JPH0127767B2 - - Google Patents

Info

Publication number
JPH0127767B2
JPH0127767B2 JP56168213A JP16821381A JPH0127767B2 JP H0127767 B2 JPH0127767 B2 JP H0127767B2 JP 56168213 A JP56168213 A JP 56168213A JP 16821381 A JP16821381 A JP 16821381A JP H0127767 B2 JPH0127767 B2 JP H0127767B2
Authority
JP
Japan
Prior art keywords
exhaust gas
hole
blowhole
partition wall
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56168213A
Other languages
Japanese (ja)
Other versions
JPS5870814A (en
Inventor
Toshuki Tsukao
Masahiro Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP16821381A priority Critical patent/JPS5870814A/en
Priority to US06/354,431 priority patent/US4464185A/en
Publication of JPS5870814A publication Critical patent/JPS5870814A/en
Publication of JPH0127767B2 publication Critical patent/JPH0127767B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

【発明の詳細な説明】 本発明は自動車などの内燃機関から排出される
排気ガス中のカーボンを主成分とする微粒子を浄
化する排気ガス浄格用構造物に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas purification structure for purifying particulates containing carbon as a main component in exhaust gas discharged from an internal combustion engine of an automobile or the like.

従来この種のものとしては、多数の貫通孔を隔
壁により区画したハニカム構造をもつたものがあ
る。
Conventionally, this type of device has a honeycomb structure in which a large number of through holes are partitioned by partition walls.

上記従来例のものでは排気ガスを貫通孔に通す
ことにより、その隔壁内面にカーボンを主成分と
する微粒子を捕捉させるのであるが、その隔壁と
排気ガスとの相互作用が悪く、いわゆる吹抜現像
を生じて微粒子が効率よく捕捉されないという問
題があつた。
In the conventional system described above, fine particles mainly composed of carbon are captured on the inner surface of the partition wall by passing the exhaust gas through the through hole, but the interaction between the partition wall and the exhaust gas is poor, resulting in so-called blow-out development. There was a problem that fine particles were not captured efficiently.

この問題点を解決するものとして、本発明者は
先に特願昭56−32847号により改良案を出願して
いる。この先願のものは、前記貫通孔の一方の開
口端のうち互いに略均一に分散する略半数の開口
を閉鎖するとともに、その貫通孔の他方の開口端
のうち上記一方の開口が閉鎖されていない部分に
対応する開口を閉鎖し、かつ前記隔壁に、相隣れ
る貫通孔を連通する細孔を多数形成した構造であ
る。
In order to solve this problem, the present inventor has previously filed an improvement plan in Japanese Patent Application No. 56-32847. In this prior application, approximately half of the openings of one of the opening ends of the through hole are closed, and the openings are almost uniformly distributed, and one of the openings of the other opening of the through hole is not closed. It has a structure in which openings corresponding to the portions are closed and a large number of pores are formed in the partition wall to communicate adjacent through holes.

かかる先願の構造では、貫通孔の一方の開口側
から入つた排気ガスは隔壁の細孔を通つて隣りの
貫通孔へ流れ、他方の開口側から排出されるた
め、隔壁と排気ガスとの相互作用が向上し、カー
ボンを主成分とする微粒子の捕捉効率を前述従来
例に比べて向上できる。
In the structure of the prior application, the exhaust gas that enters from one opening side of the through hole flows through the pores of the partition wall to the adjacent through hole and is exhausted from the other opening side, so that the relationship between the partition wall and the exhaust gas is The interaction is improved, and the efficiency of trapping fine particles mainly composed of carbon can be improved compared to the conventional example described above.

しかしこのような先願の構造では、確かに微粒
子の捕捉効率を向上できるが、排気ガス通過時の
圧力損失が上昇し、例えば自動車等に搭載した時
には、エンジンの背圧上昇による燃費の悪化また
はエンジンの出力低減という問題が生じる。
However, although the structure of the prior application can certainly improve the trapping efficiency of particulates, the pressure loss when the exhaust gas passes through increases, and when installed in a car, for example, the back pressure of the engine increases, resulting in poor fuel efficiency or The problem arises that the engine output is reduced.

そこで、本発明は排気ガス通過時の圧力上昇が
抑制されかつ微粒子が効率よく捕捉できる排気ガ
ス浄化用構造物を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an exhaust gas purifying structure that suppresses the pressure increase during exhaust gas passage and can efficiently capture particulates.

そこで本発明は、貫通孔の一方の開口端を閉鎖
するとともに、貫通孔の他方の開口端のうち一方
の開口が閉鎖されていない部分に対応する開口を
閉鎖した排気ガス浄化用構造物において、排気ガ
スが貫通孔の一端側から他端側を通過する径路
に、細孔より径の大きい微粒子吹抜孔を設ける。
Therefore, the present invention provides an exhaust gas purification structure in which one opening end of a through hole is closed and an opening corresponding to a portion of the other opening end of the through hole where one opening is not closed is closed. A particulate blowhole having a diameter larger than the pore is provided in a path through which exhaust gas passes from one end of the through hole to the other end.

以下本発明を具体的実施例により詳細に説明す
る。
The present invention will be explained in detail below using specific examples.

実施例 1 第1図において、Aは本発明の排気ガス浄化用
構造物であり、外形形状は直径100mm、長さ120
mm、100セル/インチ2である。この構造物Aにお
いて、ハニカム構造体1を形成する多数の貫通孔
2の隔壁3には第2図に詳細構造を示すように多
数の細孔31(1ミクロン〜90ミクロン程度の分
布)と100ミクロン以上の微粒子吹抜孔32が均
一に分散しており、これらによつて相隣れる貫通
孔2が連通するようになつている。
Example 1 In Fig. 1, A is the exhaust gas purifying structure of the present invention, and its external shape is 100 mm in diameter and 120 mm in length.
mm, 100 cells/ inch2 . In this structure A, the partition wall 3 of the large number of through holes 2 forming the honeycomb structure 1 has a large number of pores 31 (distribution of about 1 micron to 90 microns) and 100 microns, as the detailed structure is shown in FIG. Particle blowholes 32 of micron size or larger are uniformly distributed, so that adjacent through-holes 2 communicate with each other.

ハニカム構造体1の一方の端面の貫通孔開口は
一方の方向の各列(第1図参照)およびこれを直
角な方向の各列(第1図参図)とも1つおきにハ
ニカム構造体1と同一原料のカバー部材4にて閉
鎖してある。またハニカム構造体1の他方の端面
では、上記一方の端面で開口が閉鎖されていない
貫通孔開口が上記と同様のカバー部材4にて閉鎖
してある。
The through-hole openings on one end face of the honeycomb structure 1 are arranged in every other row of the honeycomb structure 1 in each row in one direction (see FIG. 1) and in each row in the perpendicular direction (see FIG. 1). It is closed with a cover member 4 made of the same material as . Further, on the other end face of the honeycomb structure 1, the through-hole openings which are not closed on the one end face are closed with a cover member 4 similar to the above.

従つて、今この構造物Aを自動車の排気管の途
中に取り付けると、カーボン微粒子を含む排気ガ
スはI方向から構造物Aに流入し隔壁3を通つて
O方向へ流出する。そして、排気ガスが隔壁3を
通過する時一部は吹抜孔32、残りは細孔31を
通過する。今、吹抜孔32を通過した排気ガス中
のカーボン微粒子はほとんど捕集されないが、全
体的には、所定の捕集効率を有する(これについ
ては後述する。)。
Therefore, if this structure A is now installed in the middle of the exhaust pipe of an automobile, exhaust gas containing carbon particles will flow into the structure A from the I direction and flow out through the partition wall 3 in the O direction. When the exhaust gas passes through the partition wall 3, part of it passes through the blowhole 32 and the rest passes through the pores 31. Although the carbon particulates in the exhaust gas that has passed through the blowhole 32 are hardly collected, the overall collection efficiency is a certain level (this will be described later).

次に、上記構造物Aの製造方法について説明す
る。100メツシユ(149ミクロン)以下のコージエ
ライト微粉末1500gに、280〜325メツシユ(53〜
44ミクロン)の鉄粉50g、100〜145メツシユ
(149〜105ミクロン)の鉄粉5g、メチルセルロ
ース90gおよび水400c.c.を加えて混練する。得ら
れたスラリーを周知のハニカム成形用ダイスにて
押出成形し、これを80℃で10時間乾燥する。次
に、ハニカム構造体1の貫通孔2が開口する両端
面を、ハニカム構造体1と同一材料より作製した
セラミツク製グリーンシートにて覆い、所定の治
具を用いて第1図に示すように開口が1つおきに
なるようにする。他方の端面では前記一方の端面
が閉鎖してある貫通孔を開口する。これを1300〜
1470℃で5時間焼成して構造物Aを得た。
Next, a method for manufacturing the structure A will be described. Add 280~325 meshes (53~
50 g of iron powder of 44 microns), 5 g of iron powder of 100-145 mesh (149-105 microns), 90 g of methyl cellulose and 400 c.c. of water were added and kneaded. The obtained slurry is extruded using a well-known honeycomb molding die and dried at 80° C. for 10 hours. Next, both end surfaces of the honeycomb structure 1 where the through holes 2 are opened are covered with ceramic green sheets made from the same material as the honeycomb structure 1, and as shown in FIG. Make sure there are every other opening. The other end surface opens a through hole which is closed at the one end surface. This from 1300
Structure A was obtained by firing at 1470°C for 5 hours.

このようにして得られた構造物Aを2200c.c.デイ
ーゼルエンジンの排気管の途中に取り付けて捕集
特性を測定した結果、1時間平均の捕集効率は60
%、1時間後の圧力損失は250mmAqであつた。な
お、エンジン条件は1000回転無負荷で行つた。
Structure A obtained in this way was installed in the middle of the exhaust pipe of a 2200 c.c. diesel engine and its collection characteristics were measured. As a result, the hourly average collection efficiency was 60.
%, and the pressure loss after 1 hour was 250 mmAq. The engine conditions were 1000 rpm and no load.

次に、構造物Aの細孔分布を第3図に示す。第
3図より数ミクロン及び数十ミクロンの細孔31
がカーボン微粒子の捕集に有効的に作用し100ミ
クロン以上の細孔が吹抜孔32として作用したも
のと考えられる。なお、本実施例では100ミクロ
ン以上の細孔容積は全細孔容積の約10%であつ
た。
Next, the pore distribution of Structure A is shown in FIG. From Figure 3, pores 31 of several microns and tens of microns
It is thought that the pores of 100 microns or more acted as the blowholes 32 because they effectively acted to collect carbon fine particles. In this example, the volume of pores of 100 microns or more was approximately 10% of the total pore volume.

なお、本実施例ではセラミツク原料としてコー
ジライトを用いたが、アルミナ、ムライト、スポ
ジユーメン等のセラミツク原料なら何れを用いて
もよい。また、細孔、吹抜孔を形成するための添
加物としては鉄粉の他に、銅粉末、ニツケル粉
末、コバルト粉末、長石の粉末等のセラミツクの
焼成温度以下で共融あるいは固溶あるいは溶融し
て液相を生じる物質ならいずれを用いてもよい。
更に、上記添加物の粒径を調整して細孔分布も第
4図のようにしても勿論よい。
Although cordierite was used as the ceramic raw material in this embodiment, any ceramic raw material such as alumina, mullite, spodumene, etc. may be used. In addition to iron powder, additives for forming pores and blowholes include copper powder, nickel powder, cobalt powder, feldspar powder, etc., which are eutectic, solid solution, or melted at below the ceramic firing temperature. Any substance that produces a liquid phase may be used.
Furthermore, it is of course possible to adjust the particle size of the additive to obtain a pore distribution as shown in FIG. 4.

次に、上記実施例1において、鉄粉の量および
粒径を変化させて作製した構造物で100ミクロン
以上の吹抜孔容積割合と1時間平均の捕集効率、
1時間後の圧力損失の関係を実施例1と同様にし
て測定した結果を第5図に示す。
Next, in the above Example 1, the volume ratio of blowholes of 100 microns or more and the hourly average collection efficiency of the structures fabricated by varying the amount and particle size of iron powder,
The relationship between pressure loss after 1 hour was measured in the same manner as in Example 1, and the results are shown in FIG.

第5図より、全細孔容積(細孔と吹抜孔との合
計容積)に対する100ミクロン以上の吹抜孔容積
の割合が1%未満であると圧力損失は500mmAg
を超えるため、エンジンの出力ダウン、燃費の悪
化を生じるため好ましくない、また、20%よりも
多いと捕集効率が50%より小さくなるため、好ま
しくない。従つて、100ミクロン以上の吹抜孔容
積の割合は全体の1〜20%が適当である。
From Figure 5, if the ratio of the volume of the blow hole of 100 microns or more to the total pore volume (total volume of the pore and the blow hole) is less than 1%, the pressure loss is 500 mmAg.
If it exceeds 20%, it is undesirable because it causes a reduction in engine output and worsens fuel efficiency, and if it exceeds 20%, it is undesirable because the collection efficiency becomes less than 50%. Therefore, it is appropriate that the volume of the blowholes of 100 microns or more be 1 to 20% of the total volume.

この実施例において、吹抜孔32は100ミクロ
ン以上の径をもち、また細孔31は吹抜孔32よ
り小さい径で第3図もしくは第4図の細孔分布を
もつているが、これらに限定されることはない。
つまり、本発明では吹抜孔32によつて圧損上昇
を抑制しようとするものであるから、その吹抜孔
32と細孔31とは相対的に径の大きさが異なつ
ておればよい。従つて、用途、使用条件などによ
つてそれらの径の大きさは任意に調整可能である
ことは言うまでもない。但し、吹抜孔の最大径は
1個の貫通孔の相当円直径までである。これを超
えると、排気ガスのほとんどはその吹込孔を流れ
てしまい、微粒子の捕捉が行なわれない。このこ
とは後述する実施例の吹抜孔も同じことがいえ
る。
In this embodiment, the blowhole 32 has a diameter of 100 microns or more, and the pores 31 have a smaller diameter than the blowhole 32 and have the pore distribution shown in FIG. 3 or 4, but are not limited to these. It never happens.
In other words, since the present invention aims to suppress an increase in pressure loss by using the blowhole 32, it is sufficient that the blowhole 32 and the pores 31 have relatively different diameters. Therefore, it goes without saying that their diameters can be arbitrarily adjusted depending on the application, usage conditions, etc. However, the maximum diameter of the blowhole is up to the equivalent circular diameter of one through hole. If this is exceeded, most of the exhaust gas will flow through the inlet, and particulates will not be captured. The same can be said of the blowholes in the examples described later.

また、本発明においては貫通孔の断面形状は正
方形に限らず、長方形、三角形、六角形、円形等
があり、いずれも使用できる。
Further, in the present invention, the cross-sectional shape of the through hole is not limited to a square, but may be rectangular, triangular, hexagonal, circular, etc., and any of them can be used.

実施例 2 本実施例の構造物Aは実施例1と類似な構造
(ただし第3図に破線で細孔分布を示すように100
ミクロン以上の細孔は存在しない)であるが、こ
の実施例2では一部の貫通孔2を例えば第6図
a,bに示すように両端面とも閉鎖しないことに
より、吹抜孔5を設けたものである。本実施例で
得られた構造物Aでは両端面とも閉鎖しない貫通
孔開口面積の割合はハニカム構造体1の片面の貫
通孔開口面積(閉鎖する前の片面の全開口面積)
の約4%であつた。
Example 2 Structure A of this example has a structure similar to that of Example 1 (however, the pore distribution is shown by the broken line in Fig. 3).
However, in Example 2, some of the through-holes 2 are not closed on both end faces, as shown in FIGS. 6a and b, to provide blowholes 5. It is something. In structure A obtained in this example, the ratio of the opening area of the through holes that are not closed on both end faces is the opening area of the through holes on one side of the honeycomb structure 1 (total opening area on one side before closing)
It was about 4% of the total.

本構造物Aを実施例1と同様にして捕集特性を
測定した結果1時間平均の捕集効率は63%1時間
後の圧力損失は280mmAqであつた。
The collection characteristics of Structure A were measured in the same manner as in Example 1. As a result, the 1-hour average collection efficiency was 63%, and the pressure loss after 1 hour was 280 mmAq.

次に、実施例1と同様に両端面とも閉鎖しない
貫通孔開口面積の割合を変えた時の結果を第7図
に示す。第7図より、0.5%未満あるいは10%よ
り多い場合は実施例1と同様な理由により好まし
くない。
Next, as in Example 1, FIG. 7 shows the results obtained when the ratio of the opening area of the through hole, which is not closed on both end faces, was changed. From FIG. 7, it is seen that less than 0.5% or more than 10% is not preferable for the same reason as in Example 1.

なお、両端面とも閉鎖しない貫通孔は第6図
a,bのような配置のみならず、ランダムに分散
してもよいし、一部分に集合させても勿論よい。
Incidentally, the through-holes which are not closed on both end faces may not only be arranged as shown in FIGS. 6a and 6b, but may also be randomly distributed or may be gathered in a portion.

実施例 3 本実施例の構造物Aは実施例1と類似な構造
(ただし第3図に破線で示すように隔壁には100ミ
クロン以上の細孔は存在しない)であるが、隔壁
3に第8図に示すように例えばドリル等により機
械的に、隔壁3の細孔より径の大きい例えば100
ミクロン以上の穴を設けてこれを孔抜孔6とした
ものである。
Example 3 Structure A of this example has a structure similar to that of Example 1 (however, as shown by the broken line in FIG. 3, there are no pores of 100 microns or more in the partition wall), but the partition wall 3 has a structure similar to that of Example 1. As shown in FIG.
A hole of micron size or more is provided and used as a punch hole 6.

この穴6の、片面の貫通孔2の開口面積(閉鎖
する前の片面の全開口面積)に占める割合によつ
て圧力損失、捕集効率がどのように変化するかを
実施例1と同じ要領で測定した結果、実施例2と
同じ理由で穴6の合計面積は上記貫通孔2の開口
面積の0.5〜10%占めるのが適当であることがわ
かつた。
How the pressure loss and collection efficiency change depending on the ratio of this hole 6 to the opening area of the through-hole 2 on one side (total opening area on one side before closing) was investigated in the same manner as in Example 1. As a result of the measurement, it was found that for the same reason as in Example 2, the total area of the holes 6 should account for 0.5 to 10% of the opening area of the through holes 2.

なお、実施例3において、吹抜孔6の径は100
ミクロン以上となつているが、これも実施例1の
ところで説明したのと同じ理由で隔壁の細孔に対
し相対的に大きければよく、特に100ミクロン以
上に限定されるものではない。但し、実施例1と
同じ理由により吹抜孔6の最大径は決定される。
In addition, in Example 3, the diameter of the blowhole 6 is 100 mm.
Although the diameter is 100 microns or more, it is not particularly limited to 100 microns or more, as long as it is relatively large with respect to the pores of the partition wall for the same reason as explained in Example 1. However, the maximum diameter of the blowhole 6 is determined for the same reason as in the first embodiment.

以上詳述したように、本発明においては排気ガ
ス中のカーボンを主成分とする微粒子を効率よく
捕捉できるとともに、排気ガス通過時の圧損上昇
を抑制できる。
As described in detail above, in the present invention, it is possible to efficiently capture fine particles whose main component is carbon in the exhaust gas, and it is also possible to suppress an increase in pressure drop when the exhaust gas passes through the exhaust gas.

従つて、本発明は実用性の高い排気ガス浄化用
構造物を提供できるものである。
Therefore, the present invention can provide a highly practical exhaust gas purifying structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構造物の一実施例を示す斜視
図、第2図は第1図の要部を示す模式的断面図、
第3図および第4図は第2図における隔壁の細孔
径と細孔容積との関係を示す特性図、第5図は第
1図および第2図の構造物の作用効果の説明に供
する特性図、第6図は本発明の他の実施例を示す
平面図で、第6図aは構造物の一方の端部から、
第6図bはその他方の端部から各々見た図、第7
図は第6図の構造物の作用効果の説明に供する特
性図、第8図は本発明の更に他の実施例を示す斜
視図である。 2……貫通孔、3……隔壁、31……細孔、3
2……吹抜孔、4……カバー部材、5,6……吹
抜孔。
FIG. 1 is a perspective view showing an embodiment of the structure of the present invention, FIG. 2 is a schematic sectional view showing the main part of FIG. 1,
Figures 3 and 4 are characteristic diagrams showing the relationship between the pore diameter and pore volume of the partition wall in Figure 2, and Figure 5 is a characteristic diagram for explaining the effects of the structure in Figures 1 and 2. FIG. 6 is a plan view showing another embodiment of the present invention, and FIG. 6a is a plan view showing another embodiment of the present invention.
Figure 6b is a view viewed from the other end, Figure 7
The figure is a characteristic diagram for explaining the function and effect of the structure shown in FIG. 6, and FIG. 8 is a perspective view showing still another embodiment of the present invention. 2... Through hole, 3... Partition wall, 31... Pore, 3
2...Stairwell hole, 4...Cover member, 5, 6...Stairwell hole.

Claims (1)

【特許請求の範囲】 1 排気ガスを多数の貫通孔に通すことにより、
その排気ガス中のカーボンを主成分とする微粒子
を捕捉し浄化するようにした排気ガス浄化用構造
物において、前記各貫通孔を区画する隔壁に、相
隣れる前記貫通孔を連通する多数の細孔を形成
し、前記貫通孔の一方の開口端のうち互いに略均
一に分散する略半数の開口を閉鎖するとともに、
前記貫通孔の他方の開口端のうち前記一方の開口
が閉鎖されていない部分に対応する開口を閉鎖し
た構成を基本構造とし、 前記排気ガスが前記貫通孔の一端側から他端側
を通過する経路に、前記細孔より径の大きい微粒
子吹抜孔を設けることを特徴とする排気ガス浄化
用構造物。 2 前記微粒子吹抜孔が前記隔壁に形成されてい
ることを特徴とする特許請求の範囲第1項記載の
排気ガス浄化用構造物。 3 前記貫通孔の両端間を直接に連通して微粒子
吹抜孔である非閉鎖領域を形成することを特徴と
する特許請求の範囲第1項又は第2項記載の排気
ガス浄化用構造物。 4 前記隔壁に設けた吹抜孔の容積は、その吹抜
孔と前記細孔との合計した孔容積の1〜20%占め
ていることを特徴とする特許請求の範囲第2項記
載の排気ガス浄化用構造物。 5 前記吹抜孔を構成する前記非閉鎖領域の面積
は、前記貫通孔の一方の側において閉鎖する前の
開口面積の0.5〜10%占めていることを特徴とす
る特許請求の範囲第3項記載の排気ガス浄化用構
造物。 6 前記隔壁に設けた吹抜孔は、前記構造物の外
部より前記隔壁に対して機械的に設けられたもの
であり、その吹抜孔の面積は前記貫通孔の一方の
側において閉鎖する前の開口面積の0.5〜10%占
めていることを特徴とする特許請求の範囲第1項
記載の排気ガス浄化用構造物。
[Claims] 1. By passing exhaust gas through a large number of through holes,
In an exhaust gas purification structure that captures and purifies fine particles whose main component is carbon in the exhaust gas, a partition wall that partitions each of the through holes has a large number of narrow holes that communicate with each other. forming a hole, and closing approximately half of the openings that are substantially uniformly distributed among one open end of the through hole, and
The basic structure is such that an opening corresponding to a portion of the other open end of the through hole that is not closed is closed, and the exhaust gas passes from one end side of the through hole to the other end side. 1. A structure for purifying exhaust gas, characterized in that a particulate blowhole having a diameter larger than the pore is provided in the path. 2. The exhaust gas purifying structure according to claim 1, wherein the particulate blowhole is formed in the partition wall. 3. The structure for exhaust gas purification according to claim 1 or 2, wherein both ends of the through hole are directly connected to form a non-closed area that is a particulate blowhole. 4. Exhaust gas purification according to claim 2, characterized in that the volume of the blowhole provided in the partition wall accounts for 1 to 20% of the total volume of the blowhole and the pores. Structures for use. 5. The area of the non-closed region constituting the blowhole is 0.5 to 10% of the opening area on one side of the through-hole before it is closed, according to claim 3. Exhaust gas purification structure. 6. The blow hole provided in the partition wall is mechanically provided to the partition wall from the outside of the structure, and the area of the blow hole is equal to the area of the opening before closing on one side of the through hole. The structure for exhaust gas purification according to claim 1, characterized in that the structure occupies 0.5 to 10% of the area.
JP16821381A 1981-03-07 1981-10-20 Structure for purifying exhaust gas Granted JPS5870814A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16821381A JPS5870814A (en) 1981-10-20 1981-10-20 Structure for purifying exhaust gas
US06/354,431 US4464185A (en) 1981-03-07 1982-03-03 Exhaust gas filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16821381A JPS5870814A (en) 1981-10-20 1981-10-20 Structure for purifying exhaust gas

Publications (2)

Publication Number Publication Date
JPS5870814A JPS5870814A (en) 1983-04-27
JPH0127767B2 true JPH0127767B2 (en) 1989-05-30

Family

ID=15863878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16821381A Granted JPS5870814A (en) 1981-03-07 1981-10-20 Structure for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS5870814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104953A (en) * 2008-10-31 2010-05-13 Ngk Insulators Ltd Honeycomb structure and honeycomb catalyst body
WO2011067823A1 (en) * 2009-12-01 2011-06-09 イビデン株式会社 Honeycomb filter and exhaust gas purification device
WO2016009841A1 (en) * 2014-07-16 2016-01-21 住友化学株式会社 Honeycomb filter
JP2018143957A (en) * 2017-03-06 2018-09-20 イビデン株式会社 Manufacturing method of honeycomb filter

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129015A (en) * 1984-11-24 1986-06-17 Nippon Denso Co Ltd Filter for purifying exhaust gas and its preparation
JP2578176B2 (en) * 1988-08-12 1997-02-05 日本碍子株式会社 Porous ceramic honeycomb filter and method for producing the same
JPH0738930B2 (en) * 1990-03-30 1995-05-01 日本碍子株式会社 Manufacturing method of porous ceramic filter
JP2726616B2 (en) * 1993-12-15 1998-03-11 日本碍子株式会社 Porous ceramic honeycomb filter
JP5142003B2 (en) * 2004-12-16 2013-02-13 日立金属株式会社 Honeycomb structure
CN100393391C (en) * 2006-03-06 2008-06-11 杭州川井电气有限公司 Filter for air cleaning device
JP2009154124A (en) * 2007-12-27 2009-07-16 Ngk Insulators Ltd Partially unsealed dpf
JP5242213B2 (en) * 2008-03-26 2013-07-24 日本碍子株式会社 Honeycomb structure
JP5242214B2 (en) * 2008-03-28 2013-07-24 日本碍子株式会社 Honeycomb structure and catalyst body comprising the honeycomb structure
JP5580236B2 (en) * 2011-03-29 2014-08-27 日本碍子株式会社 Ceramic filter
JP2012152750A (en) * 2012-04-17 2012-08-16 Hitachi Metals Ltd Honeycomb structure
EP3078821B1 (en) * 2013-12-02 2018-01-31 Cataler Corporation Exhaust gas purification device and particulate filter
JP6635757B2 (en) * 2014-11-10 2020-01-29 日本碍子株式会社 Honeycomb filter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140388A (en) * 1974-10-03 1976-04-05 Ngk Insulators Ltd
JPS55114324A (en) * 1979-02-27 1980-09-03 Noritake Co Ltd Filter unit
JPS56124418A (en) * 1979-12-03 1981-09-30 Gen Motors Corp Ceramic filter for particle in diesel exhaust
JPS56129020A (en) * 1980-03-15 1981-10-08 Ngk Insulators Ltd Ceramic filter
JPS57107215A (en) * 1980-12-25 1982-07-03 Kyocera Corp Ceramic filter
JPS57201518A (en) * 1981-06-04 1982-12-10 Toyota Motor Corp Exhaust gas filter device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140388A (en) * 1974-10-03 1976-04-05 Ngk Insulators Ltd
JPS55114324A (en) * 1979-02-27 1980-09-03 Noritake Co Ltd Filter unit
JPS56124418A (en) * 1979-12-03 1981-09-30 Gen Motors Corp Ceramic filter for particle in diesel exhaust
JPS56129020A (en) * 1980-03-15 1981-10-08 Ngk Insulators Ltd Ceramic filter
JPS57107215A (en) * 1980-12-25 1982-07-03 Kyocera Corp Ceramic filter
JPS57201518A (en) * 1981-06-04 1982-12-10 Toyota Motor Corp Exhaust gas filter device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104953A (en) * 2008-10-31 2010-05-13 Ngk Insulators Ltd Honeycomb structure and honeycomb catalyst body
WO2011067823A1 (en) * 2009-12-01 2011-06-09 イビデン株式会社 Honeycomb filter and exhaust gas purification device
WO2016009841A1 (en) * 2014-07-16 2016-01-21 住友化学株式会社 Honeycomb filter
JP2018143957A (en) * 2017-03-06 2018-09-20 イビデン株式会社 Manufacturing method of honeycomb filter

Also Published As

Publication number Publication date
JPS5870814A (en) 1983-04-27

Similar Documents

Publication Publication Date Title
US4464185A (en) Exhaust gas filter
JPH0127767B2 (en)
US6800107B2 (en) Exhaust gas purifying filter
JP3925154B2 (en) Exhaust gas purification filter
US4390355A (en) Wall-flow monolith filter
EP1450015B1 (en) Honeycomb filter and exhaust gas purification system
JP5813965B2 (en) Honeycomb structure and exhaust gas purification device
KR100874398B1 (en) Honeycomb Structure
CN102625727B (en) Particulate filters and methods of filtering particulate matter
JPS5928010A (en) Structure to purify exhaust gas
JP3272746B2 (en) Diesel particulate filter
US4423090A (en) Method of making wall-flow monolith filter
JPH0550323B2 (en)
JPWO2015022937A1 (en) Particulate filter
EP1242160A1 (en) Low aspect ratio diesel exhaust filter
KR101480811B1 (en) Ceramic honeycomb filter
CN105263601A (en) Exhaust gas purification filter
JP5611240B2 (en) Filtration structure for improving the performance of particulate filters
US7128961B2 (en) Honeycomb structure, method for manufacturing honeycomb structure, and exhaust gas purification system using honeycomb structure
CN109833693B (en) Honeycomb filter
JP5749940B2 (en) Exhaust gas purification device
JP4442625B2 (en) Exhaust gas purification filter
JP2001096112A (en) Honeycomb filter and honeycomb filter aggregate
JP6485162B2 (en) Exhaust gas purification filter
US10857531B2 (en) Honeycomb structure