JPH01277494A - Production of optical active alcohol - Google Patents

Production of optical active alcohol

Info

Publication number
JPH01277494A
JPH01277494A JP63103851A JP10385188A JPH01277494A JP H01277494 A JPH01277494 A JP H01277494A JP 63103851 A JP63103851 A JP 63103851A JP 10385188 A JP10385188 A JP 10385188A JP H01277494 A JPH01277494 A JP H01277494A
Authority
JP
Japan
Prior art keywords
reaction
optically active
enzyme
active alcohol
hsdh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63103851A
Other languages
Japanese (ja)
Other versions
JPH045436B2 (en
Inventor
Shoichi Kise
木瀬 昇一
Mikio Hayashida
林田 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63103851A priority Critical patent/JPH01277494A/en
Publication of JPH01277494A publication Critical patent/JPH01277494A/en
Publication of JPH045436B2 publication Critical patent/JPH045436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To produce an optically active alcohol in high efficiency, with little production of by-product, by reacting a ketone compound with a 3alpha- hydroxysteroid dehydrogenase (HSDH). CONSTITUTION:HSDH is prepared by purifying an enzyme originated from Cellulomonas turbata KE31 strain. An enzyme liquid is produced by dissolving 0.01-200mg of the HSDH in 1ml of a 0.1M phosphate buffer solution having pH of 5.5-8. The enzyme liquid is added with a ketone compound (e.g. 4- chloroaceto-acetic acid ethyl ester) of an amount corresponding to 10-1,000 times the weight of the enzyme and with a reduced nicotinamide adenine dinucleotide of an amount equimolar to the ketone compound used as a raw material and optionally Tween 80, etc., and the components are made to react at 15-40 deg.C for 1hr-7 days under agitation. The progress of the reaction is traced by gas chromatography and the reaction is terminated when the raw material is disappeared. The obtained reaction liquid is subjected to centrifugal separation, extraction and purification to recover an optically active alcohol.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は3α−ヒドロキシステロイド脱水素酵素を作用
させることを特徴とする光学活性なアルコールの新規な
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel method for producing optically active alcohol, which is characterized by the action of 3α-hydroxysteroid dehydrogenase.

〔従来の技術] 光学活性アルコールは医薬、農薬、生理活性物質の合成
中間体および強誘電性+A料に用いられている。たとえ
ば4−クロロ−3(S)−ヒドロキシブタン酸エチルの
誘導体であるD−カルニチンはカルニチンアセチルトラ
ンスフェラーゼを拮抗的に阻害するような生理活性を有
する。また光学活性なR−(−)−2−オクタツールや
2−メチル−4(S)−ヒドロキシペンクンは強誘電性
材料の素材に用いることができる。
[Prior Art] Optically active alcohols are used in pharmaceuticals, agricultural chemicals, synthetic intermediates for physiologically active substances, and ferroelectric +A materials. For example, D-carnitine, which is a derivative of ethyl 4-chloro-3(S)-hydroxybutanoate, has physiological activity that competitively inhibits carnitine acetyltransferase. Furthermore, optically active R-(-)-2-octatool and 2-methyl-4(S)-hydroxypenkune can be used as raw materials for ferroelectric materials.

従来、ケトン化合物を光学活性なアルコールに変換する
方法としては、化学触媒を用いる方法、あるいは生体触
媒を用いる方法が知られている。
Conventionally, methods using chemical catalysts or methods using biocatalysts are known as methods for converting ketone compounds into optically active alcohols.

化学触媒を用いる方法はNaBH4やLiAllI4を
用いて還元した場合、光学収率が非常に低くラセミ体が
できる。すなわちこのラセミ体を酒石酸やD−マンデル
酸のような光学分割剤を用いて光学分割したのち、光学
活性なアルコールを得るという繁雑なステップを踏まざ
るを得ない。また最近では光学活性な配位子を持ったキ
ラル触媒を用いて光学活性なアルコールを得ようと試み
られているが、極低温で反応する必要のあることやキラ
ル触媒が高価でかつ再生が困難であることが問題となっ
ている。
In the method using a chemical catalyst, when reduction is performed using NaBH4 or LiAllI4, the optical yield is very low and a racemate is produced. That is, it is necessary to take the complicated steps of optically resolving this racemate using an optical resolving agent such as tartaric acid or D-mandelic acid, and then obtaining an optically active alcohol. Recently, attempts have been made to obtain optically active alcohols using chiral catalysts with optically active ligands, but the reaction must be carried out at extremely low temperatures, and chiral catalysts are expensive and difficult to regenerate. The problem is that

一方、微生物、植物、動物などの生体触媒を用いる方法
は、一般に光学収率が高いという利点を有する。たとえ
ば4−クロロ−3(S)−ヒドロキシブタン酸エチルは
「アニュアル・ニューヨーク、アカデミツク・サイエン
ス434巻、186493 (1984) 1に記載さ
れているように、種々の微生物によって発酵生産される
ことが明らかになっている。
On the other hand, methods using biocatalysts such as microorganisms, plants, and animals generally have the advantage of high optical yield. For example, ethyl 4-chloro-3(S)-hydroxybutanoate is clearly produced by fermentation by various microorganisms, as described in "Annual New York, Academic Science Vol. 434, 186493 (1984) 1. It has become.

(発明が解決しようとする課題〕 このように化学触媒を用いて光学活性なアルコールを合
成するのは、現在のところ技術的に困難な問題が横たわ
っている。一方、微生物による発酵生産の方法では原料
あるいは生産物による菌体の成育阻害が起こるため、原
料を多く仕込めないという問題点がある。また発酵液か
ら生産物を採取する際、副産物を除去しなければならな
いなど精製に手間がかかるという問題点がある。
(Problem to be solved by the invention) At present, there are technical difficulties in synthesizing optically active alcohols using chemical catalysts.On the other hand, fermentation production using microorganisms There is a problem in that it is not possible to use a large amount of raw materials because the growth of bacterial cells is inhibited by the raw materials or products.Also, when collecting the products from the fermentation liquid, by-products must be removed, making purification time-consuming. There is a problem.

本発明の目的は、このような問題点を解決し、副産物が
少く、効率よく光学活性アルコールを製造する方法を提
供することである。
An object of the present invention is to solve these problems and provide a method for efficiently producing optically active alcohol with fewer by-products.

〔課題を解決するための手段] 本発明者らは微生物由来の酵素を用いて、光学活性なア
ルコールを製造する方法を鋭意検討した結果、3α−ヒ
ドロキシステロイド脱水素酵素を用いれば効率よくケト
ン化合物を光学活性なアルコールに変換することを見い
出し、本発明を完成した。
[Means for Solving the Problems] The present inventors have intensively investigated a method for producing optically active alcohol using enzymes derived from microorganisms, and have found that ketone compounds can be efficiently produced using 3α-hydroxysteroid dehydrogenase. The present invention was completed based on the discovery that the compound can be converted into an optically active alcohol.

即ち、本発明ば3α−ヒドロキシステロイド脱水素酵素
を用いて、ηトン化合物を光学活性アルコールに変換す
ることを特徴とする光学活性アルコールの製造方法であ
る。
That is, the present invention is a method for producing an optically active alcohol, which is characterized by converting a ηton compound into an optically active alcohol using 3α-hydroxysteroid dehydrogenase.

本発明に使用する3α−ヒドロキシステロイド脱水素酵
素(以後3α−HS D I+と略す)は、セルロモナ
ス・ツルバタKE31株〔微工研菌寄第9059号〕由
来のものが好ましいが、これに限定されない。
The 3α-hydroxysteroid dehydrogenase (hereinafter abbreviated as 3α-HS D I+) used in the present invention is preferably derived from Cellulomonas turbata strain KE31 [Feikoken Bibori No. 9059], but is not limited thereto. .

この酵素は、特願昭62−69598号に記載されてい
る精製法によって純品のものが得られる。この純品の酵
素はもちろん使用することができるが、硫安分画あるい
はDEAE−セファロースクロマトグラフィーで得られ
る半端製品も使うことができる。このような酵素を用い
て光学活性なアルコールを製造するにあたり、例えば精
製酵素0.01〜200mgをpH5,5〜a、 6、
好ましくはpH6,5〜7.5 (7)0.1Nリン酸
緩衝液1−にとかし、原料のケトン化合物(例えば4−
クロロアセ1〜酢酸エチル、2−オクタノン、メチルイ
ソブチルケトンなど)および原料と等モルの還元型ニコ
チンアミドアデニンジヌクレオチド(NADH)を添加
する。この反応では、添加したNADHは酸化されてニ
コチンアミドアデニンジヌクレオチド(NAD)になる
ため、生産物と等モルのNADHを加える必要がある。
This enzyme can be obtained in pure form by the purification method described in Japanese Patent Application No. 62-69598. Of course, this pure enzyme can be used, but semi-finished products obtained by ammonium sulfate fractionation or DEAE-Sepharose chromatography can also be used. When producing an optically active alcohol using such an enzyme, for example, 0.01 to 200 mg of the purified enzyme is mixed at pH 5.5 to a, 6,
Preferably pH 6.5-7.5 (7) Dissolve in 0.1N phosphate buffer 1-, and add the starting ketone compound (e.g. 4-
(chloroacetic acid 1 to ethyl acetate, 2-octanone, methyl isobutyl ketone, etc.) and reduced nicotinamide adenine dinucleotide (NADH) in an equimolar amount to the raw material are added. In this reaction, the added NADH is oxidized to nicotinamide adenine dinucleotide (NAD), so it is necessary to add an equimolar amount of NADH to the product.

しかし、高価なNADHを有効に利用するためには、N
ADをNADHにするような酵素、例えばグルコース脱
水素酵素(以下GDHと略す、アマノ製薬社製)や耐熱
性のグルコース−6−リン酸脱水素酵素(ユニアカ社製
)、蟻酸脱水素酵素〔天野製薬社、ヘーリンガー社、メ
ルク社製など)、あるいは3α−H3DII (KE3
1株由来精製酵素やシグマ社製)などを共存させれば原
料の1/1o〜1/10,000モルのNAD (1(
)を添加するだけで反応させることもできる。ケトン化
合物の添加量は、その種類によって異なるが、酵素重量
の約10〜1000倍である。これらを加えて、15〜
40°C1好ましくは25〜35°Cで1時間から1週
間撹拌しながら反応を行う。反応液にアエロゾルOTや
ツイーン80などの界面活性剤を添加した場合、より効
率良く反応させることができる。またDEAE−セファ
ロースやデュオライト八561のようなイオン交換樹脂
を反応系に加えることによって、反応速度を向上させた
り酵素を安定に保ちながら反応を続けることもできる。
However, in order to effectively utilize expensive NADH, N
Enzymes that convert AD to NADH, such as glucose dehydrogenase (hereinafter abbreviated as GDH, manufactured by Amano Pharmaceutical Co., Ltd.), heat-stable glucose-6-phosphate dehydrogenase (manufactured by Uniaca Co., Ltd.), and formate dehydrogenase [Amano Pharmaceutical Co., Ltd.] Pharmaceutical, Heringer, Merck, etc.), or 3α-H3DII (KE3
If a purified enzyme derived from a single strain (manufactured by Sigma) is coexisting, NAD (1(
) can also be reacted by simply adding. The amount of ketone compound added varies depending on the type, but is about 10 to 1000 times the weight of the enzyme. Add these, 15~
The reaction is carried out at 40° C., preferably from 25 to 35° C., with stirring for 1 hour to 1 week. When a surfactant such as Aerosol OT or Tween 80 is added to the reaction solution, the reaction can be carried out more efficiently. Furthermore, by adding an ion exchange resin such as DEAE-Sepharose or Duolite 8561 to the reaction system, the reaction rate can be increased or the reaction can be continued while keeping the enzyme stable.

反応の経時変化をガスクロマトグラフィー (PEG2
0Mキャピラリーカラム、 25m、 50→150’
C,10°C/minで昇温分析)で追跡し、原料がほ
ぼ失くなった時点で反応を止め、遠心分離することによ
って、水層を分は生成物を採取する。回収率を高めるた
めには水中に溶けている生産物を酢酸エチル、ヘキサン
、ジエチルエーテル、1.2−ジクロロエタン、クロロ
ホルムなどの溶媒を用いて抽出する。精製品が必要であ
れば、これらの生産物を蒸留等によって精製し、目的の
光学活性なアルコールを得ることができる。
Gas chromatography (PEG2
0M capillary column, 25m, 50→150'
The reaction is stopped when almost all of the raw material is consumed, and the aqueous layer is separated by centrifugation and the product is collected. To increase the recovery rate, the product dissolved in water is extracted using a solvent such as ethyl acetate, hexane, diethyl ether, 1,2-dichloroethane, or chloroform. If a purified product is required, these products can be purified by distillation or the like to obtain the desired optically active alcohol.

〔実施例〕〔Example〕

実施例1.光学活性4−クロロ−3(S)−ヒドロキシ
ブタン酸エチルの製法 0.2M NaC]を含む0,1Mリン酸緩衝液(pH
7,0)18m1に1.5. (8,33ミリモル)の
グルコース、7 mgの3 a −H3DI (KE3
1株由来の精製酵素、200/mg蛋白)、NADH再
生用酵素として2.5 mgのGDH(40U/mg蛋
白)および191+++g(0,25ミリモル)のNA
DHを溶かし、これに1.2 g(7,29ミリモル)
の4−クロロアセト酢酸エチルを添加して良く撹拌しな
がら20°Cで反応した。反応が進むにつれてpHが低
下するので、IMのNazCO,、でpHを7.0に調
整し反応を続けた。3.5時間反応後、反応液に酢酸エ
チル(20m1x2回)を加えて生成物を抽出した。抽
出液にNa25O,を入れて水分を除去した後、さらに
モルキュラーシーブを加えて乾燥した。
Example 1. Method for producing optically active ethyl 4-chloro-3(S)-hydroxybutanoate 0.1M phosphate buffer containing 0.2M NaC (pH
7,0) 1.5 in 18m1. (8,33 mmol) of glucose, 7 mg of 3a-H3DI (KE3
Purified enzyme derived from one strain, 200/mg protein), 2.5 mg of GDH (40 U/mg protein) as an enzyme for NADH regeneration, and 191+++ g (0.25 mmol) of NA
Dissolve DH and add 1.2 g (7.29 mmol) to it.
Ethyl 4-chloroacetoacetate was added thereto, and the mixture was reacted at 20°C with good stirring. As the reaction progressed, the pH decreased, so the pH was adjusted to 7.0 with IM NazCO, and the reaction was continued. After reacting for 3.5 hours, ethyl acetate (20ml x 2) was added to the reaction solution to extract the product. After adding Na25O to the extract to remove moisture, molecular sieves were further added for drying.

標品に混在する酢酸エチルを減圧下で除去し、750m
g(4,5ミリモル)の4−クロロ−3−ヒドロキシブ
タン酸エチルを得た。これを3,5−ダニ1〜ロフエニ
ルイソシアネ−1・(以下DNPIと略す)で誘導体化
したあと液体クロマトグラフィー(カラム: 0A−2
100,住友化学製、溶媒:ヘキサン/クロロホルム/
エタノール−50/15/1 、流速lIn1/m1n
)によって分析した。上述の酵素反応によって生成した
3−ヒドロキシン体中には99.1%の4−クロロ−3
(S)−ヒドロキシブタン酸エチルと0.9%の4−ク
ロロ−3(R)−ヒドロキシブタン酸エチルが含まれて
おり、3(S)−ヒドロキシ体が優先的に生成した。4
−クロロ−3(S)−ヒドロキシブタン酸エチルの収率
は62%であった。
Ethyl acetate mixed in the sample was removed under reduced pressure, and 750 m
g (4.5 mmol) of ethyl 4-chloro-3-hydroxybutanoate was obtained. This was derivatized with 3,5-dani-1-lophenylisocyanate-1 (hereinafter abbreviated as DNPI) and then subjected to liquid chromatography (column: 0A-2).
100, manufactured by Sumitomo Chemical, solvent: hexane/chloroform/
Ethanol-50/15/1, flow rate lIn1/m1n
) was analyzed. 99.1% of 4-chloro-3 is present in the 3-hydroxyne body produced by the above-mentioned enzymatic reaction.
It contained ethyl (S)-hydroxybutanoate and 0.9% of ethyl 4-chloro-3(R)-hydroxybutanoate, and the 3(S)-hydroxy form was preferentially produced. 4
The yield of ethyl -chloro-3(S)-hydroxybutanoate was 62%.

実施例2.光学活性4−クロロ−3(S)−ヒドロキシ
ブタン酸エチルの製法 NADH再生用酵素として3α−113DII (実施
例1と同様の精製酵素)、NADH再生用基質としてメ
チルイソブチルカルビノールを用いた。25μ!の0.
1Mリン酸緩衝液(pH7,0) に2.33mgの3
α−IIsDIIおよび25μ!の5mM N A D
 H(0,125uモル)を力■えて?容解し、260
μlのメチルイソフ゛チルカルビノールおよび40μf
fi (295μモル)の4−クロロアセト酢酸エチル
を加えて撹拌しなから30°Cで反応した。反応開始後
6時間目に40μlの4−クロロアセト酢酸エチル、2
11時間目は40ul!、の4−クロロアセト酢酸エチ
ルおよび260μlのメチルイソブチルカルビノール、
10μlのリン酸緩衝液を加えて、さらに60時間反応
を続けた(総反応時間は81時間)。反応終了後、ガス
クロマトグラフで分析した結果、810μモルの3−ヒ
ドロキシ体が生成していた。この溶液に混在するメチル
イソブチルカルビノール、メチルイソブチルケトンを減
圧下40°Cで除去したあと、旋光度の測定及び液体ク
ロマトグラフによって異性体純度の測定を行った。クロ
ロホルムに溶かした場合の比旋光度は[α] 5N−2
0,63deHであり4−クロロ−3(S)−ヒドロキ
シブタン酸エチルが優先的に生成していた。またDNP
 Iで誘導体化した標品を液体クロマトグラフで分析し
た結果、99%の4−クロロ−3(S)−ヒドロキシブ
タン酸エチルと1%の4−クロロ−3(R)−ヒドロキ
シブタン酸エチルが生成していた。4−クロロ−3(s
)−ヒドロキシブタン酸エチルの収率は91%であった
Example 2. Method for producing optically active ethyl 4-chloro-3(S)-hydroxybutanoate 3α-113DII (purified enzyme similar to Example 1) was used as the enzyme for regenerating NADH, and methylisobutylcarbinol was used as the substrate for regenerating NADH. 25μ! 0.
2.33 mg of 3 in 1M phosphate buffer (pH 7,0)
α-IIsDII and 25μ! of 5mM N.A.D.
Add H (0.125 umol)? Understand, 260
μl of methyl isophyl carbinol and 40 μf
fi (295 μmol) of ethyl 4-chloroacetoacetate was added and reacted at 30° C. with stirring. 6 hours after the start of the reaction, 40 μl of ethyl 4-chloroacetoacetate, 2
40ul for the 11th hour! , of ethyl 4-chloroacetoacetate and 260 μl of methylisobutylcarbinol,
10 μl of phosphate buffer was added and the reaction continued for an additional 60 hours (total reaction time 81 hours). After the reaction was completed, analysis by gas chromatography revealed that 810 μmol of 3-hydroxy compound had been produced. After removing methyl isobutyl carbinol and methyl isobutyl ketone mixed in this solution at 40° C. under reduced pressure, the isomer purity was measured by optical rotation measurement and liquid chromatography. The specific rotation when dissolved in chloroform is [α] 5N-2
0.63 deH, and ethyl 4-chloro-3(S)-hydroxybutanoate was preferentially produced. Also DNP
Analysis of the sample derivatized with I by liquid chromatography revealed that 99% of ethyl 4-chloro-3(S)-hydroxybutanoate and 1% of ethyl 4-chloro-3(R)-hydroxybutanoate were present. It was generating. 4-chloro-3(s
)-Ethyl hydroxybutanoate yield was 91%.

実施例3.光学活性4−クロロ−3(S)−ヒドロキシ
ブタン酸エチルの製法 酵素の反応速度および安定性を高めるために70mgの
膨潤状態のDEAE−セファロースを添加して、実施例
2と同様にして反応を行なった。反応終了液をガスクロ
分析したところ860μモルの3−ヒドロキシ体が生成
していた。またメチルイソブチルカルビノール、メチル
イソブチルケトンを除去したあと、旋光度の測定および
液体クロマトグラフによって異性体純度の測定を行った
。クロロポルム中における比旋光度は[α]  sH=
  20.71degであり4−クロロ−3(S)−ヒ
ドロキシブタン酸エチルが優先的に生成していた。また
DNPI誘導体を液体クロマトグラフで分析した結果、
99.2%の4−クロロ−3(S)−ヒドロキシブタン
酸エチルと0.8%の4−クロロ−3(R)−ヒドロキ
シブタン酸エチルが生成していた。4−クロロ−3(S
)−ヒドロキシブタン酸エチルの収率は97%であった
Example 3. Preparation of optically active ethyl 4-chloro-3(S)-hydroxybutanoate The reaction was carried out in the same manner as in Example 2, with the addition of 70 mg of swollen DEAE-Sepharose to increase the reaction rate and stability of the enzyme. I did it. Gas chromatography analysis of the reaction-completed solution revealed that 860 μmol of 3-hydroxy compound had been produced. After removing methyl isobutyl carbinol and methyl isobutyl ketone, the isomer purity was measured by optical rotation and liquid chromatography. The specific rotation in chloroporum is [α] sH=
It was 20.71 deg, and ethyl 4-chloro-3(S)-hydroxybutanoate was preferentially produced. Furthermore, as a result of liquid chromatography analysis of DNPI derivatives,
99.2% of ethyl 4-chloro-3(S)-hydroxybutanoate and 0.8% of ethyl 4-chloro-3(R)-hydroxybutanoate were produced. 4-chloro-3(S
)-Ethyl hydroxybutanoate yield was 97%.

実施例4.光学活性R−(−)−2−オクタツールの製
法 0.2M NaClを含む0.1Mリン酸緩衝液(pH
7,0)1mlに0.51g(2,83ミリモル)のグ
ルコース、lll1gの3 α−)ISDH(KE31
株由来の精製酵素、2.6 mgのG D Hおよび1
0■のNADH(13μモル)を溶かし、これに0.1
 ml (82mg、 640μモル)の2−オクタノ
ンを添加して25°Cで反応を行った。反応と共にpH
は低下するので絶えずスターラーで撹拌し、IMのNa
zCO:+でpH7,0に調整しながら反応させた。1
5時間反応後(途中6時間目に1 mgのCI) Hお
よび6■のNADHをさらに添加した)、反応液に1.
2−ジクロロエタン(1,5mmX2回)を加えて生産
物を抽出した。遠心分離後1.2−ジクロロエタン層、
(油層)を回収し、ガスクロマトグラフを用いて分析し
た。油層中には64mg(490μモル)の2−オクタ
ツールが生成していた。この標品の旋光度を測定したと
ころ、比旋光度[α]5H=−6.7 degであり9
体が優先的に生成していた。
Example 4. Production method of optically active R-(-)-2-octatool 0.1M phosphate buffer containing 0.2M NaCl (pH
7,0) 0.51 g (2,83 mmol) of glucose in 1 ml, 1 g of 3 α-) ISDH (KE31
Purified enzyme from strain, 2.6 mg G D H and 1
Dissolve 0 ■ NADH (13 μmol) and add 0.1
ml (82 mg, 640 μmol) of 2-octanone was added and the reaction was carried out at 25°C. pH along with reaction
Since the Na
The reaction was carried out while adjusting the pH to 7.0 with zCO:+. 1
After 5 hours of reaction (1 mg of CI H and 6 μm of NADH were further added at 6 hours), 1.
The product was extracted by adding 2-dichloroethane (1.5 mm x 2). 1,2-dichloroethane layer after centrifugation,
(oil layer) was collected and analyzed using a gas chromatograph. 64 mg (490 μmol) of 2-octatool was produced in the oil layer. When the optical rotation of this sample was measured, the specific optical rotation [α]5H = -6.7 deg, 9
The body was producing it preferentially.

一方、純品のR−(−)−2−オクタツールの比旋光度
は[α] sH=  9.745degであった。次に
前述の油層に1.6gのNa2SO4を加えて1夜、撹
拌し1ま たのち0.3 m!採取してモルキュラシーブを入れて
さらに1夜放置した。この液に3mgの1)NPIを加
えてよく撹拌し、さらに30μlの乾燥ピリジンを加え
て撹拌したのち4時間放置した。この誘導体を液体クロ
マトグラフィーで分析したところ、生成した2−オクタ
ツールのうち84.5%はR−(−)−2−オクタツー
ルであり、15.5%はS−(+)−2−オクタツール
であった。R−(−)−2−オクタツールの収率は67
%であった。
On the other hand, the specific optical rotation of pure R-(-)-2-octatool was [α]sH=9.745 deg. Next, 1.6 g of Na2SO4 was added to the above oil layer, stirred overnight, and after one more time, 0.3 m! The sample was collected, added with molecular sieve, and left for one night. To this solution, 3 mg of 1) NPI was added and stirred well, and then 30 μl of dry pyridine was added and stirred, and then left for 4 hours. When this derivative was analyzed by liquid chromatography, 84.5% of the 2-octatool produced was R-(-)-2-octatool, and 15.5% was S-(+)-2- It was an octatool. The yield of R-(-)-2-octatool is 67
%Met.

実施例5.光学活性2−メチル−4(S)−ヒドロキシ
ペンクンの製法 0、IM NaClを含む0.1Mリン酸緩衝液(pH
7,0)2、8 mlに1.99g(11,1ミリモル
)のグルコース、2.6mgの3 α−H3Dtl (
K31E株由来精製酵素)、2.7mgのGDHおよび
20+ngのNADH(26μモル)を溶かし、これに
0.6 ml (480mg、 4.97ミリモル)の
メチルイソブチルケトンを添加してpH7,0に調整し
なから25°Cで反応を行なった。15時間反応後(途
中6時間目に2mgのG D Hおよび12n+gのN
AD Hをさらに添加した)、反応液に1,2−ジクロ
0エクン(2,5+nfX2回)を加えて抽出し、遠心
分離して1.2−ジクロロエタン層(油層)を回収した
。これをガスクロマトグラフで分析したところ215m
gのメチルイソブチルカルビノールが生成していた。こ
の標品の旋光度を測定したところ、比旋光度[α] s
H= + 0.127degであった。またDNPIで
誘導体化した後、液体クロマトグラフによって、異性体
の純度を測定した結果、2−メチル−4(S)−ヒドロ
キシペンクンは62.4%、2−メチル−4(R)−ヒ
ドロキシペンクンは37.6%含まれており、4(S)
−ヒドロキシ体が優先的に生成していた。2−メチル−
4(S)−ヒドロキシペンクンの収率は27.8%であ
った。
Example 5. Preparation method of optically active 2-methyl-4(S)-hydroxypenkune 0, IM 0.1M phosphate buffer containing NaCl (pH
7,0) 1.99 g (11,1 mmol) of glucose in 2,8 ml, 2.6 mg of 3α-H3Dtl (
K31E strain (purified enzyme), 2.7 mg of GDH and 20+ng of NADH (26 μmol) were dissolved, and 0.6 ml (480 mg, 4.97 mmol) of methyl isobutyl ketone was added to adjust the pH to 7.0. The reaction was then carried out at 25°C. After 15 hours of reaction (2 mg of G D H and 12n + g of N at 6 hours)
1,2-dichloroethane layer (oil layer) was collected by centrifugation. When this was analyzed with a gas chromatograph, it was 215 m.
g of methylisobutylcarbinol was produced. When the optical rotation of this sample was measured, the specific rotation [α] s
H=+0.127deg. After derivatization with DNPI, the purity of the isomer was measured by liquid chromatography. As a result, 2-methyl-4(S)-hydroxypenkune was 62.4%, 2-methyl-4(R)-hydroxy Penkun contains 37.6%, 4 (S)
-Hydroxy form was preferentially produced. 2-methyl-
The yield of 4(S)-hydroxypenkune was 27.8%.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、副産物が少なく効率よく、光学活
性アルコールを製造することができる。
According to the method of the present invention, optically active alcohol can be efficiently produced with few by-products.

Claims (2)

【特許請求の範囲】[Claims] (1)3α−ヒドロキシステロイド脱水素酵素を用いて
、ケトン化合物を光学活性アルコールに変換することを
特徴とする光学活性アルコールの製造方法。
(1) A method for producing an optically active alcohol, which comprises converting a ketone compound into an optically active alcohol using 3α-hydroxysteroid dehydrogenase.
(2)3α−ヒドロキシステロイド脱水素酵素がセルロ
モナス属由来の酵素である請求項1記載の製造方法。
(2) The production method according to claim 1, wherein the 3α-hydroxysteroid dehydrogenase is an enzyme derived from the genus Cellulomonas.
JP63103851A 1988-04-28 1988-04-28 Production of optical active alcohol Granted JPH01277494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63103851A JPH01277494A (en) 1988-04-28 1988-04-28 Production of optical active alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63103851A JPH01277494A (en) 1988-04-28 1988-04-28 Production of optical active alcohol

Publications (2)

Publication Number Publication Date
JPH01277494A true JPH01277494A (en) 1989-11-07
JPH045436B2 JPH045436B2 (en) 1992-01-31

Family

ID=14364944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63103851A Granted JPH01277494A (en) 1988-04-28 1988-04-28 Production of optical active alcohol

Country Status (1)

Country Link
JP (1) JPH01277494A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559030A (en) * 1993-01-12 1996-09-24 Daicel Chemical Industries, Ltd. Processes for production of optically active 4-halo-3-hydroxybutyric acid esters
US6168935B1 (en) 1998-02-25 2001-01-02 Daicel Chemical Industries, Ltd. Preparation of optically active alcohol substituted with one or more halogen atoms
US7202069B2 (en) * 2000-02-16 2007-04-10 Daicel Chemical Industries, Ltd. (R)-2-octanol dehydrogenases, methods for producing the enzymes, DNA encoding the enzymes, and methods for producing alcohols using the enzymes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559030A (en) * 1993-01-12 1996-09-24 Daicel Chemical Industries, Ltd. Processes for production of optically active 4-halo-3-hydroxybutyric acid esters
US6168935B1 (en) 1998-02-25 2001-01-02 Daicel Chemical Industries, Ltd. Preparation of optically active alcohol substituted with one or more halogen atoms
US7202069B2 (en) * 2000-02-16 2007-04-10 Daicel Chemical Industries, Ltd. (R)-2-octanol dehydrogenases, methods for producing the enzymes, DNA encoding the enzymes, and methods for producing alcohols using the enzymes

Also Published As

Publication number Publication date
JPH045436B2 (en) 1992-01-31

Similar Documents

Publication Publication Date Title
US5008192A (en) Enzymatic process for the preparation of optically active cyanohydrins
CN109609582B (en) Method for preparing L-glufosinate-ammonium by microbial catalysis racemization removal
JPH0516833B2 (en)
Huh et al. Synthesis of l-proline from the racemate by coupling of enzymatic enantiospecific oxidation and chemical non-enantiospecific reducation
EP0089886B1 (en) Process for the preparation of a free alpha-l-amino acid
US5346816A (en) Enzymatic process for the enantioselective preparation of optically active cyanohydrins
JPH01277494A (en) Production of optical active alcohol
US5714356A (en) Enzymic process for preparing aliphatic S-cyanohydrins
JPS63251098A (en) Production of (r)-3-halogeno-1,2-propanediol
JP3683129B2 (en) Method for producing optically active alcohol
JP3705046B2 (en) Preparation of optically active 4-halogeno-1,3-butanediol and its derivatives by microorganisms
JP2883712B2 (en) Production method of optically active 1,3-butanediol
JP2698627B2 (en) Method for producing optically active amines and derivatives thereof
JP3001663B2 (en) Method for producing optically active (S) -3-chloro-1-phenyl-1-propanol
JPS5923794B2 (en) Manufacturing method of dihydroxyacetone
JP3135740B2 (en) Method for producing R-pantolactone
JPH10248591A (en) Production of optically active alcohol
JPS6332492A (en) Production of levorotatory optically active isomer of mandelic acid by enzymatic process
EP2069516B1 (en) Specific hydrolysis of the n-unprotected (r) -ester of (3 ) -amin0-3-arylpr0pi0nic acid esters
JP3192835B2 (en) Method for producing (S) -1,3-butanediol
JP2002204699A (en) METHOD FOR PRODUCING beta-HYDROXY-gamma-BUTYROLACTONE
JP2828720B2 (en) Method for producing optically active 1,3-butanediol
JP2946055B2 (en) Method for producing optically active (S)-(+)-3-halo-1,2-propanediol
JPH047678B2 (en)
KR100501953B1 (en) The method of preparing optically active alcohol and their esters.

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term