃以上の高温下で長時
間酸素を含む雰囲気中で酸化させる。このように
酸化されることにより、前記したアルミニウムと
マグネシウムの酸化物を金属体表面に形成させる
と同時に母材であるニツケル金属体も酸化させ
る。また、上記酸化物をニツケル金属体の表面近
傍層中に拡散させる。 次いで、このように酸化処理したニツケル金属
体を水素あるいは一酸化炭素の還元気流中で還元
処理することによりニツケル金属触媒を製造す
る。 このように製造された金属触媒はメタンの水蒸
気改質反応などに対して高活性を示し、かつ炭素
析出などによる活性劣化を最小になし得る。 [実施例] 次に、本発明のメタンの水蒸気改質用ニツケル
金属触媒の製造法の具体的実施例について述べ
る。 実施例 1 市販されている発泡ニツケル金属板(孔径2
mm、比較表面積1000m2/m3、多孔率95%)を
加圧して円柱状の金属体を形成し、この金属体を
酢酸アルミニウムと酢酸マグネシウムのエチルア
ルコール混合溶懸濁液に浸漬する。 次に、この液から円柱状の発泡ニツケル金属を
取り出し加温してアルコール分を除去する。 その後、このアルミニウムとマグネシウムとを
付加した円柱状金属体を1200℃で24時間空気中で
酸化処理する。 次いで、この金属体を650℃下の水素気流中で
約1時間還元処理を施して多孔性ニツケル金属触
媒を調整する。この多孔性ニツケル金属触媒のア
ルミニウムとマグネシウムの添加量はほぼ1対1
で両者の合計添加量は多孔性ニツケル金属にた対
して約1%(wt%)添加される。 このようにして製造した触媒を用いて反応温度
860℃、反応圧力1atm、空筒速度5000hr-1、水蒸
気/メタン=3の反応条件下でメタンの水蒸気改
質反応を行つたところ、表−3に示すごとき結果
が得られた。これによればアルミニウムとマグネ
シウムの金属化合物を付加しない多孔性ニツケル
金属触媒による従来例(表−2)と比較して触媒
活性の改善効果を得られることが判明した。
[Table] [Problems to be Solved by the Invention] However, when comparing the above experimental results, the following problems were found. (4) As shown in Table 1, although the former has a somewhat high methane conversion rate, it has a lower specific surface area than the latter and is not efficient. On the other hand, as shown in Table 2, the latter, which is a porous metal, has a low methane conversion rate even though its specific surface area is overwhelmingly higher than the former, and the porous metal itself has low activity and is of no use as a catalyst. is small. (5) The method of obtaining a highly active catalyst by subjecting the surface of a nickel plate to special treatment has the disadvantage that the catalyst surface area (specific surface area) per unit volume of the catalyst layer is small, and therefore the volume of the reaction column increases. Therefore, the present invention was devised to effectively solve the above-mentioned problems with conventional metal catalysts. The present invention uses a porous nickel metal body with a high specific surface area as a catalyst carrier, and has high catalytic activity.
Moreover, it is an object of the present invention to provide a method for producing a nickel metal catalyst for steam reforming of methane, which suppresses carbon deposition on the surface of the catalyst when handling hydrocarbons and causes less deterioration of the catalyst. [Means and effects for solving the problem] In order to achieve the above object, the present invention forms a film of a compound containing aluminum and a compound containing magnesium on the surface of porous nickel metal, and coats the film at high temperature. After oxidation treatment, reduction treatment is performed in a reducing gas flow to produce a nickel metal catalyst for steam reforming of methane. First, a solution is prepared by dissolving or suspending a compound containing aluminum and a compound containing magnesium in water or an organic solvent. Next, the porous nickel metal body is processed into an arbitrary shape, and the metal body is subjected to degreasing and pickling treatments, and its surface is cleaned. A thin film of the compound is applied to the surface of the porous nickel metal body by immersing the metal body thus cleaned in the above solution to allow the solution to sufficiently penetrate into the pores, or by applying the solution to the surface of the metal body. Form. After drying the nickel metal body on which a thin film of the compound has been formed, it is oxidized in an oxygen-containing atmosphere for a long time at a high temperature of 1000° C. or higher. By being oxidized in this manner, the aforementioned oxides of aluminum and magnesium are formed on the surface of the metal body, and at the same time, the nickel metal body which is the base material is also oxidized. Further, the oxide is diffused into the layer near the surface of the nickel metal body. Next, the nickel metal body thus oxidized is reduced in a reducing gas flow of hydrogen or carbon monoxide to produce a nickel metal catalyst. The metal catalyst produced in this manner exhibits high activity in methane steam reforming reactions and the like, and can minimize deterioration of activity due to carbon deposition and the like. [Example] Next, a specific example of the method for producing a nickel metal catalyst for steam reforming of methane according to the present invention will be described. Example 1 A commercially available foamed nickel metal plate (pore diameter 2
mm, comparative surface area 1000 m 2 /m 3 , porosity 95%) is pressurized to form a cylindrical metal body, and this metal body is immersed in an ethyl alcohol mixed solution suspension of aluminum acetate and magnesium acetate. Next, a cylindrical foamed nickel metal is taken out of the liquid and heated to remove the alcohol content. Thereafter, this cylindrical metal body to which aluminum and magnesium have been added is oxidized in air at 1200°C for 24 hours. Next, this metal body is subjected to a reduction treatment for about 1 hour in a hydrogen stream at 650°C to prepare a porous nickel metal catalyst. The amount of aluminum and magnesium added to this porous nickel metal catalyst is approximately 1:1.
The total amount of both is about 1% (wt%) to the porous nickel metal. Using the catalyst produced in this way, the reaction temperature
A steam reforming reaction of methane was carried out under the reaction conditions of 860°C, reaction pressure of 1 atm, cylinder velocity of 5000 hr -1 and steam/methane ratio of 3, and the results shown in Table 3 were obtained. According to this, it was found that the effect of improving the catalytic activity could be obtained compared to the conventional example (Table 2) using a porous nickel metal catalyst to which no metal compound of aluminum and magnesium was added.

【表】 実施例 2 実施例と同一の処理を施した発泡ニツケル金属
触媒を反応温度860℃、650℃、反応圧力1atm、
空筒速度15000hr-1、水蒸気/メタン=3の反応
条件でメタンの水蒸気改質反応を24時間行つた結
果を表−4に示す。
[Table] Example 2 Foamed nickel metal catalysts subjected to the same treatment as in Example were used at reaction temperatures of 860°C and 650°C, reaction pressure of 1 atm,
Table 4 shows the results of a 24-hour steam reforming reaction of methane under the reaction conditions of a cylinder velocity of 15,000 hr -1 and a steam/methane ratio of 3.

【表】 比較例 1 市販されているニツケル鋼板(Ni>99%)を
ねじり状のテープに加工し、このテープに前記実
施例2と同一の処理を施して、同一の反応条件で
メタンの水蒸気改質反応を24時間行つた結果を表
−5に示す。なお、Niに対するAl2O3とMgOの
添加率はNiに対し、それぞれ約0.05%である。
[Table] Comparative Example 1 A commercially available nickel steel plate (Ni > 99%) was processed into a twisted tape, this tape was subjected to the same treatment as in Example 2, and methane water vapor was removed under the same reaction conditions. Table 5 shows the results of the reforming reaction conducted for 24 hours. Note that the addition ratio of Al 2 O 3 and MgO to Ni is about 0.05%, respectively.

【表】 実施例2と比較例1とを比較すると、前者すな
わち発泡金属触媒は後者すなわちニツケル鋼板ね
じり状テープの触媒よりもメタンの転化率が高
く、前者が圧倒的に反応活性が高いことが判明す
る。 実施例 3 実施例1と同一の処理を施した発泡ニツケル金
属触媒を反応温度650℃、反応圧力1atm、空筒速
度5000hr-1、水蒸気/メタン=3の反応条件でメ
タンの水蒸気改質反応を行い、触媒の寿命試験を
行つた結果を表−6に示す。
[Table] Comparing Example 2 and Comparative Example 1, the former, that is, the foamed metal catalyst, has a higher methane conversion rate than the latter, that is, the twisted nickel steel plate catalyst, and the former has overwhelmingly higher reaction activity. Prove. Example 3 A methane steam reforming reaction was carried out using a foamed nickel metal catalyst treated in the same manner as in Example 1 under the reaction conditions of a reaction temperature of 650°C, a reaction pressure of 1 atm, a cylinder speed of 5000 hr -1 and a steam/methane ratio of 3. Table 6 shows the results of the catalyst life test.

【表】 表−6より本発明のAl2O3とMgOを付加した多
孔性ニツケル金属触媒は約2000時間(約80日)経
過してもCH4転化率は反応開始時の値と変らず触
媒劣化は全く認められなかつた。 比較例 2 比較例1で用いた触媒すなわち、市販されてい
るニツケル鋼板(Ni>99%)をねじり状のテー
プに加工し、このテープに実施例と同一の処理を
施してAl2O3とMgOを付加したニツケル金属触媒
を用い、実施例3で示したと同一の反応条件でメ
タンの水蒸気改質反応を行い、触媒の寿命試験を
行つた結果を第1図に示す。 第1図に示すよう反応開始直後のCH4転化率は
64%であるが、その後5時間経過後は転化率が50
%まで落ち、それ以降転化率は徐々に下がり、約
330時間後には32%となり、反応開始直後の転化
率の半分までに低下した。 比較例 3 Al2O3とMgOの多孔性ニツケル触媒に付与する
代りに、Al2O3単独、MgO単独、その他Ca、
Ba、Be、Liなどの化合物を夫々付与したニツケ
ル金属触媒を用いてメタンの水蒸気改質反応をお
こなつたが、本発明のようにAl2O3とMgOを同時
に付与した場合に比べて高活性のものは得られな
かつた。 実施例 4 次に上述した本発明のAl2O3とMgOを付加した
多孔性ニツケル金属触媒(Ni−Al−Mg触媒)
と、比較としてAl2O3を付加した多孔性ニツケル
金属触媒(Ni−Al触媒)、MgOを付加した多孔
性ニツケル金属触媒(Ni−Mg触媒)及び無添加
の多孔性ニツケル金属触媒(Ni触媒)との反応
温度における転化率を実験で求めた結果を第2図
に示す。 第2図においてaは本発明のNi−Al−Mg触
媒、bはNi−Al触媒、CはNi−Mg触媒、dは
Ni触媒の反応温度に対する転化率のグラフを示
す。 この転化率のデータは、先ずそれぞれの触媒を
反応管に充填して水素還元を行つた後、850℃で
半日〜1日反応を行い、その850℃における転化
率を求めた後、850℃から順次650℃まで下げ、そ
の間に5〜7点(850、750、675、650℃)の温度
で反応を行つて各温度に対する転化率を求めた
後、再度850℃に上げ、その温度で転化率に変化
がないかどうか再確認を行つて各温度に対する転
化率データを求めた。 第2図より、グラフdの無添加のNi触媒に対
しAl、Mgを添加すれば、転化率が向上すること
が判り、またグラフb、cで示すようにNi−Al
触媒とNi−Mg触媒では転化率が同じであるが、
本発明のNi−Al−Mg触媒においては、その添加
率が各温度において数パーセント高くなつている
ことが判る。 このことは、AlとMgが単にNi多孔質に担持し
ているのではなく、AlとMgとが反応した状態で
担持され、これにより触媒活性が向上するものと
考えられる。またこの本発明のNi−Al−Mg触
媒、Ni−Al触媒、Ni−Mg触媒の各触媒をX線
回析によりNi中のAlとMgの分布状態を測定し
た。Ni−Al触媒においては触媒表面から100μの
深さにAlのピークがみられ、またNi−Mg触媒に
おいてはMgは表面から数十μ近くに集中して分
布しているが、本発明のNi−Al−Mg触媒におい
てはAlは100μの深さにピークがみられるものの、
MgはNi触媒中に略均一に分布していることが判
つた。また、Ni−Al触媒とNi−Mg触媒とのAl
とMgの分布を合成しても本発明のNi−Al−Mg
触媒のAl−Mg分布とは違つており、このことか
らもAlとMgとが結合した触媒となり、このため
活性が高く、触媒劣化寿命の長いものとなると考
えられる。 このように本発明は、比表面積が圧倒的に大き
い多孔性ニツケル金属体にAlを含む化合物とMg
を含む化合物を付与し、これを前記したごとく特
殊処理を施してニツケル金属触媒を製造すること
としたので、その比表面積が大きいことと特殊処
理の効果とを相乗させた効果として発揮させるこ
とができる。 [発明の効果] 以上、要するに本発明によれば次のような優れ
た効果を発揮することができる。 (1) 現在工業的に利用されているニツケル触媒は
粒状のものが多く、任意の形状に加工できない
が、本法による触媒は市販されている発泡ニツ
ケル金属を利用できるため任意の形状に加工す
ることができる。 (2) また、母材が金属であることから伝熱特性が
良く、炭化水素の水蒸気改質反応やメタネーシ
ヨンなどの熱の出入の大きい反応に対して最適
な装置の設計が可能となる。 (3) 多孔性ニツケル金属の表面に、アルミニウム
を含む化合物とマグネシウムを含む化合物の被
膜を形成し、これを酸化還元してニツケル金属
触媒とすることで、他のアルカリ土類金属や遷
移金属を添加するよりも高活性のものが得られ
ると共に触媒劣化の寿命の長い触媒が得られ
る。
[Table] From Table 6, the CH 4 conversion rate of the porous nickel metal catalyst to which Al 2 O 3 and MgO of the present invention have been added remains unchanged from the value at the start of the reaction even after approximately 2000 hours (approximately 80 days). No catalyst deterioration was observed at all. Comparative Example 2 The catalyst used in Comparative Example 1, that is, a commercially available nickel steel plate (Ni > 99%), was processed into a twisted tape, and this tape was subjected to the same treatment as in Example to combine with Al 2 O 3 . A steam reforming reaction of methane was carried out using a nickel metal catalyst to which MgO was added under the same reaction conditions as shown in Example 3, and the life test of the catalyst was conducted. The results are shown in FIG. As shown in Figure 1, the CH 4 conversion rate immediately after the start of the reaction is
The conversion rate is 64%, but after 5 hours, the conversion rate is 50%.
%, and after that the conversion rate gradually decreases to about
After 330 hours, the conversion rate was 32%, which was half of the conversion rate immediately after the start of the reaction. Comparative Example 3 Instead of adding Al 2 O 3 and MgO to the porous nickel catalyst, Al 2 O 3 alone, MgO alone, other Ca,
A steam reforming reaction of methane was carried out using a nickel metal catalyst to which compounds such as Ba, Be, and Li were added, but the rate of reforming was higher than when Al 2 O 3 and MgO were added at the same time as in the present invention. No active substance was obtained. Example 4 Next, the porous nickel metal catalyst (Ni-Al-Mg catalyst) to which Al 2 O 3 and MgO of the present invention were added was prepared.
For comparison, porous nickel metal catalyst with Al 2 O 3 added (Ni-Al catalyst), porous nickel metal catalyst with MgO added (Ni-Mg catalyst), and porous nickel metal catalyst without additives (Ni catalyst). Fig. 2 shows the experimental results of the conversion rate at the reaction temperature with ). In Fig. 2, a is the Ni-Al-Mg catalyst of the present invention, b is the Ni-Al catalyst, C is the Ni-Mg catalyst, and d is the Ni-Mg catalyst.
A graph of conversion rate versus reaction temperature of Ni catalyst is shown. This conversion rate data is obtained by first filling a reaction tube with each catalyst and performing hydrogen reduction, then reacting at 850℃ for half a day to one day, calculating the conversion rate at 850℃, and then starting from 850℃. After successively lowering the temperature to 650°C, performing the reaction at 5 to 7 temperatures (850, 750, 675, 650°C) and determining the conversion rate at each temperature, raise the temperature to 850°C again and calculate the conversion rate at that temperature. Reconfirmation was made to see if there was any change in the conversion rate data for each temperature. From Figure 2, it can be seen that if Al and Mg are added to the non-additive Ni catalyst in graph d, the conversion rate improves, and as shown in graphs b and c, the conversion rate is improved.
Although the conversion rate is the same between the catalyst and the Ni-Mg catalyst,
It can be seen that in the Ni-Al-Mg catalyst of the present invention, the addition rate increases by several percent at each temperature. This is considered to be because Al and Mg are not simply supported on the Ni porous material, but are supported in a reacted state, which improves the catalytic activity. Furthermore, the distribution state of Al and Mg in Ni was measured by X-ray diffraction for each of the Ni-Al-Mg catalyst, Ni-Al catalyst, and Ni-Mg catalyst of the present invention. In the Ni-Al catalyst, the peak of Al is seen at a depth of 100μ from the catalyst surface, and in the Ni-Mg catalyst, Mg is concentrated and distributed close to several tens of micrometers from the surface. -Al-Mg catalyst shows Al peak at 100μ depth,
It was found that Mg was distributed almost uniformly in the Ni catalyst. In addition, Al of Ni-Al catalyst and Ni-Mg catalyst
Even if the distribution of Mg and Ni-Al-Mg of the present invention is synthesized,
This is different from the Al-Mg distribution of the catalyst, and from this fact it is thought that the catalyst is a combination of Al and Mg, and therefore has high activity and a long catalyst deterioration life. In this way, the present invention combines a compound containing Al and Mg into a porous nickel metal body with an overwhelmingly large specific surface area.
Since we decided to produce a nickel metal catalyst by applying a compound containing , and subjecting it to the special treatment as described above, we were able to achieve a synergistic effect of its large specific surface area and the effect of the special treatment. can. [Effects of the Invention] In short, according to the present invention, the following excellent effects can be achieved. (1) Most of the nickel catalysts currently used industrially are granular and cannot be processed into any shape, but the catalyst using this method can be processed into any shape because commercially available foamed nickel metal can be used. be able to. (2) Furthermore, since the base material is metal, it has good heat transfer properties, making it possible to design equipment that is optimal for reactions that involve large amounts of heat input and output, such as hydrocarbon steam reforming reactions and methanation. (3) By forming a film of a compound containing aluminum and a compound containing magnesium on the surface of porous nickel metal, and using this as a nickel metal catalyst through oxidation reduction, it is possible to oxidize other alkaline earth metals and transition metals. It is possible to obtain a catalyst with higher activity and a longer lifespan in terms of catalyst deterioration than when the catalyst is added.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に対する比較例としてニツケル
金属板にAl2O3とMgOを付与したニツケル金属触
媒を用いてメタンの水蒸気改質反応を行つた際の
メタン転化率の経時変化を示す図第2図は本発明
のニツケル金属触媒と比較例としてのニツケル金
属触媒の反応温度におけるCH4転化率の関係を示
す図である。
Figure 1 is a diagram showing the change over time in the methane conversion rate when a methane steam reforming reaction was carried out using a nickel metal catalyst in which Al 2 O 3 and MgO were added to a nickel metal plate as a comparative example for the present invention. FIG. 2 is a diagram showing the relationship between the CH 4 conversion rate at the reaction temperature of the nickel metal catalyst of the present invention and a nickel metal catalyst as a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔性ニツケル金属の表面にアルミニウムを
含む化合物とマグネシウムを含む化合物の被膜を
形成し、これを高温下で酸化処理した後、還元気
流中で還元処理してニツケル金属触媒を製造する
ことを特徴とするメタンの水蒸気改質用ニツケル
金属触媒の製造法。
1. A nickel metal catalyst is produced by forming a film of a compound containing aluminum and a compound containing magnesium on the surface of porous nickel metal, oxidizing this at high temperature, and then reducing it in a reducing air stream. A method for producing a nickel metal catalyst for steam reforming of methane.
JP57021660A 1982-02-13 1982-02-13 Production of metallic nickel catalyst Granted JPS58139743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57021660A JPS58139743A (en) 1982-02-13 1982-02-13 Production of metallic nickel catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57021660A JPS58139743A (en) 1982-02-13 1982-02-13 Production of metallic nickel catalyst

Publications (2)

Publication Number Publication Date
JPS58139743A JPS58139743A (en) 1983-08-19
JPH0127775B2 true JPH0127775B2 (en) 1989-05-30

Family

ID=12061191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57021660A Granted JPS58139743A (en) 1982-02-13 1982-02-13 Production of metallic nickel catalyst

Country Status (1)

Country Link
JP (1) JPS58139743A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797244B1 (en) * 1999-05-27 2004-09-28 Dtc Fuel Cells Llc Compact light weight autothermal reformer assembly
US6746650B1 (en) * 1999-06-14 2004-06-08 Utc Fuel Cells, Llc Compact, light weight methanol fuel gas autothermal reformer assembly
JP4316323B2 (en) * 2002-10-04 2009-08-19 独立行政法人石油天然ガス・金属鉱物資源機構 Hydrocarbon reforming catalyst and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024184A (en) * 1973-06-21 1975-03-15
JPS5263888A (en) * 1975-11-20 1977-05-26 Inst Nabozofu Sutsukuzunitsuhi Method of manufacturing catalysts for reforming and methanizing hydrocarbons in gas phase
JPS52105589A (en) * 1976-03-03 1977-09-05 Sumitomo Electric Ind Ltd Catalyst
JPS571444A (en) * 1980-06-05 1982-01-06 Ishikawajima Harima Heavy Ind Co Ltd Preparation of nickel metal catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024184A (en) * 1973-06-21 1975-03-15
JPS5263888A (en) * 1975-11-20 1977-05-26 Inst Nabozofu Sutsukuzunitsuhi Method of manufacturing catalysts for reforming and methanizing hydrocarbons in gas phase
JPS52105589A (en) * 1976-03-03 1977-09-05 Sumitomo Electric Ind Ltd Catalyst
JPS571444A (en) * 1980-06-05 1982-01-06 Ishikawajima Harima Heavy Ind Co Ltd Preparation of nickel metal catalyst

Also Published As

Publication number Publication date
JPS58139743A (en) 1983-08-19

Similar Documents

Publication Publication Date Title
Baker et al. Catalytic gasification of graphite by chromium and copper in oxygen, steam and hydrogen
JP3409072B2 (en) Catalyst for selective hydrogenation of highly unsaturated hydrocarbon compounds in olefin compounds
WO2018192559A1 (en) Loaded highly selective dual-metal catalyst having core-shell structure, preparation method therefor and application thereof
JP6100341B2 (en) Method for producing a catalyst comprising a ruthenium-containing catalyst layer formed on the surface of a structure
JP2010253478A (en) Method for regenerating hydrogenation catalyst
JP7093971B2 (en) Method for manufacturing supported catalyst and carbon nanostructures
JP3007983B1 (en) Manufacturing method of ultra fine carbon tube
Gao et al. Effect of oxidation-reduction cycling on C2H6 hydrogenolysis: Comparison of Ru, Rh, Ir, Ni, Pt, and Pd on SiO2
JP3050558B2 (en) Catalyst support material and method for producing such support material
JPH0127775B2 (en)
JP2007075799A (en) Catalyst for hydrogen production, and its production method
JP2005528981A (en) Hydrometallurgical process for the production of supported catalysts
US2142948A (en) Olefine oxidation and catalyst
JPH0459052A (en) Catalyst for steam reforming
Phillips et al. Metal particle structure: Contrasting the influences of carbons and refractory oxides
JP2003519067A (en) Method for the selective oxidation of carbon monoxide in hydrogen-containing streams
JP2004261771A (en) Unsupported catalyst for directly decomposing hydrocarbon, production method thereof and production method of hydrogen and carbon by directly decomposing hydrocarbon
JPH0683787B2 (en) Catalyst for steam reforming
JPH01119340A (en) Catalyst using superfine carbon fiber
JPS59160538A (en) Manufacture of catalyst
KR101151836B1 (en) High-yield Supporting Method of Uniform Nano-catalyst on surface of the carbonized cellulose, And The Nano-catalyst Support Using The Same
JP3135539B2 (en) Improved steam reforming catalyst for hydrocarbons
JP2001511485A (en) Thin ceramic coating
US2794784A (en) Copper-containing catalysts
JPS5939182B2 (en) Method of catalyst activation